Therapeutically active compounds and their methods of use

Information

  • Patent Grant
  • 10028961
  • Patent Number
    10,028,961
  • Date Filed
    Thursday, April 7, 2016
    8 years ago
  • Date Issued
    Tuesday, July 24, 2018
    5 years ago
Abstract
Provided are compounds useful for treating cancer and methods of treating cancer comprising administering to a subject in need thereof a compound described herein.
Description
BACKGROUND OF INVENTION

Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate (i.e., α-ketoglutarate). These enzymes belong to two distinct subclasses, one of which utilizes NAD(+) as the electron acceptor and the other NADP(+). Five isocitrate dehydrogenases have been reported: three NAD(+)-dependent isocitrate dehydrogenases, which localize to the mitochondrial matrix, and two NADP(+)-dependent isocitrate dehydrogenases, one of which is mitochondrial and the other predominantly cytosolic. Each NADP(+)-dependent isozyme is a homodimer.


IDH1 (isocitrate dehydrogenase 1 (NADP+), cytosolic) is also known as IDH; IDP; IDCD; IDPC or PICD. The protein encoded by this gene is the NADP(+)-dependent isocitrate dehydrogenase found in the cytoplasm and peroxisomes. It contains the PTS-1 peroxisomal targeting signal sequence. The presence of this enzyme in peroxisomes suggests roles in the regeneration of NADPH for intraperoxisomal reductions, such as the conversion of 2, 4-dienoyl-CoAs to 3-enoyl-CoAs, as well as in peroxisomal reactions that consume 2-oxoglutarate, namely the alpha-hydroxylation of phytanic acid. The cytoplasmic enzyme serves a significant role in cytoplasmic NADPH production.


The human IDH1 gene encodes a protein of 414 amino acids. The nucleotide and amino acid sequences for human IDH1 can be found as GenBank entries NM_005896.2 and NP_005887.2 respectively. The nucleotide and amino acid sequences for IDH1 are also described in, e.g., Nekrutenko et al., Mol. Biol. Evol. 15:1674-1684(1998); Geisbrecht et al., J. Biol. Chem. 274:30527-30533(1999); Wiemann et al., Genome Res. 11:422-435(2001); The MGC Project Team, Genome Res. 14:2121-2127(2004); Lubec et al., Submitted (December 2008) to UniProtKB; Kullmann et al., Submitted (June 1996) to the EMBL/GenBank/DDBJ databases; and Sjoeblom et al., Science 314:268-274(2006).


Non-mutant, e.g., wild type, IDH1 catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate thereby reducing NAD+ (NADP+) to NADH (NADPH), e.g., in the forward reaction:

Isocitrate+NAD+(NADP+)→α-KG+CO2+NADH(NADPH)+H+.


It has been discovered that mutations of IDH1 present in certain cancer cells result in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α-ketoglutarate to R(−)-2-hydroxyglutarate (2HG). The production of 2HG is believed to contribute to the formation and progression of cancer (Dang, L et al., Nature 2009, 462:739-44).


IDH2 (isocitrate dehydrogenase 2 (NADP+), mitochondrial) is also known as IDH; IDP; IDHM; IDPM; ICD-M; or mNADP-IDH. The protein encoded by this gene is the NADP(+)-dependent isocitrate dehydrogenase found in the mitochondria. It plays a role in intermediary metabolism and energy production. This protein may tightly associate or interact with the pyruvate dehydrogenase complex. Human IDH2 gene encodes a protein of 452 amino acids. The nucleotide and amino acid sequences for IDH2 can be found as GenBank entries NM_002168.2 and NP_002159.2 respectively. The nucleotide and amino acid sequence for human IDH2 are also described in, e.g., Huh et al., Submitted (November 1992) to the EMBL/GenBank/DDBJ databases; and The MGC Project Team, Genome Res. 14:2121-2127(2004).


Non-mutant, e.g., wild type, IDH2 catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG) thereby reducing NAD+ (NADP+) to NADH (NADPH), e.g., in the forward reaction:

Isocitrate+NAD+(NADP+)→α-KG+CO2+NADH(NADPH)+H+.


It has been discovered that mutations of IDH2 present in certain cancer cells result in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α-ketoglutarate to R(−)-2-hydroxyglutarate (2HG). 2HG is not formed by wild-type IDH2. The production of 2HG is believed to contribute to the formation and progression of cancer (Dang, L et al, Nature 2009, 462:739-44).


The inhibition of mutant IDH1 and/or mutant IDH2 and their neoactivity is therefore a potential therapeutic treatment for cancer. Accordingly, there is an ongoing need for inhibitors of IDH1 and/or IDH2 mutants having alpha hydroxyl neoactivity.


SUMMARY OF INVENTION

Described herein are compounds of Formula I, or a pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:


ring A is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;


X is N, CH or C-halo;


R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein each said alkyl moiety of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;


R2 and R5 are each independently selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C2-C6 alkenyl or alkynyl), —(C1-C6 alkylene)-N(R6)—(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)(R6), —(C1-C6 alkylene)-N(R6)—S(O)1-2—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)—S(O)1-2—(C0-C6 alkyl)-Q, —(C1-C6 alkylene)-S(O)1-2—N(R6)(R6), —(C1-C4 alkylene)-S(O)1-2—N(R6)—(C1-C6 alkylene)-Q, —C(O)N(R6)—(C1-C6 alkylene)-C(O)— (C0-C6 alkylene)-O—(C1-C6 alkyl), —C(O)N(R6)—(C1-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-O—C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-O—C(O)—(C0-C6 alkyl)-Q, —(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C1-C6 alkylene)-O—(C1-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C1-C6 alkylene)-Q, —(C1-C6 alkylene)-O—C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-O—C(O)—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)N(R6)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)N(R6)—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)C(O)—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-S(O)0-2—(C1-C6 alkyl), —(C0-C6 alkylene)-S(O)0-2—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)—C(O)—N(R6)—(C1-C6 alkyl), —(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein:

    • any alkyl or alkylene moiety present in R2 and R5 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo;
    • any terminal methyl moiety present in R2 and R5 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H;


R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl; and


Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


R1 and R3 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R4 and R6 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or


R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl, optionally substituted heterocyclyl, an optionally substituted aryl, or an optionally substituted heteroaryl;


wherein:

    • (i) when X is N and A is optionally substituted phenyl, then (a) neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHCH2CH2OCH2CH2OCH2CH2NH2, 4-[[2-[2-(2-aminoethoxy)ethoxy]ethyl]amino] and (b) N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHEt, NH(n-propyl), NH(n-butyl), NH(n-docecyl), NH-[(4-methoxyphenyl)methyl], NHCH2CH2CHO, NHCH2CH2OCH3, NHCH2CH2OH, NHCH2CH(OH)CH3, NHCH2CH2OC(O)phenyl, NHCH2CH2CH2OH, NHCH2CH2CH2N(CH3)phenyl, NHCH2C(O)OCH3, NHCH2C(O)OCH2CH3, NHCH2phenyl, NHCH(CH3)CH2CH3, or NHCH2CH2OC(O)CH3;
    • (ii) when X is CH or C—Cl and A is phenyl optionally substituted with F, Cl or SO2CH3, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is N(CH3)CH2C(O)NH-i-propyl, NHCH(CH3)(CH2)3N(CH2CH3)2, NHCH2CH2OH, NHCH2CH2OCH3, NHCH2CH2OSO3H, NHCH2CH2CH2OCH2CH2O-phenyl, NHCH2CH2CH2OH, NHCH2CH2CH2OCH3, NHCH2CH(OH)CH3, N(CH2CH3)2, NH-i-propyl, NHCH2CH2NHC(O)OCH3, NHCH2CH2NHC(O)CH3, NHCH2CH2NH2, or NHCH2-phenyl;
    • (iii) when X is CH and A is optionally substituted pyridyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHCH2-phenyl, NHCH2-(2,4-difluorophenyl), N(CH3)CH2CH2C(O)OH, NHCH2CH2C(O)OH, NHCH2CH2C(O)OCH2CH3, NHCH2CH2C(O)O-t-butyl, NHCH2CH2C(O)NH2, NHCH2CH2-phenyl, NHCH2CH2OH, NHCH2CH2NH2, NHCH2CH2N(CH3)2, or NHCH2CH2CH3;
    • (iv) when X is CH and A is optionally substituted 1-imidazolyl, optionally substituted 1-pyrrolyl or optionally substituted 1-pyrazolyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NH(CH2)7CH3, NHCH2-(o-chloro-phenyl), or NHCH2CH2OH;
    • (v) when X is N and A is an optionally substituted pyridyl, then (A) neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHC(O)-[2-chloro-4-(methylsulfonyl)], N(CH3)2, NHCH2CH2CH2SO2CH2CH2Cl, NHCH2CH2OCH2CH2SO2CH2CH2Cl, or NHCH2CH2SO2CH2CH2Cl, (B) N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHC(O)C(CH3)3, NHC(O)CH═CH2, NHC(O)C(CH3)═CH2, NHCH2CH2OH, NH-cyclohexyl, NHCH2-phenyl, NHC(O)phenyl, NHC(O)(CH2)5NH2, NHC(O)OCH3, NHC(O)CH3, and NHC(O)NH-optionally substituted phenyl, and (C) when N(R7)C(R4)(R5)(R6) is NHC(CH3)3, then N(R8)C(R1)(R2)(R3) is not NHCH2-phenyl or NH—CH2CH3;
    • (vi) when X is N and A is an optionally substituted heteroaryl, then N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both N(CH2CH3)2, NHCH2CH2-i-propyl, NHCH2CH(CH3)2, and NHC(O)CH3;
    • (vii) when X is CH and A is unsubstituted 2-pyridinyl, then the ring formed by R4 and R5 is not 5-methyl-1H-pyrazol-3-yl;
    • (viii) when A is optionally substituted 1-pyrazolyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is N(CH3)2, NHCH3, NHAc, NHisopropyl, NHCH2CH3, NHCH2CH2SO3H or N(CH2CH3)2;
    • (ix) when X is N and A is optionally substituted phenyl, thienyl, or pyridinyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHcyclohexylC(O)NHCH2R, wherein R is phenyl or pyridinyl which is substituted with one or more of OCF3, OCH3, chloro, or CF3;
    • (x) when X is N, A is an optionally substituted phenyl and R4 and R5 form an optionally substituted phenyl, then N(R8)C(R1)(R2)(R3) is not NHCH2(4-fluorophenyl), NHCH2CO2H, NHCH2C(O)Cl, NHCH(CO2H)(CH2SCH2phenyl), NHCH2C(O)NHC(O)NHR or NHCH2C(O)NHC(S)NHR, wherein R is optionally substituted phenyl or naphthyl;
    • (xi) when X is N, A is an oxadiazole substituted with an optionally substituted pyridinyl, then R4 and R5 do not form an optionally substituted phenyl;
    • (xii) when A is substituted 1-pyrazolyl, then (A) then N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHC(CH3)3, and (B) A is not substituted with N═N—R, wherein R is a ring;
    • (xiii) ring A is not an optionally substituted triazolyl, 3,5-dimethyl-1H-pyrazol-1-yl;
    • (xix) when R1 and R2 are optionally taken together to form an unsubstituted cyclohexyl, and R4 and R5 are optionally taken together to form an unsubstituted cyclohexyl, then A is not a disubstituted 1-pyrazolyl or an unsubstituted phenyl; and
    • (xx) the compound is not selected from the group:
  • (1) N-(2-aminophenyl)-4-[[[4-[(2,3-dihydro-1H-inden-2-yl)amino]-6-phenyl-1,3,5-triazin-2-yl]amino]methyl]-benzamide;
  • (2) 2-chloro-N-[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-4-(methylsulfonyl)-benzamide;
  • (3) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetamide;
  • (4) N2-cyclopropyl-N4-ethyl-6-[3-[(phenylmethyl)thio]-1H-1,2,4-triazol-1-yl]-1,3,5-triazine-2,4-diamine;
  • (5) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetic acid methyl ester;
  • (6) N-[[4-[[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl] methyl]-4-fluoro-benzenesulfonamide;
  • (7) N2-cyclopropyl-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N4-phenyl-1,3,5-triazine-2,4-diamine;
  • (8) N2,N4-dicyclohexyl-6-[3-(4-methoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine;
  • (9) N2,N4-dicyclohexyl-6-[3-(3,4-dimethoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine;
  • (10) N2,N4-dicyclohexyl-6-[5-(methylthio)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine;
  • (11) N2,N4-dicyclohexyl-6-phenyl-1,3,5-triazine-2,4-diamine;
  • (12) 1,1′-[(6-phenyl-s-triazine-2,4-diyl)diimino]bis[dodecahydro-anthraquinone];
  • (13) 4,4′-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(iminomethylene)]bis[2,6-bis(1,1-dimethylethyl)-phenol;
  • (14) N-[4-[(4-aminobutyl)amino]-6-[5-[[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl] amino]-2-methylphenyl]-1,3,5-triazin-2-yl]-glycine;
  • (15) 4-[2-[[4-[(5-aminopentyl)amino]-6-(3-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol;
  • (16) 4-[2-[[4-[(5-aminopentyl)amino]-6-(4-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol;
  • (17) 6-(4-aminopyridin-3-yl)-N2-benzyl-N4-(tert-butyl)-1,3,5-triazine-2,4-diamine;
  • (18) N2,N4-bis(cyclohexylmethyl)-6-phenyl-1,3,5-triazine-2,4-diamine;
  • (19) 4,4′-[[6-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1,3,5-triazine-2,4-diyl]bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol;
  • (20) 4,4′-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol;
  • (21) N-[6-[(2,3-dihydro-1H-inden-2-yl)amino]-2-(2-pyridinyl)-4-pyrimidinyl]-β alanine;
  • (22) N4-cyclopentyl-2-phenyl-N6-(phenylmethyl)-4,6-pyrimidinediamine;
  • (23) 2-[[6-(bicyclo[2.2.1]hept-2-ylamino)-2-phenyl-4-pyrimidinyl]amino]-ethanol;
  • (24) N2-isopropyl-6-phenyl-N4-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazine-2,4-diamine;
  • (25) 2-chloro-4-(methylsulfonyl)-N-[4-[(phenylmethyl)amino]-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-benzamide;
  • (26) N-[[4-[[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide;
  • (27) [[4-[[[[[4-amino-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol;
  • (28) [[4-[[[[[4-[bis(hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl](hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol;
  • (29) 5-[4,6-bis(diethylamino)-1,3,5-triazin-2-yl]-2H-tetrazole-2-acetic acid ethyl ester;
  • (30) N2,N2,N4,N4-tetraethyl-6-(2H-tetrazol-5-yl)-1,3,5-triazine-2,4-diamine;
  • (31) N,N′-[6-[4-(acetylamino)-1,2,5-oxadiazol-3-yl]-1,3,5-triazine-2,4-diyl]bis-acetamide;
  • (32) N-(2-chloro-6-methylphenyl)-5-[[4-(dimethylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]-1,3,4-Oxadiazole-2-carboxamide;
  • (33) N4-(5-methyl-1H-pyrazol-3-yl)-2-(2-pyridinyl)-N6-(tetrahydro-2H-pyran-4-yl)-4,6-Pyrimidinediamine;
  • (34) 6-(4-chlorophenyl)-N2-[4-chloro-3-(trifluoromethyl)phenyl]-N4-[3-(diethylamino)propyl]-1,3,5-Triazine-2,4-diamine;
  • (35) 6-(4-chlorophenyl)-N2-[4-chloro-3-(trifluoromethyl)phenyl]-N4-[3-(dimethylamino)propyl]-1,3,5-Triazine-2,4-diamine;
  • (36) N2-[3,5-bis(trifluoromethyl)phenyl]-6-(4-chlorophenyl)-N4-[3-(diethylamino)propyl]-1,3,5-Triazine-2,4-diamine;
  • (37) N2,N4-bis[(4-methoxyphenyl)methyl]-6-[4-(trifluoromethoxy)phenyl]-1,3,5-Triazine-2,4-diamine;
  • (38) N,N″-(6-phenyl-1,3,5-triazine-2,4-diyl)bis[N′-(2-chloroethyl)-Urea;
  • (39) N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-[4-methyl-3-[[4-phenyl-6-(propylamino)-1,3,5-triazin-2-yl]amino]phenyl]-urea;
  • (40) N-[4-[[5-[[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]-glycine;
  • (41) N-[4-[[5-[[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]amino]-6-(5-thiazolyl)-1,3,5-triazin-2-yl]-L-Valine;
  • (42) s-Triazine, 2-phenyl-4,6-bis[[6-[[4-phenyl-6-[[6-[[4-phenyl-6-(trichloromethyl)-s-triazin-2-yl]amino]hexyl]amino]-s-triazin-2-yl]amino]hexyl]amino]-;
  • (43) α,α′-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis[imino(1,1,2,2-tetrafluoro-3-oxo-3,1-propanediyl)]]bis[ω-[tetrafluoro(trifluoromethyl)ethoxy]-Poly[oxy[trifluoro(trifluoromethyl)-1,2-ethanediyl]];
  • (44) α-[[4-[[(3-chlorophenyl)methyl]amino]-6-(1H-imidazol-1-yl)-1,3,5-triazin-2-yl]amino]-N-[[4-(trifluoromethyl)phenyl]methyl]-, (αR)-Cyclohexanepropanamide;
  • (45) 6-(1H-imidazol-1-yl)-N2,N4-bis(1-methylethyl)-1,3,5-Triazine-2,4-diamine; and
  • (46) N2,N4-bis(1-methylpropyl)-6-phenyl-1,3,5-Triazine-2,4-diamine.


The compounds of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, and IIId, or as described in any one of the embodiments herein inhibits mutant IDH1 or mutant IDH2. Also described herein are pharmaceutical compositions comprising a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, and IIId, and methods of using such compositions to treat cancers characterized by the presence of a mutant IDH1 or mutant IDH2.







DETAILED DESCRIPTION

The details of construction and the arrangement of components set forth in the following description or illustrated in the drawings are not meant to be limiting. Other embodiments and different ways to practice the invention are expressly included. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having,” “containing”, “involving”, and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.


Definitions

The term “halo” or “halogen” refers to any radical of fluorine, chlorine, bromine or iodine.


The term “alkyl” refers to a fully saturated or unsaturated hydrocarbon chain that may be a straight chain or branched chain, containing the indicated number of carbon atoms. For example, C1-C12 alkyl indicates that the group may have from 1 to 12 (inclusive) carbon atoms in it. The term “haloalkyl” refers to an alkyl in which one or more hydrogen atoms are replaced by halo, and includes alkyl moieties in which all hydrogens have been replaced by halo (e.g., perfluoroalkyl). The terms “arylalkyl” or “aralkyl” refer to an alkyl moiety in which an alkyl hydrogen atom is replaced by an aryl group. Aralkyl includes groups in which more than one hydrogen atom has been replaced by an aryl group. Examples of “arylalkyl” or “aralkyl” include benzyl, 2-phenylethyl, 3-phenylpropyl, 9-fluorenyl, benzhydryl, and trityl groups. The term “alkyl” includes “alkenyl” and “alkynyl”.


The term “alkylene” refers to a divalent alkyl, e.g., —CH2—, —CH2CH2—, —CH2CH2CH2— and —CH2CH(CH3)CH2—.


The term “alkenyl” refers to a straight or branched hydrocarbon chain containing 2-12 carbon atoms and having one or more double bonds. Examples of alkenyl groups include, but are not limited to, allyl, propenyl, 2-butenyl, 3-hexenyl and 3-octenyl groups. One of the double bond carbons may optionally be the point of attachment of the alkenyl substituent.


The term “alkynyl” refers to a straight or branched hydrocarbon chain containing 2-12 carbon atoms and characterized in having one or more triple bonds. Examples of alkynyl groups include, but are not limited to, ethynyl, propargyl, and 3-hexynyl. One of the triple bond carbons may optionally be the point of attachment of the alkynyl substituent.


The term “alkoxy” refers to an —O-alkyl radical. The term “haloalkoxy” refers to an alkoxy in which one or more hydrogen atoms are replaced by halo, and includes alkoxy moieties in which all hydrogens have been replaced by halo (e.g., perfluoroalkoxy).


Unless otherwise specified, the term “aryl” refers to a fully aromatic monocyclic, bicyclic, or tricyclic hydrocarbon ring system. Examples of aryl moieties are phenyl, naphthyl, and anthracenyl. Unless otherwise specified, any ring atom in an aryl can be substituted by one or more substituents. The term “monocyclic aryl” means a monocyclic fully romatic hydrocarbon ring system, optionally substituted by one or more substituents which can not form a fused bicyclic or tricyclic ring.


The term “carbocyclyl” refers to a non-aromatic, monocyclic, bicyclic, or tricyclic hydrocarbon ring system. Carbocyclyl groups include fully saturated ring systems (e.g., cycloalkyls), and partially saturated ring systems. Carbocyclyl groups also include spirocyclic moieties. Examples of spirocyclic moieties include, but are not limited to, bicyclo[3.1.0]hexanyl, spiro[2.2]pentanyl, spiro[3.3]heptanyl, spiro[2.5]octanyl, spiro[3.5]nonanyl, spiro[4.5]decanyl, and spiro[3.6]decanyl. Unless otherwise specified, any ring atom in a carbocyclyl can be substituted by one or more substituents.


Bicyclic or tricyclic ring systems where an aryl is fused to a carbocyclyl and the point of attachment from the ring system to the rest of the molecule is through the non-aromatic ring are considered to be carbocyclyl (e.g., cycloalkyl). Examples of such carbocyclyl moieties include, but are not limited to, 2,3-dihydro-1H-indene and 1,2,3,4-tetrahydronaphthalene.


The term “cycloalkyl” as employed herein includes saturated cyclic, bicyclic, tricyclic, or polycyclic hydrocarbon groups having 3 to 12 carbons. Any ring atom can be substituted (e.g., by one or more substituents). Examples of cycloalkyl moieties include, but are not limited to, cyclopropyl, cyclohexyl, methylcyclohexyl, adamantyl, and norbornyl.


Unless otherwise specified, the term “heteroaryl” refers to a fully aromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (or the oxidized forms such as N+—O, S(O) and S(O)2). The term “monocyclic heteroaryl” means a monocyclic fully romatic ring system having 1-3 heteroatoms, optionally substituted by one or more substituents which can not form a fused bicyclic or tricyclic ring.


The term “heterocyclyl” refers to a nonaromatic, 3-10 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (or the oxidized forms such as N+—O, S(O) and S(O)2). The heteroatom may optionally be the point of attachment of the heterocyclyl substituent. Examples of heterocyclyl include, but are not limited to, tetrahydrofuranyl, tetrahydropyranyl, piperidinyl, morpholino, pyrrolinyl, pyrimidinyl, and pyrrolidinyl. Heterocyclyl groups include fully saturated ring systems, and partially saturated ring systems.


Bicyclic and tricyclic ring systems containing one or more heteroatoms and both aromatic and non-aromatic rings are considered to be heterocyclyl or heteroaryl groups. Bicyclic or tricyclic ring systems where an aryl or a heteroaryl is fused to a carbocyclyl or heterocyclyl and the point of attachment from the ring system to the rest of the molecule is through an aromatic ring are considered to be aryl or heteroaryl groups, respectively. Bicyclic or tricyclic ring systems where an aryl or a heteroaryl is fused to a carbocyclyl or heterocyclyl and the point of attachment from the ring system to the rest of the molecule is through the non-aromatic ring are considered to be carbocyclyl (e.g., cycloalkyl) or heterocyclyl groups, respectively.


Aryl, heteroaryl, carbocyclyl (including cycloalkyl), and heterocyclyl groups, either alone or a part of a group (e.g., the aryl portion of an aralkyl group), are optionally substituted at one or more substitutable atoms with, unless specified otherwise, substituents independently selected from: halo, —C≡N, C1-C4 alkyl, ═O, —ORb, —ORb′, —SRb, —SRb′, —(C1-C4 alkyl)-N(Rb)(Rb), —(C1-C4 alkyl)-N(Rb)(Rb′), —N(Rb)(Rb), —N(Rb)(Rb′), —O—(C1-C4 alkyl)-N(Rb)(Rb), —O—(C1-C4 alkyl)-N(Rb)(Rb′), —(C1-C4 alkyl)-O—(C1-C4 alkyl)-N(Rb)(Rb), —(C1-C4 alkyl)-O—(C1-C4 alkyl)-N(Rb)(Rb′), —C(O)—N(Rb)(Rb), —(C1-C4 alkyl)-C(O)—N(Rb)(Rb), —(C1-C4 alkyl)-C(O)—N(Rb)(Rb′), —ORb′, Rb′, —C(O)(C1-C4 alkyl), —C(O)Rb′, —C(O)N(Rb′)(Rb), —N(Rb)C(O)(Rb), —N(Rb)C(O)(Rb′), —N(Rb)SO2(Rb), —SO2N(Rb)(Rb), —N(Rb)SO2(Rb′), and —SO2N(Rb)(Rb′), wherein any alkyl substituent is optionally further substituted with one or more of —OH, —O—(C1-C4 alkyl), halo, —NH2, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;

    • each Rb is independently selected from hydrogen, and —C1-C4 alkyl; or
    • two Rbs are taken together with the nitrogen atom to which they are bound to form a 4- to 8-membered heterocyclyl optionally comprising one additional heteroatom selected from N, S, and O; and
    • each Rb′ is independently selected from C3-C7 carbocyclyl, phenyl, heteroaryl, and heterocyclyl, wherein one or more substitutable positions on said phenyl, cycloalkyl, heteroaryl or heterocycle substituent is optionally further substituted with one or more of —(C1-C4 alkyl), —(C1-C4 fluoroalkyl), —OH, —O—(C1-C4 alkyl), —O—(C1-C4 fluoroalkyl), halo, —NH2, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2.


Heterocyclyl groups, either alone or as part of a group, are optionally substituted on one or more any substitutable nitrogen atom with oxo, —C1-C4 alkyl, or fluoro-substituted C1-C4 alkyl.


The term “substituted” refers to the replacement of a hydrogen atom by another group. The term “bodily fluid” includes one or more of amniotic fluid surrounding a fetus, aqueous humour, blood (e.g., blood plasma), serum, Cerebrospinal fluid, cerumen, chyme, Cowper's fluid, female ejaculate, interstitial fluid, lymph, breast milk, mucus (e.g., nasal drainage or phlegm), pleural fluid, pus, saliva, sebum, semen, serum, sweat, tears, urine, vaginal secretion, or vomit.


As used herein, the terms “inhibit” or “prevent” include both complete and partial inhibition and prevention. An inhibitor may completely or partially inhibit the intended target.


The term “treat” means decrease, suppress, attenuate, diminish, arrest, or stabilize the development or progression of a disease/disorder (e.g., a cancer), lessen the severity of the disease/disorder (e.g., a cancer) or improve the symptoms associated with the disease/disorder (e.g., a cancer).


As used herein, an amount of a compound effective to treat a disorder, or a “therapeutically effective amount” refers to an amount of the compound which is effective, upon single or multiple dose administration to a subject, in treating a cell, or in curing, alleviating, relieving or improving a subject with a disorder beyond that expected in the absence of such treatment. As used herein, the term “subject” is intended to include human and non-human animals. Exemplary human subjects include a human patient (referred to as a patient) having a disorder, e.g., a disorder described herein or a normal subject. The term “non-human animals” of one aspect of the invention includes all vertebrates, e.g., non-mammals (such as chickens, amphibians, reptiles) and mammals, such as non-human primates, domesticated and/or agriculturally useful animals, e.g., sheep, dog, cat, cow, pig, etc.


Compounds


Provided is a compound of Formula I, or a pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:


ring A is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;


X is N, CH or C-halo;


R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein each said alkyl moiety of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;


R2 and R5 are each independently selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C2-C6 alkenyl or alkynyl), —(C1-C6 alkylene)-N(R6)—(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)(R6), —(C1-C6 alkylene)-N(R6)—S(O)1-2—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)—S(O)1-2—(C0-C6 alkyl)-Q, —(C1-C6 alkylene)-S(O)1-2—N(R6)(R6), —(C1-C4 alkylene)-S(O)1-2—N(R6)—(C1-C6 alkylene)-Q, —C(O)N(R6)—(C1-C6 alkylene)-C(O)— (C0-C6 alkylene)-O—(C1-C6 alkyl), —C(O)N(R6)—(C1-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-O—C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-O—C(O)—(C0-C6 alkyl)-Q, —(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C1-C6 alkylene)-O—(C1-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C1-C6 alkylene)-Q, —(C1-C6 alkylene)-O—C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-O—C(O)—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)N(R6)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)N(R6)—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)C(O)—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-S(O)0-2—(C1-C6 alkyl), —(C0-C6 alkylene)-S(O)0-2—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)—C(O)—N(R6)—(C1-C6 alkyl), —(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein:

    • any alkyl or alkylene moiety present in R2 and R5 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo;
    • any terminal methyl moiety present in R2 and R5 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H;


R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl; and


Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


R1 and R3 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R4 and R6 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or


R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl, optionally substituted heterocyclyl, an optionally substituted aryl, or an optionally substituted heteroaryl;


wherein:


(i) when X is N and A is optionally substituted phenyl, then (a) neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHCH2CH2OCH2CH2OCH2CH2NH2, 4-[[2-[2-(2-aminoethoxy)ethoxy]ethyl]amino] and (b) N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHEt, NH(n-propyl), NH(n-butyl), NH(n-docecyl), NH-[(4-methoxyphenyl)methyl], NHCH2CH2CHO, NHCH2CH2OCH3, NHCH2CH2OH, NHCH2CH(OH)CH3, NHCH2CH2OC(O)phenyl, NHCH2CH2CH2OH, NHCH2CH2CH2N(CH3)phenyl, NHCH2C(O)OCH3, NHCH2C(O)OCH2CH3, NHCH2phenyl, NHCH(CH3)CH2CH3, or NHCH2CH2OC(O)CH3;


(ii) when X is CH or C—Cl and A is phenyl optionally substituted with F, Cl or SO2CH3, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is N(CH3)CH2C(O)NH-i-propyl, NHCH(CH3)(CH2)3N(CH2CH3)2, NHCH2CH2OH, NHCH2CH2OCH3, NHCH2CH2OSO3H, NHCH2CH2CH2OCH2CH2O-phenyl, NHCH2CH2CH2OH, NHCH2CH2CH2OCH3, NHCH2CH(OH)CH3, N(CH2CH3)2, NH-i-propyl, NHCH2CH2NHC(O)OCH3, NHCH2CH2NHC(O)CH3, NHCH2CH2NH2, or NHCH2-phenyl;


(iii) when X is CH and A is optionally substituted pyridyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHCH2-phenyl, NHCH2-(2,4-difluorophenyl), N(CH3)CH2CH2C(O)OH, NHCH2CH2C(O)OH, NHCH2CH2C(O)OCH2CH3, NHCH2CH2C(O)O-t-butyl, NHCH2CH2C(O)NH2, NHCH2CH2-phenyl, NHCH2CH2OH, NHCH2CH2NH2, NHCH2CH2N(CH3)2, or NHCH2CH2CH3;


(iv) when X is CH and A is optionally substituted 1-imidazolyl, optionally substituted 1-pyrrolyl or optionally substituted 1-pyrazolyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NH(CH2)7CH3, NHCH2-(o-chloro-phenyl), or NHCH2CH2OH;


(v) when X is N and A is an optionally substituted pyridyl, then (A) neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHC(O)-[2-chloro-4-(methylsulfonyl)], N(CH3)2, NHCH2CH2CH2SO2CH2CH2Cl, NHCH2CH2OCH2CH2SO2CH2CH2Cl, or NHCH2CH2SO2CH2CH2Cl, (B) N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHC(O)C(CH3)3, NHC(O)CH═CH2, NHC(O)C(CH3)═CH2, NHCH2CH2OH, NH-cyclohexyl, NHCH2-phenyl, NHC(O)phenyl, NHC(O)(CH2)5NH2, NHC(O)OCH3, NHC(O)CH3, and NHC(O)NH-optionally substituted phenyl, and (C) when N(R7)C(R4)(R5)(R6) is NHC(CH3)3, then N(R8)C(R1)(R2)(R3) is not NHCH2-phenyl or NH—CH2CH3;


(vi) when X is N and A is an optionally substituted heteroaryl, then N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both N(CH2CH3)2, NHCH2CH2-i-propyl, NHCH2CH(CH3)2, and NHC(O)CH3;


(vii) when X is CH and A is unsubstituted 2-pyridinyl, then the ring formed by R4 and R5 is not 5-methyl-1H-pyrazol-3-yl,


(viii) when A is optionally substituted 1-pyrazolyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is N(CH3)2, NHCH3, NHAc, NHisopropyl, NHCH2CH3, NHCH2CH2SO3H or N(CH2CH3)2,


(ix) when X is N and A is optionally substituted phenyl, thienyl, or pyridinyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHcyclohexylC(O)NHCH2R, wherein R is phenyl or pyridinyl which is substituted with one or more of OCF3, OCH3, chloro, or CF3,


(x) when X is N, A is an optionally substituted phenyl and R4 and R5 form an optionally substituted phenyl, then N(R8)C(R1)(R2)(R3) is not NHCH2(4-fluorophenyl), NHCH2CO2H, NHCH2C(O)Cl, NHCH(CO2H)(CH2SCH2phenyl), or NHCH2C(O)NHC(O)NHR or NHCH2C(O)NHC(S)NHR, wherein R is optionally substituted phenyl or naphthyl,


(xi) when X is N, A is an oxadiazole substituted with an optionally substituted pyridinyl, then R4 and R5 do not form an optionally substituted phenyl,


(xii) when A is substituted 1-pyrazolyl, then (A) then N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHC(CH3)3, and (B) A is not substituted with N═N—R, wherein R is a ring,


(xiii) ring A is not an optionally substituted triazolyl, 3,5-dimethyl-1H-pyrazol-1-yl,


(xix) when R1 and R2 are optionally taken together to form an unsubstituted cyclohexyl, and R4 and R5 are optionally taken together to form an unsubstituted cyclohexyl, then A is not a disubstituted 1-pyrazolyl or an unsubstituted phenyl; and


(xx) the compound is not selected from the group:

  • (1) N-(2-aminophenyl)-4-[[[4-[(2,3-dihydro-1H-inden-2-yl)amino]-6-phenyl-1,3,5-triazin-2-yl]amino]methyl]-benzamide,
  • (2) 2-chloro-N-[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-4-(methylsulfonyl)-benzamide,
  • (3) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetamide,
  • (4) N2-cyclopropyl-N4-ethyl-6-[3-[(phenylmethyl)thio]-1H-1,2,4-triazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (5) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetic acid methyl ester,
  • (6) N-[[4-[[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl] methyl]-4-fluoro-benzenesulfonamide,
  • (7) N2-cyclopropyl-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N4-phenyl-1,3,5-triazine-2,4-diamine,
  • (8) N2,N4-dicyclohexyl-6-[3-(4-methoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (9) N2,N4-dicyclohexyl-6-[3-(3,4-dimethoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (10) N2,N4-dicyclohexyl-6-[5-(methylthio)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (11) N2,N4-dicyclohexyl-6-phenyl-1,3,5-triazine-2,4-diamine,
  • (12) 1,1′-[(6-phenyl-s-triazine-2,4-diyl)diimino]bis[dodecahydro-anthraquinone],
  • (13) 4,4′-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(iminomethylene)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
  • (14) N-[4-[(4-aminobutyl)amino]-6-[5-[[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl] amino]-2-methylphenyl]-1,3,5-triazin-2-yl]-glycine,
  • (15) 4-[2-[[4-[(5-aminopentyl)amino]-6-(3-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol,
  • (16) 4-[2-[[4-[(5-aminopentyl)amino]-6-(4-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol,
  • (17) 6-(4-aminopyridin-3-yl)-N2-benzyl-N4-(tert-butyl)-1,3,5-triazine-2,4-diamine,
  • (18) N2,N4-bis(cyclohexylmethyl)-6-phenyl-1,3,5-triazine-2,4-diamine,
  • (19) 4,4′-[[6-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1,3,5-triazine-2,4-diyl]bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
  • (20) 4,4′-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
  • (21) N-[6-[(2,3-dihydro-1H-inden-2-yl)amino]-2-(2-pyridinyl)-4-pyrimidinyl]-β alanine,
  • (22) N4-cyclopentyl-2-phenyl-N6-(phenylmethyl)-4,6-pyrimidinediamine,
  • (23) 2-[[6-(bicyclo[2.2.1]hept-2-ylamino)-2-phenyl-4-pyrimidinyl]amino]-ethanol,
  • (24) N2-isopropyl-6-phenyl-N4-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazine-2,4-diamine,
  • (25) 2-chloro-4-(methylsulfonyl)-N-[4-[(phenylmethyl)amino]-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-benzamide,
  • (26) N-[[4-[[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide,
  • (27) [[4-[[[[[4-amino-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,
  • (28) [[4-[[[[[4-[bis(hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl](hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,
  • (29) 5-[4,6-bis(diethylamino)-1,3,5-triazin-2-yl]-2H-tetrazole-2-acetic acid ethyl ester,
  • (30) N2,N2,N4,N4-tetraethyl-6-(2H-tetrazol-5-yl)-1,3,5-triazine-2,4-diamine,
  • (31) N,N′-[6-[4-(acetylamino)-1,2,5-oxadiazol-3-yl]-1,3,5-triazine-2,4-diyl]bis-acetamide,
  • (32) N-(2-chloro-6-methylphenyl)-5-[[4-(dimethylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]-1,3,4-Oxadiazole-2-carboxamide,
  • (33) N4-(5-methyl-1H-pyrazol-3-yl)-2-(2-pyridinyl)-N6-(tetrahydro-2H-pyran-4-yl)-4,6-Pyrimidinediamine,
  • (34) 6-(4-chlorophenyl)-N2-[4-chloro-3-(trifluoromethyl)phenyl]-N4-[3-(diethylamino)propyl]-1,3,5-Triazine-2,4-diamine,
  • (35) 6-(4-chlorophenyl)-N2-[4-chloro-3-(trifluoromethyl)phenyl]-N4-[3-(dimethylamino)propyl]-1,3,5-Triazine-2,4-diamine,
  • (36) N2-[3,5-bis(trifluoromethyl)phenyl]-6-(4-chlorophenyl)-N4-[3-(diethylamino)propyl]-1,3,5-Triazine-2,4-diamine,
  • (37) N2,N4-bis[(4-methoxyphenyl)methyl]-6-[4-(trifluoromethoxy)phenyl]-1,3,5-Triazine-2,4-diamine,
  • (38) N,N″-(6-phenyl-1,3,5-triazine-2,4-diyl)bis[N′-(2-chloroethyl)-Urea,
  • (39) N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-[4-methyl-3-[[4-phenyl-6-(propylamino)-1,3,5-triazin-2-yl]amino]phenyl]-urea,
  • (40) N-[4-[[5-[[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]-glycine,
  • (41) N-[4-[[5-[[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]amino]-6-(5-thiazolyl)-1,3,5-triazin-2-yl]-L-Valine,
  • (42) s-Triazine, 2-phenyl-4,6-bis[[6-[[4-phenyl-6-[[6-[[4-phenyl-6-(trichloromethyl)-s-triazin-2-yl]amino]hexyl]amino]-s-triazin-2-yl]amino]hexyl]amino]-,
  • (43) α,α′-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis[imino(1,1,2,2-tetrafluoro-3-oxo-3,1-propanediyl)]]bis[ω-[tetrafluoro(trifluoromethyl)ethoxy]-Poly[oxy[trifluoro(trifluoromethyl)-1,2-ethanediyl]],
  • (44) α-[[4-[[(3-chlorophenyl)methyl]amino]-6-(1H-imidazol-1-yl)-1,3,5-triazin-2-yl]amino]-N-[[4-(trifluoromethyl)phenyl]methyl]-, (αR)-Cyclohexanepropanamide,
  • (45) 6-(1H-imidazol-1-yl)-N2,N4-bis(1-methylethyl)-1,3,5-Triazine-2,4-diamine, and
  • (46) N2,N4-bis(1-methylpropyl)-6-phenyl-1,3,5-Triazine-2,4-diamine.


Provided is a compound of Formula I, or a pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:


ring A is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;


X is N, CH or C-halo;


R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein any alkyl portion of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;


R2 and R5 are each independently selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C2-C6 alkenyl or alkynyl), —(C1-C6 alkylene)-N(R6)—(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)(R6), —(C1-C6 alkylene)-N(R6)—S(O)1-2—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)—S(O)1-2—(C0-C6 alkyl)-Q, —(C1-C6 alkylene)-S(O)1-2—N(R6)(R6), —(C1-C4 alkylene)-S(O)1-2—N(R6)—(C1-C6 alkylene)-Q, —C(O)N(R6)—(C1-C6 alkylene)-C(O)— (C0-C6 alkylene)-O—(C1-C6 alkyl), —C(O)N(R6)—(C)—C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-O—C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-O—C(O)—(C0-C6 alkyl)-Q, —(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C1-C6 alkylene)-O—(C1-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C1-C6 alkylene)-Q, —(C1-C6 alkylene)-O—C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-O—C(O)—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)N(R6)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)N(R6)—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)C(O)—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-S(O)0-2—(C1-C6 alkyl), —(C0-C6 alkylene)-S(O)0-2—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)—C(O)—N(R6)—(C1-C6 alkyl), —(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein:

    • any alkyl or alkylene moiety present in R2 and R5 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo;
    • any terminal methyl moiety present in R2 and R5 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H;


R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl; and


Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


R1 and R3 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R4 and R6 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or


R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl;


wherein:


(i) when X is N and A is optionally substituted phenyl, then (a) neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is 4-[[2-[2-(2-aminoethoxy)ethoxy]ethyl]amino] and (b) N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHEt, NH(n-propyl), NH(n-butyl), NH(n-docecyl), NH-[(4-methoxyphenyl)methyl], NHCH2CH2CHO, NHCH2CH2OCH3, NHCH2CH2OH, NHCH2CH(OH)CH3, NHCH2CH2OC(O)phenyl, NHCH2CH2CH2OH, NHCH2CH2CH2N(CH3)phenyl, NHCH2C(O)OCH3, NHCH2C(O)OCH2CH3, NHCH2phenyl, NHCH(CH3)CH2CH3, or NHCH2CH2OC(O)CH3;


(ii) when X is CH or C—Cl and A is phenyl optionally substituted with F, Cl or SO2CH3, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is N(CH3)CH2C(O)NH-i-propyl, NHCH(CH3)(CH2)3N(CH2CH3)2, NHCH2CH2OH, NHCH2CH2OCH3, NHCH2CH2OSO3H, NHCH2CH2CH2OCH2CH2O-phenyl, NHCH2CH2CH2OH, NHCH2CH2CH2OCH3, NHCH2CH(OH)CH3, N(CH2CH3)2, NH-i-propyl, NHCH2CH2NHC(O)OCH3, NHCH2CH2NHC(O)CH3, NHCH2CH2NH2, or NHCH2-phenyl;


(iii) when X is CH and A is optionally substituted pyridyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHCH2-phenyl, NHCH2-(2,4-difluorophenyl), N(CH3)CH2CH2C(O)OH, NHCH2CH2C(O)OH, NHCH2CH2C(O)OCH2CH3, NHCH2CH2C(O)O-t-butyl, NHCH2CH2C(O)NH2, NHCH2CH2-phenyl, NHCH2CH2OH, NHCH2CH2NH2, NHCH2CH2N(CH3)2, or NHCH2CH2CH3;


(iv) when X is CH and A is optionally substituted 1-imidazolyl, optionally substituted 1-pyrrolyl or optionally substituted 1-pyrazolyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NH(CH2)7CH3, NHCH2-(o-chloro-phenyl), or NHCH2CH2OH;


(v) when X is N and A is an optionally substituted pyridyl, then (A) neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHC(O)-[2-chloro-4-(methylsulfonyl)], (B) N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHC(O)C(CH3)3, NHC(O)CH═CH2, NHC(O)C(CH3)═CH2, NHCH2CH2OH, NH-cyclohexyl, NHCH2-phenyl, NHC(O)phenyl, NHC(O)(CH2)5NH2, NHC(O)OCH3, NHC(O)CH3, and NHC(O)NH-optionally substituted phenyl, and (C) when N(R7)C(R4)(R5)(R6) is NHC(CH3)3, then N(R8)C(R1)(R2)(R3) is not NHCH2-phenyl or NH—CH2CH3;


(vi) when X is N and A is an optionally substituted heteroaryl, then N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both N(CH2CH3)2, NHCH2CH2-i-propyl, NHCH2CH(CH3)2, and NHC(O)CH3;


(vii) the compound is not selected from the group:

  • (1) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-phenyl-1,3,5-triazine-2,4-diamine,
  • (2) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-(4-methoxyphenyl)-1,3,5-triazine-2,4-diamine,
  • (3) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-(3-nitrophenyl)-1,3,5-triazine-2,4-diamine,
  • (4) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-(4-fluorophenyl)-1,3,5-triazine-2,4-diamine,
  • (5) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-(4-trifluoromethoxy-phenyl)-1,3,5-triazine-2,4-diamine,
  • (6) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-(4-t-butyl-phenyl)-1,3,5-triazine-2,4-diamine,
  • (7) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-(2-thienyl)-1,3,5-triazine-2,4-diamine,
  • (8) N-(2-aminophenyl)-4-[[[4-[(2,3-dihydro-1H-inden-2-yl)amino]-6-phenyl-1,3,5-triazin-2-yl]amino]methyl]-benzamide,
  • (9) 2-chloro-N-[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-4-(methylsulfonyl)-benzamide,
  • (10) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopropyl-6-(4-methoxyphenyl)-1,3,5-triazine-2,4-diamine,
  • (11) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetamide,
  • (12) N2-cyclopropyl-N4-ethyl-6-[3-[(phenylmethyl)thio]-1H-1,2,4-triazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (13) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetic acid methyl ester,
  • (14) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopropyl-6-(2,4,6-trimethylphenyl)-1,3,5-triazine-2,4-diamine,
  • (15) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopropyl-6-phenyl-1,3,5-triazine-2,4-diamine,
  • (16) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopropyl-6-(4-methylphenyl)-1,3,5-triazine-2,4-diamine,
  • (17) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopropyl-6-(4-chlorophenyl)-1,3,5-triazine-2,4-diamine,
  • (18) N-[[4-[[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl] methyl]-4-fluoro-benzenesulfonamide,
  • (19) N2-cyclopropyl-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N4-phenyl-1,3,5-triazine-2,4-diamine,
  • (20) N2,N4-dicyclohexyl-6-[3-(4-methoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (21) N2,N4-dicyclohexyl-6-[3-(3,4-dimethoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (22) N2,N4-dicyclohexyl-6-[5-(methylthio)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (23) N2,N4-dicyclohexyl-6-phenyl-1,3,5-triazine-2,4-diamine,
  • (24) 1,1′-[(6-phenyl-s-triazine-2,4-diyl)diimino]bis[dodecahydro-anthraquinone],
  • (25) 4,4′-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(iminomethylene)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
  • (26) N-[4-[(4-aminobutyl)amino]-6-[5-[[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl] amino]-2-methylphenyl]-1,3,5-triazin-2-yl]-glycine,
  • (27) 4-[2-[[4-[(5-aminopentyl)amino]-6-(3-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol,
  • (28) 4-[2-[[4-[(5-aminopentyl)amino]-6-(4-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol,
  • (29) 6-(4-aminopyridin-3-yl)-N2-benzyl-N4-(tert-butyl)-1,3,5-triazine-2,4-diamine,
  • (30) N2,N4-bis(cyclohexylmethyl)-6-phenyl-1,3,5-triazine-2,4-diamine,
  • (31) 4,4′-[[6-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1,3,5-triazine-2,4-diyl]bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
  • (32) 4,4′-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
  • (33) N-[6-[(2,3-dihydro-1H-inden-2-yl)amino]-2-(2-pyridinyl)-4-pyrimidinyl]-β alanine,
  • (34) N4-cyclopentyl-2-phenyl-N6-(phenylmethyl)-4,6-pyrimidinediamine,
  • (35) 2-[[6-(bicyclo[2.2.1]hept-2-ylamino)-2-phenyl-4-pyrimidinyl]amino]-ethanol,
  • (36) N2-isopropyl-6-phenyl-N4-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazine-2,4-diamine,
  • (37) 2-chloro-4-(methylsulfonyl)-N-[4-[(phenylmethyl)amino]-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-benzamide,
  • (38) N-[[4-[[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide,
  • (39) [[4-[[[[[4-amino-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,
  • (40) [[4-[[[[[4-[bis(hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl](hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,
  • (41) 5-[4,6-bis(diethylamino)-1,3,5-triazin-2-yl]-2H-tetrazole-2-acetic acid ethyl ester,
  • (42) N2,N2,N4,N4-tetraethyl-6-(2H-tetrazol-5-yl)-1,3,5-triazine-2,4-diamine, and
  • (43) N,N′-[6-[4-(acetylamino)-1,2,5-oxadiazol-3-yl]-1,3,5-triazine-2,4-diyl]bis-acetamide.


Provided is a compound of Formula I, or a pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:


ring A is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;


X is N or CH;


R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein any alkyl portion of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;


R2 and R5 are each independently selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C2-C6 alkenyl or alkynyl), —(C1-C6 alkylene)-N(R6)—(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)(R6), —(C1-C6 alkylene)-N(R6)—S(O)1-2—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)—S(O)1-2—(C0-C6 alkyl)-Q, —(C1-C6 alkylene)-S(O)1-2—N(R6)(R6), —(C1-C4 alkylene)-S(O)1-2—N(R6)—(C1-C6 alkylene)-Q, —C(O)N(R6)—(C1-C6 alkylene)-C(O)— (C0-C6 alkylene)-O—(C1-C6 alkyl), —C(O)N(R6)—(C1-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-O—C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-O—C(O)—(C0-C6 alkyl)-Q, —(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C1-C6 alkylene)-O—(C1-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C1-C6 alkylene)-Q, —(C1-C6 alkylene)-O—C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-O—C(O)—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)N(R6)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)N(R6)—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)C(O)—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-S(O)0-2—(C1-C6 alkyl), —(C0-C6 alkylene)-S(O)0-2—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)—C(O)—N(R6)—(C1-C6 alkyl), —(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein:

    • any alkyl or alkylene moiety present in R2 and R5 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo;
    • any terminal methyl moiety present in R2 and R5 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H;


      R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl; and


      Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


      R1 and R3 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


      R4 and R6 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


      R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or


      R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl;


wherein:


(i) when X is N and A is optionally substituted phenyl, then (a) neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is 4-[[2-[2-(2-aminoethoxy)ethoxy]ethyl]amino] and (b) N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHEt, NH(n-propyl), NH(n-butyl), NH(n-docecyl), NH-[(4-methoxyphenyl)methyl], NHCH2CH2CHO, NHCH2CH2OCH3, NHCH2CH2OH, NHCH2CH(OH)CH3, NHCH2CH2OC(O)phenyl, NHCH2CH2CH2OH, NHCH2CH2CH2N(CH3)phenyl, NHCH2C(O)OCH3, NHCH2C(O)OCH2CH3, NHCH2phenyl, NHCH(CH3)CH2CH3, or NHCH2CH2OC(O)CH3;


(ii) when X is CH or C—Cl and A is phenyl optionally substituted with F, Cl or SO2CH3, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is N(CH3)CH2C(O)NH-i-propyl, NHCH(CH3)(CH2)3N(CH2CH3)2, NHCH2CH2OH, NHCH2CH2OCH3, NHCH2CH2OSO3H, NHCH2CH2CH2OCH2CH2O-phenyl, NHCH2CH2CH2OH, NHCH2CH2CH2OCH3, NHCH2CH(OH)CH3, N(CH2CH3)2, NH-i-propyl, NHCH2CH2NHC(O)OCH3, NHCH2CH2NHC(O)CH3, NHCH2CH2NH2, or NHCH2-phenyl;


(iii) when X is CH and A is optionally substituted pyridyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHCH2-phenyl, NHCH2-(2,4-difluorophenyl), N(CH3)CH2CH2C(O)OH, NHCH2CH2C(O)OH, NHCH2CH2C(O)OCH2CH3, NHCH2CH2C(O)O-t-butyl, NHCH2CH2C(O)NH2, NHCH2CH2-phenyl, NHCH2CH2OH, NHCH2CH2NH2, NHCH2CH2N(CH3)2, or NHCH2CH2CH3;


(iv) when X is CH and A is optionally substituted 1-imidazolyl, optionally substituted 1-pyrrolyl or optionally substituted 1-pyrazolyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NH(CH2)7CH3, NHCH2-(o-chloro-phenyl), or NHCH2CH2OH;


(v) when X is N and A is an optionally substituted pyridyl, then (A) neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHC(O)-[2-chloro-4-(methylsulfonyl)], (B) N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHC(O)C(CH3)3, NHC(O)CH═CH2, NHC(O)C(CH3)═CH2, NHCH2CH2OH, NH-cyclohexyl, NHCH2-phenyl, NHC(O)phenyl, NHC(O)(CH2)5NH2, NHC(O)OCH3, NHC(O)CH3, and NHC(O)NH-optionally substituted phenyl, and (C) when N(R7)C(R4)(R5)(R6) is NHC(CH3)3, then N(R8)C(R1)(R2)(R3) is not NHCH2-phenyl or NH—CH2CH3;


(vi) when X is N and A is an optionally substituted heteroaryl, then N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both N(CH2CH3)2, NHCH2CH2-i-propyl, NHCH2CH(CH3)2, and NHC(O)CH3;


(vii) the compound is not selected from the group:

  • (1) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-phenyl-1,3,5-triazine-2,4-diamine,
  • (2) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-(4-methoxyphenyl)-1,3,5-triazine-2,4-diamine,
  • (3) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-(3-nitrophenyl)-1,3,5-triazine-2,4-diamine,
  • (4) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-(4-fluorophenyl)-1,3,5-triazine-2,4-diamine,
  • (5) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-(4-trifluoromethoxy-phenyl)-1,3,5-triazine-2,4-diamine,
  • (6) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-(4-t-butyl-phenyl)-1,3,5-triazine-2,4-diamine,
  • (7) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-(2-thienyl)-1,3,5-triazine-2,4-diamine,
  • (8) N-(2-aminophenyl)-4-[[[4-[(2,3-dihydro-1H-inden-2-yl)amino]-6-phenyl-1,3,5-triazin-2-yl]amino]methyl]-benzamide,
  • (9) 2-chloro-N-[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-4-(methylsulfonyl)-benzamide,
  • (10) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopropyl-6-(4-methoxyphenyl)-1,3,5-triazine-2,4-diamine,
  • (11) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetamide,
  • (12) N2-cyclopropyl-N4-ethyl-6-[3-[(phenylmethyl)thio]-1H-1,2,4-triazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (13) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetic acid methyl ester,
  • (14) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopropyl-6-(2,4,6-trimethylphenyl)-1,3,5-triazine-2,4-diamine,
  • (15) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopropyl-6-phenyl-1,3,5-triazine-2,4-diamine,
  • (16) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopropyl-6-(4-methylphenyl)-1,3,5-triazine-2,4-diamine,
  • (17) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopropyl-6-(4-chlorophenyl)-1,3,5-triazine-2,4-diamine,
  • (18) N-[[4-[[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl] methyl]-4-fluoro-benzenesulfonamide,
  • (19) N2-cyclopropyl-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N4-phenyl-1,3,5-triazine-2,4-diamine,
  • (20) N2,N4-dicyclohexyl-6-[3-(4-methoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (21) N2,N4-dicyclohexyl-6-[3-(3,4-dimethoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (22) N2,N4-dicyclohexyl-6-[5-(methylthio)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (23) N2,N4-dicyclohexyl-6-phenyl-1,3,5-triazine-2,4-diamine,
  • (24) 1,1′-[(6-phenyl-s-triazine-2,4-diyl)diimino]bis[dodecahydro-anthraquinone],
  • (25) 4,4′-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(iminomethylene)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
  • (26) N-[4-[(4-aminobutyl)amino]-6-[5-[[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl] amino]-2-methylphenyl]-1,3,5-triazin-2-yl]-glycine,
  • (27) 4-[2-[[4-[(5-aminopentyl)amino]-6-(3-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol,
  • (28) 4-[2-[[4-[(5-aminopentyl)amino]-6-(4-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol,
  • (29) 6-(4-aminopyridin-3-yl)-N2-benzyl-N4-(tert-butyl)-1,3,5-triazine-2,4-diamine,
  • (30) N2,N4-bis(cyclohexylmethyl)-6-phenyl-1,3,5-triazine-2,4-diamine,
  • (31) 4,4′-[[6-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1,3,5-triazine-2,4-diyl]bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
  • (32) 4,4′-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
  • (33) N-[6-[(2,3-dihydro-1H-inden-2-yl)amino]-2-(2-pyridinyl)-4-pyrimidinyl]-βalanine,
  • (34) N4-cyclopentyl-2-phenyl-N6-(phenylmethyl)-4,6-pyrimidinediamine,
  • (35) 2-[[6-(bicyclo[2.2.1]hept-2-ylamino)-2-phenyl-4-pyrimidinyl]amino]-ethanol,
  • (36) N2-isopropyl-6-phenyl-N4-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazine-2,4-diamine,
  • (37) 2-chloro-4-(methylsulfonyl)-N-[4-[(phenylmethyl)amino]-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-benzamide,
  • (38) N-[[4-[[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide,
  • (39) [[4-[[[[[4-amino-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,
  • (40) [[4-[[[[[4-[bis(hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl](hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,
  • (41) 5-[4,6-bis(diethylamino)-1,3,5-triazin-2-yl]-2H-tetrazole-2-acetic acid ethyl ester,
  • (42) N2,N2,N4,N4-tetraethyl-6-(2H-tetrazol-5-yl)-1,3,5-triazine-2,4-diamine, and
  • (43) N,N′-[6-[4-(acetylamino)-1,2,5-oxadiazol-3-yl]-1,3,5-triazine-2,4-diyl]bis-acetamide.


    Also provided is a compound of Formula I, or a pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:


ring A is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;


X is N or CH;


R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein each said alkyl moiety of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;


R2 and R5 are each independently selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C2-C6 alkenyl or alkynyl), —(C1-C6 alkylene)-N(R6)—(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)(R6), —(C1-C6 alkylene)-N(R6)—S(O)1-2—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)—S(O)1-2—(C0-C6 alkyl)-Q, —(C1-C6 alkylene)-S(O)1-2—N(R6)(R6), —(C1-C4 alkylene)-S(O)1-2—N(R6)—(C1-C6 alkylene)-Q, —C(O)N(R6)—(C1-C6 alkylene)-C(O)— (C0-C6 alkylene)-O—(C1-C6 alkyl), —C(O)N(R6)—(C1-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-O—C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-O—C(O)—(C0-C6 alkyl)-Q, —(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C1-C6 alkylene)-O—(C1-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C1-C6 alkylene)-Q, —(C1-C6 alkylene)-O—C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-O—C(O)—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)N(R6)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)N(R6)—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)C(O)—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-S(O)0-2—(C1-C6 alkyl), —(C0-C6 alkylene)-S(O)0-2—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)—C(O)—N(R6)—(C1-C6 alkyl), —(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein:

    • any alkyl or alkylene moiety present in R2 and R5 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo;
    • any terminal methyl moiety present in R2 and R5 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H;


      R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl; and


      Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


      R1 and R3 are optionally taken together with the carbon atom to which they are attached to form


C(═O); or


R4 and R6 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or


R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl, optionally substituted heterocyclyl, an optionally substituted aryl, or an optionally substituted heteroaryl; wherein:


(i) when X is N and A is optionally substituted phenyl, then (a) neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHCH2CH2OCH2CH2OCH2CH2NH2, 4-[[2-[2-(2-aminoethoxy)ethoxy]ethyl]amino] and (b) N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHEt, NH(n-propyl), NH(n-butyl), NH(n-docecyl), NH-[(4-methoxyphenyl)methyl], NHCH2CH2CHO, NHCH2CH2OCH3, NHCH2CH2OH, NHCH2CH(OH)CH3, NHCH2CH2OC(O)phenyl, NHCH2CH2CH2OH, NHCH2CH2CH2N(CH3)phenyl, NHCH2C(O)OCH3, NHCH2C(O)OCH2CH3, NHCH2phenyl, NHCH(CH3)CH2CH3, or NHCH2CH2OC(O)CH3;


(ii) when X is CH or C—Cl and A is phenyl optionally substituted with F, Cl or SO2CH3, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is N(CH3)CH2C(O)NH-i-propyl, NHCH(CH3)(CH2)3N(CH2CH3)2, NHCH2CH2OH, NHCH2CH2OCH3, NHCH2CH2OSO3H, NHCH2CH2CH2OCH2CH2O-phenyl, NHCH2CH2CH2OH, NHCH2CH2CH2OCH3, NHCH2CH(OH)CH3, N(CH2CH3)2, NH-i-propyl, NHCH2CH2NHC(O)OCH3, NHCH2CH2NHC(O)CH3, NHCH2CH2NH2, or NHCH2-phenyl;


(iii) when X is CH and A is optionally substituted pyridyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHCH2-phenyl, NHCH2-(2,4-difluorophenyl), N(CH3)CH2CH2C(O)OH, NHCH2CH2C(O)OH, NHCH2CH2C(O)OCH2CH3, NHCH2CH2C(O)O-t-butyl, NHCH2CH2C(O)NH2, NHCH2CH2-phenyl, NHCH2CH2OH, NHCH2CH2NH2, NHCH2CH2N(CH3)2, or NHCH2CH2CH3;


(iv) when X is CH and A is optionally substituted 1-imidazolyl, optionally substituted 1-pyrrolyl or optionally substituted 1-pyrazolyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NH(CH2)7CH3, NHCH2-(o-chloro-phenyl), or NHCH2CH2OH;


(v) when X is N and A is an optionally substituted pyridyl, then (A) neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHC(O)-[2-chloro-4-(methylsulfonyl)], N(CH3)2, NHCH2CH2CH2SO2CH2CH2Cl, NHCH2CH2OCH2CH2SO2CH2CH2Cl, or NHCH2CH2SO2CH2CH2Cl, (B) N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHC(O)C(CH3)3, NHC(O)CH═CH2, NHC(O)C(CH3)═CH2, NHCH2CH2OH, NH-cyclohexyl, NHCH2-phenyl, NHC(O)phenyl, NHC(O)(CH2)5NH2, NHC(O)OCH3, NHC(O)CH3, and NHC(O)NH-optionally substituted phenyl, and (C) when N(R7)C(R4)(R5)(R6) is NHC(CH3)3, then N(R8)C(R1)(R2)(R3) is not NHCH2-phenyl or NH—CH2CH3;


(vi) when X is N and A is an optionally substituted heteroaryl, then N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both N(CH2CH3)2, NHCH2CH2-i-propyl, NHCH2CH(CH3)2, and NHC(O)CH3;


(vii) when X is CH and A is unsubstituted 2-pyridinyl, then the ring formed by R4 and R5 is not 5-methyl-1H-pyrazol-3-yl,


(viii) when A is optionally substituted 1-pyrazolyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is N(CH3)2, NHCH3, NHAc, NHisopropyl, NHCH2CH3, NHCH2CH2SO3H or N(CH2CH3)2,


(ix) when X is N and A is optionally substituted phenyl, thienyl, or pyridinyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHcyclohexylC(O)NHCH2R, wherein R is phenyl or pyridinyl which is substituted with one or more of OCF3, OCH3, chloro, or CF3,


(x) when X is N, A is an optionally substituted phenyl and R4 and R5 form an optionally substituted phenyl, then N(R8)C(R1)(R2)(R3) is not NHCH2(4-fluorophenyl), NHCH2CO2H, NHCH2C(O)Cl, NHCH(CO2H)(CH2SCH2phenyl), or NHCH2C(O)NHC(O)NHR or NHCH2C(O)NHC(S)NHR, wherein R is optionally substituted phenyl or naphthyl,


(xi) when X is N, A is an oxadiazole substituted with an optionally substituted pyridinyl, then R4 and R5 do not form an optionally substituted phenyl,


(xii) when A is substituted 1-pyrazolyl, then (A) then N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHC(CH3)3, and (B) A is not substituted with N═N—R, wherein R is a ring,


(xiii) ring A is not an optionally substituted triazolyl, 3,5-dimethyl-1H-pyrazol-1-yl,


(xix) when R1 and R2 are optionally taken together to form an unsubstituted cyclohexyl, and R4 and R5 are optionally taken together to form an unsubstituted cyclohexyl, then A is not a disubstituted 1-pyrazolyl or an unsubstituted phenyl; and


(xx) the compound is not selected from the group:

  • (1) N-(2-aminophenyl)-4-[[[4-[(2,3-dihydro-1H-inden-2-yl)amino]-6-phenyl-1,3,5-triazin-2-yl]amino]methyl]-benzamide,
  • (2) 2-chloro-N-[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-4-(methylsulfonyl)-benzamide,
  • (3) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetamide,
  • (4) N2-cyclopropyl-N4-ethyl-6-[3-[(phenylmethyl)thio]-1H-1,2,4-triazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (5) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetic acid methyl ester,
  • (6) N-[[4-[[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl] methyl]-4-fluoro-benzenesulfonamide,
  • (7) N2-cyclopropyl-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N4-phenyl-1,3,5-triazine-2,4-diamine,
  • (8) N2,N4-dicyclohexyl-6-[3-(4-methoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (9) N2,N4-dicyclohexyl-6-[3-(3,4-dimethoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (10) N2,N4-dicyclohexyl-6-[5-(methylthio)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (11) N2,N4-dicyclohexyl-6-phenyl-1,3,5-triazine-2,4-diamine,
  • (12) 1,1′-[(6-phenyl-s-triazine-2,4-diyl)diimino]bis[dodecahydro-anthraquinone],
  • (13) 4,4′-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(iminomethylene)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
  • (14) N-[4-[(4-aminobutyl)amino]-6-[5-[[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl] amino]-2-methylphenyl]-1,3,5-triazin-2-yl]-glycine,
  • (15) 4-[2-[[4-[(5-aminopentyl)amino]-6-(3-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol,
  • (16) 4-[2-[[4-[(5-aminopentyl)amino]-6-(4-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol,
  • (17) 6-(4-aminopyridin-3-yl)-N2-benzyl-N4-(tert-butyl)-1,3,5-triazine-2,4-diamine,
  • (18) N2,N4-bis(cyclohexylmethyl)-6-phenyl-1,3,5-triazine-2,4-diamine,
  • (19) 4,4′-[[6-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1,3,5-triazine-2,4-diyl]bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
  • (20) 4,4′-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
  • (21) N-[6-[(2,3-dihydro-1H-inden-2-yl)amino]-2-(2-pyridinyl)-4-pyrimidinyl]-β alanine,
  • (22) N4-cyclopentyl-2-phenyl-N6-(phenylmethyl)-4,6-pyrimidinediamine,
  • (23) 2-[[6-(bicyclo[2.2.1]hept-2-ylamino)-2-phenyl-4-pyrimidinyl]amino]-ethanol,
  • (24) N2-isopropyl-6-phenyl-N4-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazine-2,4-diamine,
  • (25) 2-chloro-4-(methylsulfonyl)-N-[4-[(phenylmethyl)amino]-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-benzamide,
  • (26) N-[[4-[[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide,
  • (27) [[4-[[[[[4-amino-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,
  • (28) [[4-[[[[[4-[bis(hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl](hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,
  • (29) 5-[4,6-bis(diethylamino)-1,3,5-triazin-2-yl]-2H-tetrazole-2-acetic acid ethyl ester,
  • (30) N2,N2,N4,N4-tetraethyl-6-(2H-tetrazol-5-yl)-1,3,5-triazine-2,4-diamine,
  • (31) N,N′-[6-[4-(acetylamino)-1,2,5-oxadiazol-3-yl]-1,3,5-triazine-2,4-diyl]bis-acetamide,
  • (32) N-(2-chloro-6-methylphenyl)-5-[[4-(dimethylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]-1,3,4-Oxadiazole-2-carboxamide,
  • (33) N4-(5-methyl-1H-pyrazol-3-yl)-2-(2-pyridinyl)-N6-(tetrahydro-2H-pyran-4-yl)-4,6-Pyrimidinediamine,
  • (34) 6-(4-chlorophenyl)-N2-[4-chloro-3-(trifluoromethyl)phenyl]-N4-[3-(diethylamino)propyl]-1,3,5-Triazine-2,4-diamine,
  • (35) 6-(4-chlorophenyl)-N2-[4-chloro-3-(trifluoromethyl)phenyl]-N4-[3-(dimethylamino)propyl]-1,3,5-Triazine-2,4-diamine,
  • (36) N2-[3,5-bis(trifluoromethyl)phenyl]-6-(4-chlorophenyl)-N4-[3-(diethylamino)propyl]-1,3,5-Triazine-2,4-diamine,
  • (37) N2,N4-bis[(4-methoxyphenyl)methyl]-6-[4-(trifluoromethoxy)phenyl]-1,3,5-Triazine-2,4-diamine,
  • (38) N,N″-(6-phenyl-1,3,5-triazine-2,4-diyl)bis[N′-(2-chloroethyl)-Urea,
  • (39) N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-[4-methyl-3-[[4-phenyl-6-(propylamino)-1,3,5-triazin-2-yl]amino]phenyl]-urea,
  • (40) N-[4-[[5-[[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]-glycine,
  • (41) N-[4-[[5-[[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]amino]-6-(5-thiazolyl)-1,3,5-triazin-2-yl]-L-Valine,
  • (42) s-Triazine, 2-phenyl-4,6-bis[[6-[[4-phenyl-6-[[6-[[4-phenyl-6-(trichloromethyl)-s-triazin-2-yl]amino]hexyl]amino]-s-triazin-2-yl]amino]hexyl]amino]-,
  • (43) α,α′-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis[imino(1,1,2,2-tetrafluoro-3-oxo-3,1-propanediyl)]]bis[ω-[tetrafluoro(trifluoromethyl)ethoxy]-Poly[oxy[trifluoro(trifluoromethyl)-1,2-ethanediyl]],
  • (44) α-[[4-[[(3-chlorophenyl)methyl]amino]-6-(1H-imidazol-1-yl)-1,3,5-triazin-2-yl]amino]-N-[[4-(trifluoromethyl)phenyl]methyl]-, (αR)-Cyclohexanepropanamide,
  • (45) 6-(1H-imidazol-1-yl)-N2,N4-bis(1-methylethyl)-1,3,5-Triazine-2,4-diamine, and
  • (46) N2,N4-bis(1-methylpropyl)-6-phenyl-1,3,5-Triazine-2,4-diamine.


Also provided is a compound of Formula Ia, or a pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:


ring A is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;


R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein any alkyl portion of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;


R2 and R5 are each independently selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C2-C6 alkenyl or alkynyl), —(C1-C6 alkylene)-N(R6)—(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)(R6), —(C1-C6 alkylene)-N(R6)—S(O)1-2—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)—S(O)1-2—(C0-C6 alkyl)-Q, —(C1-C6 alkylene)-S(O)1-2—N(R6)(R6), —(C1-C4 alkylene)-S(O)1-2—N(R6)—(C1-C6 alkylene)-Q, —C(O)N(R6)—(C1-C6 alkylene)-C(O)— (C0-C6 alkylene)-O—(C1-C6 alkyl), —C(O)N(R6)—(C1-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-O—C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-O—C(O)—(C0-C6 alkyl)-Q, —(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C1-C6 alkylene)-O—(C1-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C1-C6 alkylene)-Q, —(C1-C6 alkylene)-O—C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-O—C(O)—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)N(R6)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)N(R6)—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)C(O)—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-S(O)0-2—(C1-C6 alkyl), —(C0-C6 alkylene)-S(O)0-2—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)—C(O)—N(R6)—(C1-C6 alkyl), —(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein:

    • any alkyl or alkylene moiety present in R2 and R5 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo;
    • any terminal methyl moiety present in R2 and R5 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H;


      R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl; and


      Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


      R1 and R3 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


      R4 and R6 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


      R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or


      R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl;


wherein:

    • (i) when A is optionally substituted phenyl, then (a) neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is 4-[[2-[2-(2-aminoethoxy)ethoxy]ethyl]amino] and (b) N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHEt, NH(n-propyl), NH(n-butyl), NH(n-docecyl), NH-[(4-methoxyphenyl)methyl], NHCH2CH2CHO, NHCH2CH2OCH3, NHCH2CH2OH, NHCH2CH(OH)CH3, NHCH2CH2OC(O)phenyl, NHCH2CH2CH2OH, NHCH2CH2CH2N(CH3)phenyl, NHCH2C(O)OCH3, NHCH2C(O)OCH2CH3, NHCH2phenyl, NHCH(CH3)CH2CH3, or NHCH2CH2OC(O)CH3;
    • (ii) when X is N and A is an optionally substituted pyridyl, then (A) neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHC(O)-[2-chloro-4-(methylsulfonyl)], (B) N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHC(O)C(CH3)3, NHC(O)CH═CH2, NHC(O)C(CH3)═CH2, NHCH2CH2OH, NH-cyclohexyl, NHCH2-phenyl, NHC(O)phenyl, NHC(O)(CH2)5NH2, NHC(O)OCH3, NHC(O)CH3, and NHC(O)NH-optionally substituted phenyl, and (C) when N(R7)C(R4)(R5)(R6) is NHC(CH3)3, then N(R8)C(R1)(R2)(R3) is not NHCH2-phenyl or NH—CH2CH3;
    • (iii) when X is N and A is an optionally substituted heteroaryl, then N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both N(CH2CH3)2, NHCH2CH2-i-propyl, NHCH2CH(CH3)2, and NHC(O)CH3; and
    • (iv) the compound is not selected from the group:
  • (1) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-phenyl-1,3,5-triazine-2,4-diamine,
  • (2) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-(4-methoxyphenyl)-1,3,5-triazine-2,4-diamine,
  • (3) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-(3-nitrophenyl)-1,3,5-triazine-2,4-diamine,
  • (4) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-(4-fluorophenyl)-1,3,5-triazine-2,4-diamine,
  • (5) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-(4-trifluoromethoxy-phenyl)-1,3,5-triazine-2,4-diamine,
  • (6) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-(4-t-butyl-phenyl)-1,3,5-triazine-2,4-diamine,
  • (7) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopentyl-6-(2-thienyl)-1,3,5-triazine-2,4-diamine,
  • (8) N-(2-aminophenyl)-4-[[[4-[(2,3-dihydro-1H-inden-2-yl)amino]-6-phenyl-1,3,5-triazin-2-yl]amino]methyl]-benzamide,
  • (9) 2-chloro-N-[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-4-(methylsulfonyl)-benzamide,
  • (10) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopropyl-6-(4-methoxyphenyl)-1,3,5-triazine-2,4-diamine,
  • (11) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetamide,
  • (12) N2-cyclopropyl-N4-ethyl-6-[3-[(phenylmethyl)thio]-1H-1,2,4-triazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (13) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetic acid methyl ester,
  • (14) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopropyl-6-(2,4,6-trimethylphenyl)-1,3,5-triazine-2,4-diamine,
  • (15) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopropyl-6-phenyl-1,3,5-triazine-2,4-diamine,
  • (16) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopropyl-6-(4-methylphenyl)-1,3,5-triazine-2,4-diamine,
  • (17) N2-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N4-cyclopropyl-6-(4-chlorophenyl)-1,3,5-triazine-2,4-diamine,
  • (18) N-[[4-[[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide,
  • (19) N2-cyclopropyl-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N4-phenyl-1,3,5-triazine-2,4-diamine,
  • (20) N2,N4-dicyclohexyl-6-[3-(4-methoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (21) N2,N4-dicyclohexyl-6-[3-(3,4-dimethoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (22) N2,N4-dicyclohexyl-6-[5-(methylthio)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (23) N2,N4-dicyclohexyl-6-phenyl-1,3,5-triazine-2,4-diamine,
  • (24) 1,1′-[(6-phenyl-s-triazine-2,4-diyl)diimino]bis[dodecahydro-anthraquinone],
  • (25) 4,4′-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(iminomethylene)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
  • (26) N-[4-[(4-aminobutyl)amino]-6-[5-[[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]-1,3,5-triazin-2-yl]-glycine,
  • (27) 4-[2-[[4-[(5-aminopentyl)amino]-6-(3-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol,
  • (28) 4-[2-[[4-[(5-aminopentyl)amino]-6-(4-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol,
  • (29) 6-(4-aminopyridin-3-yl)-N2-benzyl-N4-(tert-butyl)-1,3,5-triazine-2,4-diamine,
  • (30) N2,N4-bis(cyclohexylmethyl)-6-phenyl-1,3,5-triazine-2,4-diamine,
  • (31) 4,4′-[[6-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1,3,5-triazine-2,4-diyl]bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
  • (32) 4,4′-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
  • (33) N2-isopropyl-6-phenyl-N4-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazine-2,4-diamine,
  • (34) 2-chloro-4-(methylsulfonyl)-N-[4-[(phenylmethyl)amino]-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-benzamide,
  • (35) N-[[4-[[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide,
  • (36) [[4-[[[[[4-amino-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,
  • (37) [[4-[[[[[4-[bis(hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl](hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,
  • (38) 5-[4,6-bis(diethylamino)-1,3,5-triazin-2-yl]-2H-tetrazole-2-acetic acid ethyl ester,
  • (39) N2,N2,N4,N4-tetraethyl-6-(2H-tetrazol-5-yl)-1,3,5-triazine-2,4-diamine, and
  • (40) N,N′-[6-[4-(acetylamino)-1,2,5-oxadiazol-3-yl]-1,3,5-triazine-2,4-diyl]bis-acetamide.


    Also provided is a compound of Formula Ia, or a pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:


ring A is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;


R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein each said alkyl moiety of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;


R2 and R5 are each independently selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C2-C6 alkenyl or alkynyl), —(C1-C6 alkylene)-N(R6)—(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)(R6), —(C1-C6 alkylene)-N(R6)—S(O)1-2—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)—S(O)1-2—(C0-C6 alkyl)-Q, —(C1-C6 alkylene)-S(O)1-2—N(R6)(R6), —(C1-C4 alkylene)-S(O)1-2—N(R6)—(C1-C6 alkylene)-Q, —C(O)N(R6)—(C1-C6 alkylene)-C(O)— (C0-C6 alkylene)-O—(C1-C6 alkyl), —C(O)N(R6)—(C1-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-O—C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-O—C(O)—(C0-C6 alkyl)-Q, —(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C1-C6 alkylene)-O—(C1-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C1-C6 alkylene)-Q, —(C1-C6 alkylene)-O—C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-O—C(O)—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)N(R6)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)N(R6)—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)C(O)—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-S(O)0-2—(C1-C6 alkyl), —(C0-C6 alkylene)-S(O)0-2—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)—C(O)—N(R6)—(C1-C6 alkyl), —(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein:

    • any alkyl or alkylene moiety present in R2 and R5 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo;
    • any terminal methyl moiety present in R2 and R5 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H;


      R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl; and


      Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


      R1 and R3 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


      R4 and R6 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


      R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or


      R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl, optionally substituted heterocyclyl, an optionally substituted aryl, or an optionally substituted heteroaryl; wherein:


(i) when A is optionally substituted phenyl, then (a) neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHCH2CH2OCH2CH2OCH2CH2NH2 or 4-[[2-[2-(2-aminoethoxy)ethoxy]ethyl]amino] and (b) N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHEt, NH(n-propyl), NH(n-butyl), NH(n-docecyl), NH-[(4-methoxyphenyl)methyl], NHCH2CH2CHO, NHCH2CH2OCH3, NHCH2CH2OH, NHCH2CH(OH)CH3, NHCH2CH2OC(O)phenyl, NHCH2CH2CH2OH, NHCH2CH2CH2N(CH3)phenyl, NHCH2C(O)OCH3, NHCH2C(O)OCH2CH3, NHCH2phenyl, NHCH(CH3)CH2CH3, or NHCH2CH2OC(O)CH3;


(ii) when A is an optionally substituted pyridyl, then (A) neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHC(O)-[2-chloro-4-(methylsulfonyl)], N(CH3)2, NHCH2CH2CH2SO2CH2CH2Cl, NHCH2CH2OCH2CH2SO2CH2CH2Cl, or NHCH2CH2SO2CH2CH2Cl, (B) N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHC(O)C(CH3)3, NHC(O)CH═CH2, NHC(O)C(CH3)═CH2, NHCH2CH2OH, NH-cyclohexyl, NHCH2-phenyl, NHC(O)phenyl, NHC(O)(CH2)5NH2, NHC(O)OCH3, NHC(O)CH3, and NHC(O)NH-optionally substituted phenyl, and (C) when N(R7)C(R4)(R5)(R6) is NHC(CH3)3, then N(R8)C(R1)(R2)(R3) is not NHCH2-phenyl or NH—CH2CH3;


(iii) when A is an optionally substituted heteroaryl, then N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both N(CH2CH3)2, NHCH2CH2-i-propyl, NHCH2CH(CH3)2, and NHC(O)CH3;


(iv) when A is optionally substituted 1-pyrazolyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is N(CH3)2, NHCH3, NHAc, NHisopropyl, NHCH2CH3, NHCH2CH2SO3H or N(CH2CH3)2,


(v) when A is optionally substituted phenyl, thienyl, or pyridinyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHcyclohexylC(O)NHCH2R, wherein R is phenyl or pyridinyl which is substituted with one or more of OCF3, OCH3, chloro, or CF3,


(vi) when A is an optionally substituted phenyl and R4 and R5 form an optionally substituted phenyl, then N(R8)C(R1)(R2)(R3) is not NHCH2(4-fluorophenyl), NHCH2CO2H, NHCH2C(O)Cl, NHCH(CO2H)(CH2SCH2phenyl), or NHCH2C(O)NHC(O)NHR or NHCH2C(O)NHC(S)NHR, wherein R is optionally substituted phenyl or naphthyl,


(vii) when A is an oxadiazole substituted with an optionally substituted pyridinyl, then R4 and R5 do not form an optionally substituted phenyl,


(viii) when A is substituted 1-pyrazolyl, then (A) then N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHC(CH3)3, and (B) A is not substituted with N═N—R, wherein R is a ring,


(ix) ring A is not an optionally substituted triazolyl, 3,5-dimethyl-1H-pyrazol-1-yl,


(x) when R1 and R2 are optionally taken together to form an unsubstituted cyclohexyl, and R4 and R5 are optionally taken together to form an unsubstituted cyclohexyl, then A is not a disubstituted 1-pyrazolyl or an unsubstituted phenyl;


(xi) the compound is not selected from the group:

  • (1) N-(2-aminophenyl)-4-[[[4-[(2,3-dihydro-1H-inden-2-yl)amino]-6-phenyl-1,3,5-triazin-2-yl]amino]methyl]-benzamide,
  • (2) 2-chloro-N-[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-4-(methylsulfonyl)-benzamide,
  • (3) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetamide,
  • (4) N2-cyclopropyl-N4-ethyl-6-[3-[(phenylmethyl)thio]-1H-1,2,4-triazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (5) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetic acid methyl ester,
  • (6) N-[[4-[[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide,
  • (7) N2-cyclopropyl-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N4-phenyl-1,3,5-triazine-2,4-diamine,
  • (8) N2,N4-dicyclohexyl-6-[3-(4-methoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (9) N2,N4-dicyclohexyl-6-[3-(3,4-dimethoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (10) N2,N4-dicyclohexyl-6-[5-(methylthio)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
  • (11) N2,N4-dicyclohexyl-6-phenyl-1,3,5-triazine-2,4-diamine,
  • (12) 1,1′-[(6-phenyl-s-triazine-2,4-diyl)diimino]bis[dodecahydro-anthraquinone],
  • (13) 4,4′-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(iminomethylene)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
  • (14) N-[4-[(4-aminobutyl)amino]-6-[5-[[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]-1,3,5-triazin-2-yl]-glycine,
  • (15) 4-[2-[[4-[(5-aminopentyl)amino]-6-(3-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol,
  • (16) 4-[2-[[4-[(5-aminopentyl)amino]-6-(4-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol,
  • (17) 6-(4-aminopyridin-3-yl)-N2-benzyl-N4-(tert-butyl)-1,3,5-triazine-2,4-diamine,
  • (18) N2,N4-bis(cyclohexylmethyl)-6-phenyl-1,3,5-triazine-2,4-diamine,
  • (19) 4,4′-[[6-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1,3,5-triazine-2,4-diyl]bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
  • (20) 4,4′-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
  • (21) N2-isopropyl-6-phenyl-N4-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazine-2,4-diamine,
  • (22) 2-chloro-4-(methylsulfonyl)-N-[4-[(phenylmethyl)amino]-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-benzamide,
  • (23) N-[[4-[[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide,
  • (24) [[4-[[[[[4-amino-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,
  • (25) [[4-[[[[[4-[bis(hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl](hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,
  • (26) 5-[4,6-bis(diethylamino)-1,3,5-triazin-2-yl]-2H-tetrazole-2-acetic acid ethyl ester,
  • (27) N2,N2,N4,N4-tetraethyl-6-(2H-tetrazol-5-yl)-1,3,5-triazine-2,4-diamine,
  • (28) N,N′-[6-[4-(acetylamino)-1,2,5-oxadiazol-3-yl]-1,3,5-triazine-2,4-diyl]bis-acetamide,
  • (29) N-(2-chloro-6-methylphenyl)-5-[[4-(dimethylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]-1,3,4-Oxadiazole-2-carboxamide,
  • (30) 6-(4-chlorophenyl)-N2-[4-chloro-3-(trifluoromethyl)phenyl]-N4-[3-(diethylamino)propyl]-1,3,5-Triazine-2,4-diamine,
  • (31) 6-(4-chlorophenyl)-N2-[4-chloro-3-(trifluoromethyl)phenyl]-N4-[3-(dimethylamino)propyl]-1,3,5-Triazine-2,4-diamine,
  • (32) N2-[3,5-bis(trifluoromethyl)phenyl]-6-(4-chlorophenyl)-N4-[3-(diethylamino)propyl]-1,3,5-Triazine-2,4-diamine,
  • (33) N2,N4-bis[(4-methoxyphenyl)methyl]-6-[4-(trifluoromethoxy)phenyl]-1,3,5-Triazine-2,4-diamine,
  • (34) N,N″-(6-phenyl-1,3,5-triazine-2,4-diyl)bis[N′-(2-chloroethyl)-Urea,
  • (35) N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-[4-methyl-3-[[4-phenyl-6-(propylamino)-1,3,5-triazin-2-yl]amino]phenyl]-urea,
  • (36) N-[4-[[5-[[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]-glycine,
  • (37) N-[4-[[5-[[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]amino]-6-(5-thiazolyl)-1,3,5-triazin-2-yl]-L-Valine,
  • (38) s-Triazine, 2-phenyl-4,6-bis[[6-[[4-phenyl-6-[[6-[[4-phenyl-6-(trichloromethyl)-s-triazin-2-yl]amino]hexyl]amino]-s-triazin-2-yl]amino]hexyl]amino]-,
  • (39) α,α′-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis[imino(1,1,2,2-tetrafluoro-3-oxo-3,1-propanediyl)]]bis[ω-[tetrafluoro(trifluoromethyl)ethoxy]-Poly[oxy[trifluoro(trifluoromethyl)-1,2-ethanediyl]],
  • (40) α-[[4-[[(3-chlorophenyl)methyl]amino]-6-(1H-imidazol-1-yl)-1,3,5-triazin-2-yl]amino]-N-[[4-(trifluoromethyl)phenyl]methyl]-, (αR)-Cyclohexanepropanamide,
  • (41) N,N′-[6-[4-(acetylamino)-1,2,5-oxadiazol-3-yl]-1,3,5-triazine-2,4-diyl]bis-acetamide,
  • (42) 6-(1H-imidazol-1-yl)-N2,N4-bis(1-methylethyl)-1,3,5-Triazine-2,4-diamine, and
  • (43) N2,N4-bis(1-methylpropyl)-6-phenyl-1,3,5-Triazine-2,4-diamine.


In some embodiments, R1 and R4 are each independently selected from hydrogen, —CH3, —CH2CH3, —CH2OH, —CH(CH3)OH, —C(CH3)2OH, CF3, CN, or R1 and R3 are taken together to form ═O; or R4 and R6 are optionally taken together with the carbon atom to which they are attached to form C(═O).


In some embodiments, R1 and R2 are taken together to form carbocyclyl or heterocyclyl, either of which is optionally substituted with up to 3 substituents independently selected from halo, e.g., fluoro, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, —CN, ═O, —OH, and —C(O)C1-C4 alkyl. In some embodiments, R1 and R2 are taken together to form a carbocyclyl or heterocyclyl, either of which is optionally substituted with up to 3 substituents independently selected from halo, e.g., fluoro, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, —CN, ═O, —OH, aryl, heteroaryl —SO2C1-C4 alkyl, —CO2C1-C4 alkyl, —C(O)aryl, and —C(O)C1-C4 alkyl. In some embodiments R1 and R2 are taken together to form a carbocyclyl or heterocyclyl, either of which is optionally substituted with aryl or heteroaryl, which is optionally substituted with up to 2 substituents independently selected from halo, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, —CN, and —OH. In some embodiments R1 and R2 are taken together to form a carbocyclyl or heterocyclyl, either of which is optionally substituted with phenyl, pyridinyl or pyrimidinyl, which is optionally substituted with up to 2 substituents independently selected from halo, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, —CN, and —OH.


In some embodiments, R4 and R5 are taken together to form carbocyclyl or heterocyclyl, either of which is optionally substituted with up to 3 substituents independently selected from halo, e.g., fluoro, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, —CN, ═O, —OH, and —C(O)C1-C4 alkyl. In some embodiments, R4 and R5 are taken together to form a carbocyclyl or heterocyclyl, either of which is optionally substituted with up to 3 substituents independently selected from halo, e.g., fluoro, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, —CN, ═O, —OH, aryl, heteroaryl —SO2C1-C4 alkyl, —CO2C1-C4 alkyl, —C(O)aryl, and —C(O)C1-C4 alkyl. In some embodiments R1 and R2 are taken together to form a carbocyclyl or heterocyclyl, either of which is optionally substituted with aryl or heteroaryl, which is optionally substituted with up to 2 substituents independently selected from halo, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, —CN, and —OH. In some embodiments R1 and R2 are taken together to form a carbocyclyl or heterocyclyl, either of which is optionally substituted with phenyl, pyridinyl or pyrimidinyl, which is optionally substituted with up to 2 substituents independently selected from halo, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, —CN, and —OH.


In some embodiments, R2 and R5 are each independently selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C2-C6 alkenyl or alkynyl), —(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)N(R6)—(C1-C6 alkyl), —(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), and —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein Q is optionally substituted with up to 3 substituents independently selected from C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, ═O, —C(O)—C1-C4 alkyl, —CN, and halo.


In some embodiments, R2 and R5 are each independently selected from: —(C1-C4 alkyl) optionally substituted with halo, e.g., fluoro or —OH; —(C0-C4 alkylene)-O—(C1-C4 alkyl), —(C0-C2 alkylene)-N(R6)—(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C0-C2 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), and —O—(C0-C2 alkylene)-Q, wherein Q is optionally substituted with up to 3 substituents independently selected from C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, ═O, —C(O)—C1-C4 alkyl, —CN, and halo. In one aspect of these embodiments, Q is selected from pyridinyl, tetrahydrofuranyl, cyclobutyl, cyclopropyl, phenyl, pyrazolyl, morpholinyl and oxetanyl, wherein Q is optionally substituted with up to 2 substituents independently selected from C1-C4 alkyl, C1-C4 haloalkyl, ═O, fluoro, chloro, and bromo. In another aspect of these embodiments, Q is selected from pyridinyl, tetrahydrofuranyl, cyclobutyl, cyclopropyl, phenyl, pyrazolyl, morpholinyl and oxetanyl, wherein Q is optionally substituted with up to 2 substituents independently selected from —CH3 and ═O.


In some embodiments, R1 and R2 are taken together to form cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydrofuranyl, tetrahydropyranyl, oxetanyl, bicyclo[2.2.1]heptanyl, oxobicyclo[3.1.0]hexanyl, azetidinyl, any of which is optionally substituted with up to 2 substituents independently selected from C1-C4 alkyl, C1-C4 alkoxy, C3-C6 cycloalkyl, —OH, —C(O)CH3, fluoro, and chloro.


In some embodiments, R4 and R5 are taken together to form cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydrofuranyl, tetrahydropyranyl, oxetanyl, bicyclo[2.2.1]heptanyl, oxobicyclo[3.1.0]hexanyl, or azetidinyl, any of which is optionally substituted with up to 2 substituents independently selected from C1-C4 alkyl, C1-C4 alkoxy, C3-C6 cycloalkyl, —OH, —C(O)CH3, fluoro, and chloro. In some embodiments, R4 and R5 are taken together to form phenyl, pyrazolyl, imidazolyl, pyrrolidinyl, oxazolyl, isoxazolyl, pyridinyl, pyrimidinyl, pyrazinyl, triazinyl, thiazolyl, thiadiazolyl or isothiazolyl, any of which is optionally substituted with up to 2 substituents independently selected from halo, CN, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C3-C6 cycloalkyl, phenyl, —OH, —C(O)CH3, wherein any alkyl, cycloalkyl, or phenyl moiety is optionally substituted with fluoro, chloro, —OH, —NH2, or —CN. In some embodiments the C3-C6 cycloalkyl is




embedded image


In some embodiments, R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein each said alkyl moiety of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2; and R2 and R5 are each independently selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C2-C6 alkenyl or alkynyl), —(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)N(R6)—(C1-C6 alkyl), and —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), wherein: any alkyl or alkylene moiety present in R2 and R5 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo; and any terminal methyl moiety present in R2 and R5 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H; or R1 and R3 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R4 and R6 are optionally taken together with the carbon atom to which they are attached to form C(═O); or R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl; or R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl, wherein, when A is an optionally substituted phenyl, 2-pyrrolyl, or 1-imidazolyl, then N(R7)C(R4)(R5)(R6) is not the same as N(R8)C(R1)(R2)(R3), and the compound is not 2-(1,2-dibromoethyl)-4-phenyl-6-(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl-1,3,5-Triazine.


In some embodiments, ring A is an optionally substituted 6-membered monocyclic aryl. In some embodiments, ring A is an optionally substituted 5-6 membered heteroaryl. In some embodiments, ring A is an optionally substituted 5-membered heteroaryl.


In some embodiments, ring A is a substituted 5-6 member monocyclic aryl or monocyclic heteroaryl, which is substituted with up to two substituents independently selected from halo, —C1-C4 alkyl, —C1-C4 haloalkyl, —C1-C4 hydroxyalkyl, —NH—S(O)2—(C1-C4 alkyl), —S(O)2NH(C1-C4 alkyl), —CN, —S(O)2—(C1-C4 alkyl), C1-C4 alkoxy, —NH(C1-C4 alkyl), —OH, —OCF3, —CN, —NH2, —C(O)NH2, —C(O)NH(C1-C4 alkyl), —C(O)—N(C1-C4 alkyl)2, —(C1-C6 alkylene)-O—(C1-C6 alkyl), azetidinyl, phenyl, and cyclopropyl optionally substituted with OH. In some embodiments, ring A is a substituted 5-6 member monocyclic aryl or monocyclic heteroaryl, which is substituted with up to two substituents independently selected from fluoro, chloro, CF3, CF2, —OH, —OCH3, —OCF3, —CN, —NH2. In some embodiments, ring A is a substituted 6-membered monocyclic aryl. In some embodiments, ring A is a substituted 5-6 membered heteroaryl. In some embodiments, ring A is a substituted 5-membered heteroaryl.


In some embodiments, ring A is selected from phenyl, pyrazolyl, oxazolyl, isoxazolyl, pyridinyl, pyrimidinyl, pyrazinyl, and thiazolyl, wherein ring A is optionally substituted with up to two substituents independently selected from halo, —C1-C4 alkyl, —C1-C4 haloalkyl, —C1-C4 hydroxyalkyl, —NH—S(O)2—(C1-C4 alkyl), —S(O)2NH(C1-C4 alkyl), —CN, —S(O)2—(C1-C4 alkyl), C1-C4 alkoxy, —NH(C1-C4 alkyl), —OH, —OCF3, —CN, —NH2, —C(O)NH2, —C(O)NH(C1-C4 alkyl), —C(O)—N(C1-C4 alkyl)2, and cyclopropyl optionally substituted with OH.


In some embodiments, ring A is selected from phenyl, pyrazolyl, imidazolyl, pyrrolidinyl, oxazolyl, isoxazolyl, pyridinyl, pyrimidinyl, pyrazinyl, triazinyl, thiazolyl, thiadiazolyl and isothiazolyl, wherein ring A is optionally substituted with up to two substituents independently selected from halo, —C1-C4 alkyl, —C1-C4 haloalkyl, —C1-C4 hydroxyalkyl, —NH—S(O)2—(C1-C4 alkyl), —S(O)2NH(C1-C4 alkyl), —CN, —S(O)2—(C1-C4 alkyl), C1-C4 alkoxy, —NH(C1-C4 alkyl), —OH, —CN, and —NH2.


In some embodiments, ring A is monocyclic heteroaryl optionally substituted with halo, —C1-C4 alkyl, —C1-C4 haloalkyl, —O—C1-C4 haloalkyl, —OH, —CN, and —NH2; R1, R3, R4, and R6 are each independently selected from hydrogen and C1-C4 alkyl; and R2 and R5 are each independently —(C0-C6 alkylene)-Q; or R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl, an optionally substituted heterocyclyl or an optionally substituted heteroaryl; or R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl, an optionally substituted heterocyclyl or an optionally substituted heteroaryl.


In some embodiments, ring A is monocyclic heteroaryl optionally substituted with halo, —C1-C4 alkyl, —C1-C4 haloalkyl, —O—C1-C4 haloalkyl, —OH, —CN, and —NH2; R1, R3, R4, and R6 are each independently selected from hydrogen and C1-C4 alkyl; and R2 and R5 are each independently —(C0-C6 alkylene)-Q; or R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl or an optionally substituted heterocyclyl; or R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl, an optionally substituted heterocyclyl or an optionally substituted heteroaryl.


In some embodiments, ring A is:




embedded image



wherein R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl; each Xa is independently N or C—R9a, provided that when one Xa is N, then the other two Xa are both C—R9a; and R9a is selected from hydrogen, halo, and —C1-C4 haloalkyl.


In some embodiments, ring A is




embedded image



wherein R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl. In some embodiments, ring A is:




embedded image



wherein R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl. In some embodiments, ring A is:




embedded image



wherein R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl.


In some embodiments, ring A is pyridinyl optionally substituted with halo or —C1-C4 haloalkyl. In some embodiments, ring A is pyridinyl optionally substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyridin-2-yl substituted with —C1-C4 haloalkyl, e.g., —CHF2 and CF3. In some embodiments, ring A is:




embedded image



wherein R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl. In some embodiments, ring A is:




embedded image



wherein each R9 is independently selected from hydrogen, halo, and —C1-C4 haloalkyl. In some embodiments, R9 is chloro or fluoro. In some embodiments, R9 is —CHF2 or CF3. In some embodiments, R9 is CF3 or chloro. In some embodiments, R9 is CF3.


In some embodiments, ring A is:




embedded image



wherein R9b is selected from hydrogen and —C1-C4 alkyl, and wherein R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl.


In some embodiments, ring A is:




embedded image



wherein R9b is selected from hydrogen and —C1-C4 alkyl, and wherein R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl.


In some embodiments, ring A is:




embedded image



wherein R9b is selected from hydrogen and —C1-C4 alkyl, and wherein R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl.


In some embodiments, ring A is:




embedded image



wherein R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl. In some embodiments, ring A is pyrazolyl optionally substituted with halo or —C1-C4 haloalkyl. In some embodiments, ring A is pyrazolyl optionally substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is 1H-pyrazol-1-yl substituted with —C1-C4 haloalkyl, e.g., —CHF2 and CF3. In some embodiments, ring A is:




embedded image



wherein R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl. In some embodiments, R9 is chloro or fluoro. In some embodiments, R9 is —CHF2 or CF3. In some embodiments, R9 is CF3 or chloro. In some embodiments, R9 is CF3.


In some embodiments, ring A is:




embedded image



wherein R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl.


In some embodiments, ring A is




embedded image



wherein R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl.


In some embodiments, ring A is:




embedded image



wherein R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl.


In some embodiments, ring A is:




embedded image



wherein R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl.


In some embodiments, ring A is:




embedded image



wherein R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl.


In some embodiments, ring A is:




embedded image



wherein R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl.


In some embodiments, ring A is:




embedded image



wherein R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl.


In some embodiments, ring A is pyridinyl optionally substituted with halo or —C1-C4 haloalkyl. In some embodiments, ring A is pyridinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyridinyl substituted with —C1-C4 haloalkyl, e.g., —CHF2 and CF3. In some embodiments, ring A is pyrazinyl optionally substituted with halo or —C1-C4 haloalkyl. In some embodiments, ring A is pyrazinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrazinyl substituted with —C1-C4 haloalkyl, e.g., —CHF2 and CF3. In some embodiments, ring A is pyrimidinyl optionally substituted with halo or —C1-C4 haloalkyl. In some embodiments, ring A is pyrimidinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrimidinyl substituted with —C1-C4 haloalkyl, e.g., —CHF2 and CF3. In some embodiments, ring A is pyrazolyl optionally substituted with halo or —C1-C4 haloalkyl. In some embodiments, ring A is pyrazolyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrazolyl substituted with —C1-C4 haloalkyl, e.g., —CHF2 and CF3.


In some embodiments, R1, R3, R4, and R6 are each independently selected from hydrogen and C1-C4 alkyl; and R2 and R5 are each independently —(C0-C6 alkylene)-Q. In some embodiments, R1 and R4 are each hydrogen. In some embodiments, R3 and R6 are each C1-C4 alkyl. In some embodiments, R3 and R6 are each C1-C4 haloalkyl. In some embodiments, Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted. In some embodiments, Q is optionally substituted carbocyclyl. In some embodiments, Q is optionally substituted cyclopropyl. In some embodiments, Q is unsubstituted cyclopropyl. In some embodiments, R2 and R5 are each independently unsubstituted cyclopropyl. In some embodiments, R1 and R4 are each hydrogen, R3 and R6 are each —CH3, and R2 and R5 are each unsubstituted cyclopropyl. In some embodiments, R2 is —(C0-C6 alkylene)-cyclopropyl and R5 is —(C0-C6 alkylene)-aryl, e.g., optionally substituted phenyl. In some embodiments, R2 is cyclopropyl and R5 is phenyl substituted with halo, e.g., fluoro.


In some embodiments, ring A is pyridinyl optionally substituted with halo or —C1-C4 haloalkyl. In some embodiments, ring A is pyridinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyridinyl substituted with —C1-C4 haloalkyl, e.g., —CHF2 and CF3. In some embodiments, ring A is pyrazinyl optionally substituted with halo or —C1-C4 haloalkyl. In some embodiments, ring A is pyrazinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrazinyl substituted with —C1-C4 haloalkyl, e.g., —CHF2 and CF3. In some embodiments, ring A is pyrimidinyl optionally substituted with halo or —C1-C4 haloalkyl. In some embodiments, ring A is pyrimidinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrimidinyl substituted with —C1-C4 haloalkyl, e.g., —CHF2 and CF3. In some embodiments, ring A is pyrazolyl optionally substituted with halo or —C1-C4 haloalkyl. In some embodiments, ring A is pyrazolyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrazolyl substituted with —C1-C4 haloalkyl, e.g., —CHF2 and CF3.


In some embodiments, R3 and R6 are each independently selected from hydrogen and C1-C4 alkyl; R1 and R2 are taken together to form an optionally substituted carbocyclyl; and R4 and R5 are taken together to form an optionally substituted carbocyclyl. In some embodiments, R1 and R2 are taken together to form a cyclobutyl, cyclopentyl or cyclohexyl, each optionally substituted. In some embodiments, R1 and R2 are taken together to form a cyclopentyl or cyclohexyl, each optionally substituted. In some embodiments, R4 and R5 are taken together to form a cyclobutyl, cyclopentyl or cyclohexyl, each optionally substituted. In some embodiments, R4 and R5 are taken together to form a cyclopentyl or cyclohexyl, each optionally substituted. In some embodiments, R1 and R2 are taken together to form a cyclopentyl or cyclohexyl, each substituted by one or more halo, e.g., fluoro; and R4 and R5 are taken together to form a cyclobutyl, cyclopentyl or cyclohexyl, each substituted by one or more halo, e.g., fluoro. In some embodiments, R1 and R2 are taken together to form a bicyclo[3.1.0]hexanyl; and R4 and R5 are taken together to form a bicyclo[3.1.0]hexanyl. In some embodiments, R1 and R2 taken together, and R4 and R5 taken together form:




embedded image



In some embodiments, R1 and R2 taken together, and R4 and R5 taken together form:




embedded image



In some embodiments, R1 and R2 taken together, and R4 and R5 taken together form:




embedded image



In some embodiments, R1 and R2 taken together, and R4 and R5 taken together form:




embedded image



In some embodiments, R1 and R2 taken together, and R4 and R5 taken together form:




embedded image



which is optionally substituted with cyano or halo, e.g. fluoro, chloro, or bromo. In some embodiments, R1 and R2 taken together, and R4 and R5 taken together form:




embedded image



In some embodiments, R1 and R2 are taken together to form a cyclobutyl, cyclopentyl or cyclohexyl, each substituted by one or more 6-member monocyclic aryl, e.g., phenyl, which is optionally substituted with halo, e.g. fluoro, chloro, or bromo; and R4 and R5 are taken together to form a cyclobutyl, cyclopentyl or cyclohexyl, each substituted by one or more 6-member monocyclic aryl, e.g., phenyl, which is optionally substituted with halo, e.g. fluoro, chloro, or bromo. In some embodiments, R1 and R2 or R4 and R5 are taken together form:




embedded image



wherein Ring C is phenyl, pyridyl, or pyrimidinyl, which is optionally substituted with cyano or halo, e.g. fluoro, chloro, or bromo. In some embodiments, R1 and R2 or R4 and R5 are taken together form:




embedded image



wherein Ring C is phenyl, pyridyl, or pyrimidinyl, which is optionally substituted with cyano or halo, e.g. fluoro, chloro, or bromo. In some embodiments, R1 and R2 or R4 and R5 are taken together form:




embedded image



wherein Ring C is phenyl, pyridyl, or pyrimidinyl, which is optionally substituted with cyano or halo, e.g. fluoro, chloro, or bromo.


In some embodiments, ring A is pyridinyl optionally substituted with halo or —C1-C4 haloalkyl. In some embodiments, ring A is pyridinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyridinyl substituted with —C1-C4 haloalkyl, e.g., —CHF2 and CF3. In some embodiments, ring A is pyrazinyl optionally substituted with halo or —C1-C4 haloalkyl. In some embodiments, ring A is pyrazinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrazinyl substituted with —C1-C4 haloalkyl, e.g., —CHF2 and CF3. In some embodiments, ring A is pyrimidinyl optionally substituted with halo or —C1-C4 haloalkyl. In some embodiments, ring A is pyrimidinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrimidinyl substituted with —C1-C4 haloalkyl, e.g., —CHF2 and CF3. In some embodiments, ring A is pyrazolyl optionally substituted with halo or —C1-C4 haloalkyl. In some embodiments, ring A is pyrazolyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrazolyl substituted with —C1-C4 haloalkyl, e.g., —CHF2 and CF3.


In some embodiments, R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, and —CN, wherein each said alkyl moiety of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl; and R2 and R5 are each independently selected from —(C1-C6 alkyl) and —(C0-C6 alkylene)-Q. In some embodiments, R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, and —CN; and R2 and R5 are each independently —(C1-C6 alkyl) and —(C0-C6 alkylene)-Q. In some embodiments, R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, and —CN; R2 is —(C1-C6 alkyl); and R5 is —(C0-C6 alkylene)-Q, wherein Q is optionally substituted carbocyclyl. In some embodiments, Q is unsubstituted carbocyclyl. In some embodiments, Q is cyclopropyl.


In some embodiments, ring A is pyridinyl optionally substituted with halo or —C1-C4 haloalkyl. In some embodiments, ring A is pyridinyl substituted with —C1-C4 haloalkyl, e.g., —CHF2 and CF3. In some embodiments, ring A is pyrazinyl optionally substituted with halo or —C1-C4 haloalkyl. In some embodiments, ring A is pyrazinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrazinyl substituted with —C1-C4 haloalkyl, e.g., —CHF2 and CF3. In some embodiments, ring A is pyrimidinyl optionally substituted with halo or —C1-C4 haloalkyl. In some embodiments, ring A is pyrimidinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrimidinyl substituted with —C1-C4 haloalkyl, e.g., —CHF2 and CF3. In some embodiments, ring A is pyrazolyl optionally substituted with halo or —C1-C4 haloalkyl. In some embodiments, ring A is pyrazolyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrazolyl substituted with —C1-C4 haloalkyl, e.g., —CHF2 and CF3.


In some embodiments, R1, R3, and R6 are each independently selected from hydrogen and C1-C4 alkyl, wherein each said alkyl moiety of R1, R3, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2; R2 is —(C0-C6 alkylene)-Q; and R4 and R5 taken together form an optionally substituted carbocyclyl, optionally substituted heterocyclyl or optionally substituted heteroaryl. In some embodiments, R4 and R5 taken together form an optionally substituted carbocyclyl. In some embodiments, the carbocyclyl is selected from cyclopentyl and cyclohexyl optionally substituted with —OH, —O(C1-C4 alkyl), —CO2H, or halo. In some embodiments, R4 and R5 taken together form an optionally substituted heterocyclyl optionally substituted with —OH, —O(C1-C4 alkyl), —CO2H, or halo. In some embodiments, R4 and R5 taken together form an optionally substituted tetrahydrofuran. In some embodiments, R1, R3, and R6 are each independently selected from hydrogen and C1-C4 alkyl, wherein each said alkyl moiety of R1, R3, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl; R2 is —(C0-C6 alkylene)-Q; and R5 is C1-C4 alkyl. In some embodiments, R1, R3, and R6 are each independently selected from hydrogen, C1-C4 alkyl, or carbocyclyl, wherein any alkyl or carbocyclyl portion of R1, R3, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —SO2—C1-C4 alkyl, —C(O)NH2, —O—R12, —CO2R12 or —C(O)R12, wherein R12 is morpholino, piperidinyl, phenyl, pyridyl, or pyrimidinyl. In some embodiments, R1, R3, and R6 are each independently selected from hydrogen and C1-C4 alkyl, wherein each said alkyl moiety of R1, R3, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —O—R12, wherein R12 is phenyl, pyridyl, or pyrimidinyl; R2 is —(C0-C6 alkylene)-Q; and R5 is C1-C4 alkyl.


In some embodiments, R7 is H. In some embodiments, R8 is H. In some embodiments, both R7 and R8 are H.


In some embodiments, ring A, R1, R2, R3, R4, R5, R6, R7, R8 are selected from any one of the preceding embodiments.


Also provided is a compound of Formula B, or pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:


X is N, CH or C-halo;


Xa is N or C—R9a, provided that when one Xa is N, then the other two Xa are both C—R9a;


R9 is halo, —C1-C4 alkyl, —C1-C4 haloalkyl, —C1-C4 hydroxyalkyl, —NH—S(O)2—(C1-C4 alkyl), —S(O)2NH(C1-C4 alkyl), —CN, —S(O)2—(C1-C4 alkyl), C1-C4 alkoxy, —NH(C1-C4 alkyl), —N(C1-C4 alkyl)2, —OH, —OCF3, —CN, —NH2, —C(O)NH2, —C(O)NH(C1-C4 alkyl), —C(O)—N(C1-C4 alkyl)2, —(C1-C6 alkylene)-O—(C1-C6 alkyl), aryl, and cyclopropyl optionally substituted with OH;


each R9a is independently selected from hydrogen, halo, —C1-C4 alkyl, —C1-C4 haloalkyl, —C1-C4 hydroxyalkyl, —NH—S(O)2—(C1-C4 alkyl), —S(O)2NH(C1-C4 alkyl), —CN, —S(O)2—(C1-C4 alkyl), C1-C4 alkoxy, —NH(C1-C4 alkyl), —N(C1-C4 alkyl)2, —OH, —OCF3, —CN, —NH2, —C(O)NH2, —C(O)NH(C1-C4 alkyl), —C(O)—N(C1-C4 alkyl)2, —(C1-C6 alkylene)-O—(C1-C6 alkyl), aryl, and cyclopropyl optionally substituted with OH;


R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein each said alkyl moiety of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;


R2 and R5 are each independently selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C2-C6 alkenyl or alkynyl), —(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)N(R6)—(C1-C6 alkyl),


—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), and —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein:


any alkyl or alkylene moiety present in R2 and R5 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo;


any terminal methyl moiety present in R2 and R5 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H;


R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl; and


Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


R1 and R3 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R4 and R6 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or


R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl, an optionally substituted 5-6 member monocyclic aryl, or an optionally substituted 5-6 member monocyclic heteroaryl;


wherein the compound is not selected from the group:

  • (1) 4,6-Pyrimidinediamine, 2-(6-methyl-2-pyridinyl)-N4,N6-dipropyl-;
  • (2) 4,6-Pyrimidinediamine, N4-ethyl-2-(6-methyl-2-pyridinyl)-N6-propyl-;
  • (3) 4,6-Pyrimidinediamine, N4,N4-diethyl-2-(6-methyl-2-pyridinyl)-N6-propyl-;
  • (4) [2,4′-Bipyrimidine]-2′,4,6-triamine, N6-[2-(dimethylamino)ethyl]-N2′,N2′,N4,N4-tetramethyl-; or
  • (5) [2,4′-Bipyrimidine]-2′,4,6-triamine, N6-[2-(dimethylamino)ethyl]-N2′,N2′,N4,N4-tetramethyl-, phosphate.


In some embodiments, X is N and R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl.


Also provided is a compound of Formula Ib, or pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:

    • R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein each said alkyl moiety of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;
    • R2 and R5 are each independently selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein:
    • any alkyl or alkylene moiety present in R2 and R5 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo;
    • any terminal methyl moiety present in R2 and R5 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H;
    • R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl;
    • R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl; and
    • Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein
    • R1 and R3 are optionally taken together with the carbon atom to which they are attached to form C(═O); or
    • R4 and R6 are optionally taken together with the carbon atom to which they are attached to form C(═O); or
    • R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl, optionally substituted heterocyclyl; or
    • R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl, optionally substituted heterocyclyl;


wherein:


(i) neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHC(O)-[2-chloro-4-(methylsulfonyl)] or N(CH3)2,


(ii) N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHC(O)C(CH3)3, NHC(O)CH═CH2, NHC(O)C(CH3)═CH2, NHCH2CH2OH, NH-cyclohexyl, NHCH2-phenyl, NHC(O)phenyl, NHC(O)(CH2)5NH2, NHC(O)OCH3, NHC(O)CH3, and NHC(O)NH-optionally substituted phenyl, and


(iii) when N(R7)C(R4)(R5)(R6) is NHC(CH3)3, then N(R8)C(R1)(R2)(R3) is not NHCH2-phenyl or NH—CH2CH3; and


wherein the compound is not:

  • (1) 2-chloro-N-[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-4-(methylsulfonyl)-benzamide,
  • (2) N-[[4-[[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide,
  • (3) 2-chloro-4-(methylsulfonyl)-N-[4-[(phenylmethyl)amino]-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-benzamide, or
  • (4) N-[[4-[[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide.


Also provided is a compound of Formula Ia, or a pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:


ring A is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;


R3 and R6 are both hydrogen;


R1 and R4 are each independently selected from C1-C4 alkyl and C1-C4 haloalkyl; and


R2 and R5 are each —(C1-C6 alkyl); or


R1 and R2 are optionally taken together to form an optionally substituted monocyclic carbocyclyl; or


R4 and R5 are optionally taken together to form an optionally substituted monocyclic carbocyclyl;


wherein:


(i) ring A is not an optionally substituted triazolyl, 3,5-dimethyl-1H-pyrazol-1-yl,


(ii) when R1 and R2 are optionally taken together to form an unsubstituted cyclohexyl, and R4 and R5 are optionally taken together to form an unsubstituted cyclohexyl, then A is not a disubstituted 1-pyrazolyl or an unsubstituted phenyl; and


(iii) the compound is not selected from the group:

  • (1) 6-(1H-imidazol-1-yl)-N2,N4-bis(1-methylethyl)-1,3,5-Triazine-2,4-diamine, or
  • (2) N2,N4-bis(1-methylpropyl)-6-phenyl-1,3,5-Triazine-2,4-diamine.


    Also provided is a compound of Formula C, or pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:


X is N, CH or C-halo;


each Xb is independently N—R9b, O, S, C—H, or C—R9, provided that at least one Xb is C—R9, and when one Xb is C—H or C—R9 and the other is C—R9c then Xc is N, and when one Xb is N—R9b, O, or S, then Xc is C;


R9b is hydrogen or —C1-C4 alkyl;


R9 is halo, —C1-C4 alkyl, —C1-C4 haloalkyl, —C1-C4 hydroxyalkyl, —NH—S(O)2—(C1-C4 alkyl), —S(O)2NH(C1-C4 alkyl), —CN, —S(O)2—(C1-C4 alkyl), C1-C4 alkoxy, —NH(C1-C4 alkyl), —N(C1-C4 alkyl)2, —OH, —OCF3, —CN, —NH2, —C(O)NH2, —C(O)NH(C1-C4 alkyl), —C(O)—N(C1-C4 alkyl)2, —(C1-C6 alkylene)-O—(C1-C6 alkyl), aryl, and cyclopropyl optionally substituted with OH;


R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein each said alkyl moiety of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;


R2 and R5 are each independently selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein:


any alkyl or alkylene moiety present in R2 and R5 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo;


any terminal methyl moiety present in R2 and R5 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H;


R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl; and


Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


R1 and R3 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R4 and R6 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or


R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl, an optionally substituted 5-6 member monocyclic aryl, or an optionally substituted heteroaryl;


wherein:


(i) when X is CH and A is optionally substituted 1-imidazolyl, optionally substituted 1-pyrrolyl or optionally substituted 1-pyrazolyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NH(CH2)7CH3, NHCH2-(o-chloro-phenyl), or NHCH2CH2OH; and


(ii) when X and Xc are both N, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is N(CH3)2, NHCH3, or N(CH2CH3)2.


Also provided is a compound having Formula Id, or pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:


R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein each said alkyl moiety of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;


R2 and R5 are each independently selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein:


any alkyl or alkylene moiety present in R2 and R5 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo;


any terminal methyl moiety present in R2 and R5 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H;


R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl;


R9 is halo or —C1-C4 haloalkyl; and


Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


R1 and R3 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R4 and R6 are optionally taken together with the carbon atom to which they are attached to form C(═O);


R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or


R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl, optionally substituted heterocyclyl, an optionally substituted aryl, or an optionally substituted heteroaryl;


wherein the compound is not:




  • (1) N2,N2,N4-trimethyl-6-[3-(trifluoromethyl)-1H-pyrazol-1-yl]-1,3,5-Triazine-2,4-diamine, or

  • (2) N4-ethyl-N2,N2-dimethyl-6-[3-(trifluoromethyl-1H-pyrazol-1-yl]-1,3,5-Triazine-2,4-diamine.


    A compound having Formula Ie, or pharmaceutically acceptable salt or hydrate thereof:





embedded image



wherein


R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein each said alkyl moiety of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;


R2 and R5 are each independently selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein:


any alkyl or alkylene moiety present in R2 and R5 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo;


any terminal methyl moiety present in R2 and R5 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H;


R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl;


R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl; and


Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


R1 and R3 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R4 and R6 are optionally taken together with the carbon atom to which they are attached to form C(═O);


R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or


R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl.


A compound having Formula If, or pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein


R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein each said alkyl moiety of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;


R2 and R5 are each independently selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein:


any alkyl or alkylene moiety present in R2 and R5 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo;


any terminal methyl moiety present in R2 and R5 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H;


R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl;


R9 is selected from hydrogen, halo, and —C1-C4 haloalkyl; and


Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


R1 and R3 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R4 and R6 are optionally taken together with the carbon atom to which they are attached to form C(═O);


R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or


R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl.


Also provided is a compound of Formula II, or pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:


ring A is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;


R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein each said alkyl moiety of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;


R2 and R5 are each independently selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C2-C6 alkenyl or alkynyl), —(C1-C6 alkylene)-N(R6)—(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)(R6), —(C1-C6 alkylene)-N(R6)—S(O)1-2—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)—S(O)1-2—(C0-C6 alkyl)-Q, —(C1-C6 alkylene)-S(O)1-2—N(R6)(R6), —(C1-C4 alkylene)-S(O)1-2—N(R6)—(C1-C6 alkylene)-Q, —C(O)N(R6)—(C1-C6 alkylene)-C(O)— (C0-C6 alkylene)-O—(C1-C6 alkyl), —C(O)N(R6)—(C1-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-O—C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-O—C(O)—(C0-C6 alkyl)-Q, —(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C1-C6 alkylene)-O—(C1-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-O—(C1-C6 alkylene)-Q, —(C1-C6 alkylene)-O—C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-O—C(O)—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)N(R6)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)N(R6)—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)C(O)—(C1-C6 alkyl), —(C1-C6 alkylene)-N(R6)C(O)—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-S(O)0-2—(C1-C6 alkyl), —(C0-C6 alkylene)-S(O)0-2—(C0-C6 alkylene)-Q, —(C1-C6 alkylene)-N(R6)—C(O)—N(R6)—(C1-C6 alkyl), —(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein:


any alkyl or alkylene moiety present in R2 and R5 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo;


any terminal methyl moiety present in R2 and R5 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H;


R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl; and


Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


R1 and R3 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R4 and R6 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or


R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl, optionally substituted heterocyclyl, an optionally substituted aryl, or an optionally substituted heteroaryl;


wherein:


(i) when A is phenyl optionally substituted with F, Cl or SO2CH3, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is N(CH3)CH2C(O)NH-i-propyl, NHCH(CH3)(CH2)3N(CH2CH3)2, NHCH2CH2OH, NHCH2CH2OCH3, NHCH2CH2OSO3H, NHCH2CH2CH2OCH2CH2O-phenyl, NHCH2CH2CH2OH, NHCH2CH2CH2OCH3, NHCH2CH(OH)CH3, N(CH2CH3)2, NH-i-propyl, NHCH2CH2NHC(O)OCH3, NHCH2CH2NHC(O)CH3, NHCH2CH2NH2, or NHCH2-phenyl;


(ii) when A is optionally substituted pyridyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHCH2-phenyl, NHCH2-(2,4-difluorophenyl), N(CH3)CH2CH2C(O)OH, NHCH2CH2C(O)OH, NHCH2CH2C(O)OCH2CH3, NHCH2CH2C(O)O-t-butyl, NHCH2CH2C(O)NH2, NHCH2CH2-phenyl, NHCH2CH2OH, NHCH2CH2NH2, NHCH2CH2N(CH3)2, or NHCH2CH2CH3;


(iii) when A is optionally substituted 1-imidazolyl, optionally substituted 1-pyrrolyl or optionally substituted 1-pyrazolyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NH(CH2)7CH3, NHCH2-(o-chloro-phenyl), or NHCH2CH2OH;


(iv) when A is unsubstituted 2-pyridinyl, then the ring formed by R4 and R5 is not 5-methyl-1H-pyrazol-3-yl; and


(v) when A is optionally substituted 1-pyrazolyl, then neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is N(CH3)2, NHCH3, NHAc, NHisopropyl, NHCH2CH3, NHCH2CH2SO3H or N(CH2CH3)2,


(vi) ring A is not an optionally substituted triazolyl, 3,5-dimethyl-1H-pyrazol-1-yl,


(vii) when R1 and R2 are optionally taken together to form an unsubstituted cyclohexyl, and R4 and R5 are optionally taken together to form an unsubstituted cyclohexyl, then A is not a disubstituted 1-pyrazolyl or an unsubstituted phenyl; and


(viii) the compound is not selected from the group:

  • (1) 6-(1H-imidazol-1-yl)-N2,N4-bis(1-methylethyl)-1,3,5-Triazine-2,4-diamine, or
  • (2) N2,N4-bis(1-methylpropyl)-6-phenyl-1,3,5-Triazine-2,4-diamine.


    Also provided is a compound of Formula Ic, or pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:


R1, R3, R4, and R6 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein each said alkyl moiety of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;


each R9 is independently selected from halo, —C1-C4 alkyl, —C1-C4 haloalkyl, —C1-C4 hydroxyalkyl, —NH—S(O)2—(C1-C4 alkyl), —S(O)2NH(C1-C4 alkyl), —CN, —S(O)2—(C1-C4 alkyl), C1-C4 alkoxy, —NH(C1-C4 alkyl), —N(C1-C4 alkyl)2, —OH, —OCF3, —CN, —NH2, —C(O)NH2, —C(O)NH(C1-C4 alkyl), —C(O)—N(C1-C4 alkyl)2, —(C1-C6 alkylene)-O—(C1-C6 alkyl), aryl, and cyclopropyl optionally substituted with OH;


n is 1 to 3;


R2 and R5 are each independently selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C2-C6 alkenyl or alkynyl), —(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)N(R6)—(C1-C6 alkyl),


—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), and —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein:


any alkyl or alkylene moiety present in R2 and R5 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo;


any terminal methyl moiety present in R2 and R5 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H;


R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl; and


Q is selected from carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


R1 and R3 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R4 and R6 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl; or


R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl;


wherein:


(i) neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHCH2CH2OCH2CH2OCH2CH2NH2, or 4-[[2-[2-(2-aminoethoxy)ethoxy]ethyl]amino],


(ii) N(R7)C(R4)(R5)(R6) and N(R8)C(R1)(R2)(R3) are not both NHEt, NH(n-propyl), NH(n-butyl), NH(n-docecyl), NH-[(4-methoxyphenyl)methyl], NHCH2CH2CHO, NHCH2CH2OCH3, NHCH2CH2OH, NHCH2CH(OH)CH3, NHCH2CH2OC(O)phenyl, NHCH2CH2CH2OH, NHCH2CH2CH2N(CH3)phenyl, NHCH2C(O)OCH3, NHCH2C(O)OCH2CH3, NHCH2phenyl, NHCH(CH3)CH2CH3, or NHCH2CH2OC(O)CH3; and


(iii) neither N(R7)C(R4)(R5)(R6) nor N(R8)C(R1)(R2)(R3) is NHcyclohexylC(O)NHCH2R, wherein R is phenyl or pyridinyl which is substituted with one or more of OCF3, OCH3, chloro, or CF3.


Also provided is a compound of Formula III, or pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:


ring A is an optionally substituted 5-6 member monocyclic heteroaryl;


ring B is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;


R1 and R3 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein each said alkyl moiety of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;


R2 is selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C2-C6 alkenyl or alkynyl), —(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)N(R6)—(C1-C6 alkyl), —(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), and —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein:


any alkyl or alkylene moiety present in R2 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo;


any terminal methyl moiety present in R2 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H;


R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl; and


Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


R1 and R3 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl;


wherein when A is an oxadiazole substituted with an optionally substituted pyridinyl, then G is not an optionally substituted phenyl.


In some embodiments, G is substituted with 1 or 2 substituents selected from halo, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, —CN, ═O, —OH, aryl, heteroaryl —SO2C1-C4 alkyl, —CO2C1-C4 alkyl, —C(O)aryl, and —C(O)C1-C4 alkyl.


Also provided is a compound of Formula Ma, or pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:


ring A is a substituted 5-6 member monocyclic heteroaryl;


Xd is C or N;


each Rb is independently selected from halo, CN, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C3-C6 cycloalkyl, phenyl, —OH, —C(O)CH3, wherein any alkyl, cycloalkyl, or phenyl moiety is optionally substituted with fluoro, chloro, —OH, —NH2, or —CN;


p is 1 to 2;


R1 and R3 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein each said alkyl moiety of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;


R2 is selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C2-C6 alkenyl or alkynyl), —(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)N(R6)—(C1-C6 alkyl),


—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), and —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein:


any alkyl or alkylene moiety present in R2 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo;


any terminal methyl moiety present in R2 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H;


R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl; and


Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


R1 and R3 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl;


wherein when A is an oxadiazole substituted with an optionally substituted pyridinyl, then Xd is not C.


Also provided is a compound of Formula IIIb, or pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:


ring A is a substituted 5-6 member monocyclic heteroaryl;


R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl;


each Rb is independently selected from halo, CN, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C3-C6 cycloalkyl, phenyl, —OH, —C(O)CH3, wherein any alkyl, cycloalkyl, or phenyl moiety is optionally substituted with fluoro, chloro, —OH, —NH2, or —CN;


p is 1 to 2; and


G is an optionally substituted carbocyclyl or heterocyclyl,


wherein A is not an oxadiazole substituted with an optionally substituted pyridinyl.


Also provided is a compound of Formula IIIc, or pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:


ring A is a substituted 5-6 member monocyclic heteroaryl;


R1 and R3 are each independently selected from hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN, wherein each said alkyl moiety of R1, R3, R4, and R6 are each independently optionally substituted with —OH, —NH2, —CN, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), or —N(C1-C4 alkyl)2;


R2 is selected from: —(C1-C6 alkyl), —(C1-C6 alkyl)-C(O)—NH2, —(C1-C6 alkyl)-CO2H, —(C2-C6 alkenyl or alkynyl), —(C1-C6 alkylene)-O—(C1-C6 alkyl), —(C0-C6 alkylene)-C(O)N(R6)—(C1-C6 alkyl),


—(C0-C6 alkylene)-Q, —(C0-C6 alkylene)-C(O)—(C1-C6 alkyl), and —(C0-C6 alkylene)-C(O)—(C0-C6 alkylene)-Q, wherein:


any alkyl or alkylene moiety present in R2 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo;


any terminal methyl moiety present in R2 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H;


R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl; and


Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


R1 and R3 are optionally taken together with the carbon atom to which they are attached to form C(═O); or


R1 and R2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl;


each Rb is independently selected from halo, CN, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C3-C6 cycloalkyl, phenyl, —OH, —C(O)CH3, wherein any alkyl, cycloalkyl, or phenyl moiety is optionally substituted with fluoro, chloro, —OH, —NH2, or —CN; and


p is 1 to 2.


Also provided is a compound of Formula IIId, or pharmaceutically acceptable salt or hydrate thereof:




embedded image



wherein:


ring A is a substituted 5-6 member monocyclic heteroaryl;


R7 and R8 are each independently selected from hydrogen and C1-C6 alkyl;


each Rb is independently selected from halo, CN, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C3-C6 cycloalkyl, phenyl, —OH, —C(O)CH3, wherein any alkyl, cycloalkyl, or phenyl moiety is optionally substituted with fluoro, chloro, —OH, —NH2, or —CN;


p is 1 to 2; and


G is an optionally substituted carbocyclyl or heterocyclyl.


Further embodiments provided herein include combinations of one or more of the particular embodiments set forth above.


In another embodiment, the compound is selected from any one of the compounds set forth in Table 1, below.









TABLE 1







Representative Compounds








Compound



Number
Structure











1


embedded image







2


embedded image







3


embedded image







4


embedded image







5


embedded image







6


embedded image







7


embedded image







8


embedded image







9


embedded image







10


embedded image







11


embedded image







12


embedded image







13


embedded image







14


embedded image







15


embedded image







16


embedded image







17


embedded image







18


embedded image







19


embedded image







20


embedded image







21


embedded image







22


embedded image







23


embedded image







24


embedded image







25


embedded image







26


embedded image







27


embedded image







28


embedded image







29


embedded image







30


embedded image







31


embedded image







32


embedded image







33


embedded image







34


embedded image







35


embedded image







36


embedded image







37


embedded image







38


embedded image







39


embedded image







40


embedded image







41


embedded image







42


embedded image







43


embedded image







44


embedded image







45


embedded image







46


embedded image







47


embedded image







48


embedded image







49


embedded image







50


embedded image







51


embedded image







52


embedded image







53


embedded image







54


embedded image







55


embedded image







56


embedded image







57


embedded image







58


embedded image







59


embedded image







60


embedded image







61


embedded image







63


embedded image







64


embedded image







65


embedded image







66


embedded image







67


embedded image







69


embedded image







70


embedded image







71


embedded image







72


embedded image







73


embedded image







74


embedded image







75


embedded image







76


embedded image







77


embedded image







78


embedded image







79


embedded image







80


embedded image







81


embedded image







82


embedded image







83


embedded image







84


embedded image







85


embedded image







86


embedded image







87


embedded image







88


embedded image







89


embedded image







90


embedded image







91


embedded image







92


embedded image







93


embedded image







94


embedded image







95


embedded image







96


embedded image







100


embedded image







101


embedded image







102


embedded image







103


embedded image







104


embedded image







105


embedded image







106


embedded image







107


embedded image







108


embedded image







109


embedded image







110


embedded image







111


embedded image







112


embedded image







113


embedded image







114


embedded image







115


embedded image







116


embedded image







117


embedded image







118


embedded image







119


embedded image







120


embedded image







121


embedded image







122


embedded image







123


embedded image







124


embedded image







125


embedded image







126


embedded image







127


embedded image







128


embedded image







129


embedded image







130


embedded image







131


embedded image







132


embedded image







133


embedded image







134


embedded image







135


embedded image







136


embedded image







137


embedded image







138


embedded image







139


embedded image







140


embedded image







141


embedded image







142


embedded image







143


embedded image







144


embedded image







145


embedded image







146


embedded image







147


embedded image







148


embedded image







149


embedded image







150


embedded image







151


embedded image







152


embedded image







153


embedded image







154


embedded image







155


embedded image







156


embedded image







157


embedded image







158


embedded image







159


embedded image







160


embedded image







161


embedded image







162


embedded image







163


embedded image







164


embedded image







165


embedded image







166


embedded image







167


embedded image







168


embedded image







169


embedded image







170


embedded image







171


embedded image







172


embedded image







173


embedded image







174


embedded image







175


embedded image







176


embedded image







177


embedded image







178


embedded image







179


embedded image







180


embedded image







181


embedded image







182


embedded image







183


embedded image







184


embedded image







185


embedded image







186


embedded image







187


embedded image







188


embedded image







189


embedded image







190


embedded image







191


embedded image







192


embedded image







193


embedded image







194


embedded image







195


embedded image







196


embedded image







197


embedded image







198


embedded image







199


embedded image







200


embedded image







201


embedded image







202


embedded image







203


embedded image







204


embedded image







205


embedded image







206


embedded image







207


embedded image







208


embedded image







209


embedded image







210


embedded image







211


embedded image







212


embedded image







213


embedded image







214


embedded image







215


embedded image







216


embedded image







217


embedded image







218


embedded image







219


embedded image







220


embedded image







221


embedded image







222


embedded image







223


embedded image







224


embedded image







225


embedded image







226


embedded image







227


embedded image







228


embedded image







229


embedded image







230


embedded image







231


embedded image







232


embedded image







233


embedded image







234


embedded image







235


embedded image







236


embedded image







237


embedded image







238


embedded image







239


embedded image







240


embedded image







241


embedded image







242


embedded image







243


embedded image







244


embedded image







245


embedded image







246


embedded image







247


embedded image







248


embedded image







249


embedded image







250


embedded image







251


embedded image







252


embedded image







253


embedded image







254


embedded image







255


embedded image







256


embedded image







257


embedded image







258


embedded image







259


embedded image







260


embedded image







261


embedded image







262


embedded image







263


embedded image







264


embedded image







265


embedded image







266


embedded image







267


embedded image







268


embedded image







269


embedded image







270


embedded image







271


embedded image







272


embedded image







273


embedded image







274


embedded image







275


embedded image







276


embedded image







277


embedded image







278


embedded image







279


embedded image







280


embedded image







281


embedded image







282


embedded image







283


embedded image







284


embedded image







285


embedded image







286


embedded image







287


embedded image







288


embedded image







289


embedded image







290


embedded image







291


embedded image







292


embedded image







293


embedded image







294


embedded image







295


embedded image







296


embedded image







297


embedded image







298


embedded image







299


embedded image







300


embedded image







301


embedded image







302


embedded image







303


embedded image







304


embedded image







305


embedded image







306


embedded image







307


embedded image







308


embedded image







309


embedded image







310


embedded image







311


embedded image







312


embedded image







313


embedded image







314


embedded image







315


embedded image







316


embedded image







317


embedded image







318


embedded image







319


embedded image







320


embedded image







321


embedded image







322


embedded image







323


embedded image







324


embedded image







325


embedded image







326


embedded image







327


embedded image







328


embedded image







329


embedded image







330


embedded image







331


embedded image







332


embedded image







333


embedded image







334


embedded image







335


embedded image







336


embedded image







337


embedded image







338


embedded image







339


embedded image







340


embedded image







341


embedded image







342


embedded image







343


embedded image







344


embedded image







345


embedded image







346


embedded image







347


embedded image







348


embedded image







349


embedded image







350


embedded image







351


embedded image







352


embedded image







353


embedded image







354


embedded image







355


embedded image







356


embedded image







357


embedded image







358


embedded image







359


embedded image







360


embedded image







361


embedded image







362


embedded image







363


embedded image







364


embedded image







365


embedded image







366


embedded image







367


embedded image







368


embedded image







369


embedded image







370


embedded image







371


embedded image







372


embedded image







373


embedded image







374


embedded image







375


embedded image







376


embedded image







377


embedded image







378


embedded image







379


embedded image







380


embedded image







381


embedded image







382


embedded image







383


embedded image







384


embedded image







385


embedded image







386


embedded image







387


embedded image







388


embedded image







389


embedded image







390


embedded image







391


embedded image







392


embedded image







393


embedded image







394


embedded image







395


embedded image







397


embedded image







398


embedded image







399


embedded image







400


embedded image







401


embedded image







402


embedded image







403


embedded image







404


embedded image







405


embedded image







406


embedded image







407


embedded image







408


embedded image







409


embedded image







410


embedded image







411


embedded image







412


embedded image







413


embedded image







414


embedded image







415


embedded image







416


embedded image







417


embedded image







418


embedded image







419


embedded image







420


embedded image







421


embedded image







422


embedded image







423


embedded image







424


embedded image











Included herein are also methods for making compounds of Formula I or a compound of any one of the embodiments described herein comprising reacting




embedded image



with




embedded image



In some embodiments, the preceding methods comprise step (1) reacting




embedded image



with




embedded image



to give




embedded image



and step (2) reacting




embedded image



with




embedded image



In other embodiments, the preceding methods comprise step (1) reacting with




embedded image



with




embedded image



to give




embedded image



step (2) reacting




embedded image



with




embedded image



to give




embedded image



and step (3) reacting




embedded image



with




embedded image


Also included are methods for making compounds of Formula I or a compound of any one of the embodiments described herein comprising reacting




embedded image



with




embedded image


Also included are methods for making compounds of Formula I or a compound of any one of the embodiments described herein comprising reacting




embedded image



with




embedded image



In some embodiments, the preceding methods comprise step (1) reacting




embedded image



with




embedded image



to give




embedded image



and step (2) reacting




embedded image



with




embedded image


Also included are methods for making compounds of Formula I or a compound of any one of the embodiments described herein comprising reacting




embedded image



with




embedded image



In other embodiments, the preceding methods comprise step (1) converting




embedded image



with




embedded image



under basic conditions to give




embedded image



step (2) reacting




embedded image



with PCl5, POCl3 to give




embedded image



step (3) reacting




embedded image



with




embedded image



to give




embedded image



and step (4) reacting




embedded image



with




embedded image



In other embodiments, the preceding methods comprise step (1) converting




embedded image



with




embedded image



under basic conditions to give




embedded image



step (2) reacting




embedded image



with PCl5, POCl3 to give




embedded image



step (3) reacting




embedded image



with




embedded image



to give




embedded image



and step (4) reacting




embedded image



with




embedded image



In other embodiments, the preceding methods comprise step (1) converting




embedded image



with




embedded image



under basic conditions to give




embedded image



step (2) reacting




embedded image



with PCl5, POCl3 to give




embedded image



step (3) reacting




embedded image



with




embedded image



to give




embedded image



and step (4) reacting




embedded image



with




embedded image



In other embodiments, the method comprises the step of reacting




embedded image



with




embedded image



under basic conditions to give




embedded image



wherein ring G is a carbocyclyl or heterocyclyl ring. In other embodiments, the method comprises the steps of 1) reacting




embedded image



with




embedded image



to give




embedded image



and 2) reacting




embedded image



with




embedded image



to give




embedded image



wherein ring B is an aryl or heteroaryl ring. In other embodiments, the method comprises the step of reacting




embedded image



with




embedded image



under basic conditions to give




embedded image



wherein ring B is an aryl or heteroaryl ring, and ring G is a carbocyclyl or heterocyclyl ring. In other embodiments, the method comprises the step of reacting




embedded image



with ring A to form




embedded image


The compounds of one aspect of this invention may contain one or more asymmetric centers and thus occur as racemates, racemic mixtures, scalemic mixtures, and diastereomeric mixtures, as well as single enantiomers or individual stereoisomers that are substantially free from another possible enantiomer or stereoisomer. The term “substantially free of other stereoisomers” as used herein means a preparation enriched in a compound having a selected stereochemistry at one or more selected stereocenters by at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%. The term “enriched” means that at least the designated percentage of a preparation is the compound having a selected stereochemistry at one or more selected stereocenters. Methods of obtaining or synthesizing an individual enantiomer or stereoisomer for a given compound are known in the art and may be applied as practicable to final compounds or to starting material or intermediates.


In certain embodiments, the compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId, is enriched for a structure or structures having a selected stereochemistry at one or more carbon atoms. For example, the compound is enriched in the specific stereoisomer by at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.


The compounds of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId may also comprise one or more isotopic substitutions. For example, H may be in any isotopic form, including 1H, 2H (D or deuterium), and 3H (T or tritium); C may be in any isotopic form, including 11C, 12C, 13C, and 14C; N may be in any isotopic form, including 13N, 14N and 15N; O may be in any isotopic form, including 15O, 16O and 18O; F may be in any isotopic form, including 18F; and the like. For example, the compound is enriched in a specific isotopic form of H, C, N, O and/or F by at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.


Unless otherwise indicated when a disclosed compound is named or depicted by a structure without specifying the stereochemistry and has one or more chiral centers, it is understood to represent all possible stereoisomers of the compound.


The compounds of one aspect of this invention may also be represented in multiple tautomeric forms, in such instances, one aspect of the invention expressly includes all tautomeric forms of the compounds described herein, even though only a single tautomeric form may be represented (e.g., alkylation of a ring system may result in alkylation at multiple sites, one aspect of the invention expressly includes all such reaction products; and keto-enol tautomers). All such isomeric forms of such compounds are expressly included herein.


It may be convenient or desirable to prepare, purify, and/or handle a corresponding salt of the active compound, for example, a pharmaceutically-acceptable salt. Examples of pharmaceutically acceptable salts are discussed in Berge et al., 1977, “Pharmaceutically Acceptable Salts.” J. Pharm. Sci. Vol. 66, pp. 1-19.


For example, if the compound is anionic, or has a functional group which may be anionic (e.g., —COOH may be —COO), then a salt may be formed with a suitable cation. Examples of suitable inorganic cations include, but are not limited to, alkali metal ions such as Na+ and K+, alkaline earth cations such as Ca2+ and Mg2+, and other cations such as Al3+. Examples of suitable organic cations include, but are not limited to, ammonium ion (i.e., NH4+) and substituted ammonium ions (e.g., NH3R+, NH2R2+, NHR3+, NR4+). Examples of some suitable substituted ammonium ions are those derived from: ethylamine, diethylamine, dicyclohexylamine, triethylamine, butylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine, benzylamine, phenylbenzylamine, choline, meglumine, and tromethamine, as well as amino acids, such as lysine and arginine. An example of a common quaternary ammonium ion is N(CH3)4+.


If the compound is cationic, or has a functional group that may be cationic (e.g., —NH2 may be —NH3+), then a salt may be formed with a suitable anion. Examples of suitable inorganic anions include, but are not limited to, those derived from the following inorganic acids: hydrochloric, hydrobromic, hydroiodic, sulfuric, sulfurous, nitric, nitrous, phosphoric, and phosphorous. Examples of suitable organic anions include, but are not limited to, those derived from the following organic acids: 2-acetyoxybenzoic, acetic, ascorbic, aspartic, benzoic, camphorsulfonic, cinnamic, citric, edetic, ethanedisulfonic, ethanesulfonic, fumaric, glucoheptonic, gluconic, glutamic, glycolic, hydroxymaleic, hydroxynaphthalene carboxylic, isethionic, lactic, lactobionic, lauric, maleic, malic, methanesulfonic, mucic, oleic, oxalic, palmitic, pamoic, pantothenic, phenylacetic, phenylsulfonic, propionic, pyruvic, salicylic, stearic, succinic, sulfanilic, tartaric, toluenesulfonic, and valeric. Mesylates of each compound in Table 1 are explicitly included herein. Examples of suitable polymeric organic anions include, but are not limited to, those derived from the following polymeric acids: tannic acid, carboxymethyl cellulose.


The compounds provided herein therefore include the compounds themselves, as well as their salts, hydrates and their prodrugs, if applicable. The compounds provided herein may be modified and converted to prodrugs by appending appropriate functionalities to enhance selected biological properties, e.g., targeting to a particular tissue. Such modifications (i.e., prodrugs) are known in the art and include those which increase biological penetration into a given biological compartment (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism and alter rate of excretion. Examples of prodrugs include esters (e.g., phosphates, amino acid (e.g., valine) esters), carbamates and other pharmaceutically acceptable derivatives, which, upon administration to a subject, are capable of providing active compounds. Calcium and sodium phosphates of each compound in Table 1, if applicable, are explicitly included herein. Amino acid (e.g., valine) esters of each compound in Table 1, if applicable, are explicitly included herein.


Compositions and Routes of Administration


The compounds utilized in the methods described herein may be formulated together with a pharmaceutically acceptable carrier or adjuvant into pharmaceutically acceptable compositions prior to be administered to a subject. In another embodiment, such pharmaceutically acceptable compositions further comprise additional therapeutic agents in amounts effective for achieving a modulation of disease or disease symptoms, including those described herein.


The term “pharmaceutically acceptable carrier or adjuvant” refers to a carrier or adjuvant that may be administered to a subject, together with a compound of one aspect of this invention, and which does not destroy the pharmacological activity thereof and is nontoxic when administered in doses sufficient to deliver a therapeutic amount of the compound.


Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions of one aspect of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, self-emulsifying drug delivery systems (SEDDS) such as d-α-tocopherol polyethyleneglycol 1000 succinate, surfactants used in pharmaceutical dosage forms such as Tweens or other similar polymeric delivery matrices, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat. Cyclodextrins such as α-, β-, and γ-cyclodextrin, or chemically modified derivatives such as hydroxyalkylcyclodextrins, including 2- and 3-hydroxypropyl-β-cyclodextrins, or other solubilized derivatives may also be advantageously used to enhance delivery of compounds of the formulae described herein.


The pharmaceutical compositions of one aspect of this invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir, preferably by oral administration or administration by injection. The pharmaceutical compositions of one aspect of this invention may contain any conventional non-toxic pharmaceutically-acceptable carriers, adjuvants or vehicles. In some cases, the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form. The term parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.


The pharmaceutical compositions may be in the form of a sterile injectable preparation, for example, as a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or diglycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, or carboxymethyl cellulose or similar dispersing agents which are commonly used in the formulation of pharmaceutically acceptable dosage forms such as emulsions and or suspensions. Other commonly used surfactants such as Tweens or Spans and/or other similar emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation.


The pharmaceutical compositions of one aspect of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, emulsions and aqueous suspensions, dispersions and solutions. In the case of tablets for oral use, carriers which are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions and/or emulsions are administered orally, the active ingredient may be suspended or dissolved in an oily phase is combined with emulsifying and/or suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.


The pharmaceutical compositions of one aspect of this invention may also be administered in the form of suppositories for rectal administration. These compositions can be prepared by mixing a compound of one aspect of this invention with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components. Such materials include, but are not limited to, cocoa butter, beeswax and polyethylene glycols.


Topical administration of the pharmaceutical compositions of one aspect of this invention is useful when the desired treatment involves areas or organs readily accessible by topical application. For application topically to the skin, the pharmaceutical composition should be formulated with a suitable ointment containing the active components suspended or dissolved in a carrier. Carriers for topical administration of the compounds of one aspect of this invention include, but are not limited to, mineral oil, liquid petroleum, white petroleum, propylene glycol, polyoxyethylene polyoxypropylene compound, emulsifying wax and water. Alternatively, the pharmaceutical composition can be formulated with a suitable lotion or cream containing the active compound suspended or dissolved in a carrier with suitable emulsifying agents. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water. The pharmaceutical compositions of one aspect of this invention may also be topically applied to the lower intestinal tract by rectal suppository formulation or in a suitable enema formulation. Topically-transdermal patches are also included in one aspect of this invention.


The pharmaceutical compositions of one aspect of this invention may be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.


When the compositions of one aspect of this invention comprise a combination of a compound of the formulae described herein and one or more additional therapeutic or prophylactic agents, both the compound and the additional agent should be present at dosage levels of between about 1 to 100%, and more preferably between about 5 to 95% of the dosage normally administered in a monotherapy regimen. The additional agents may be administered separately, as part of a multiple dose regimen, from the compounds of one aspect of this invention. Alternatively, those agents may be part of a single dosage form, mixed together with the compounds of one aspect of this invention in a single composition.


The compounds described herein can, for example, be administered by injection, intravenously, intraarterially, subdermally, intraperitoneally, intramuscularly, or subcutaneously; or orally, buccally, nasally, transmucosally, topically, in an ophthalmic preparation, or by inhalation, with a dosage ranging from about 0.5 to about 100 mg/kg of body weight, alternatively dosages between 1 mg and 1000 mg/dose, every 4 to 120 hours, or according to the requirements of the particular drug. The methods herein contemplate administration of an effective amount of compound or compound composition to achieve the desired or stated effect. Typically, the pharmaceutical compositions of one aspect of this invention will be administered from about 1 to about 6 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy. The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. A typical preparation will contain from about 5% to about 95% active compound (w/w). Alternatively, such preparations contain from about 20% to about 80% active compound.


Lower or higher doses than those recited above may be required. Specific dosage and treatment regimens for any particular subject will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health status, sex, diet, time of administration, rate of excretion, drug combination, the severity and course of the disease, condition or symptoms, the subject's disposition to the disease, condition or symptoms, and the judgment of the treating physician.


Upon improvement of a subject's condition, a maintenance dose of a compound, composition or combination of one aspect of this invention may be administered, if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained when the symptoms have been alleviated to the desired level. Subjects may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.


The pharmaceutical compositions described above comprising a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the embodiments herein, may further comprise another therapeutic agent useful for treating cancer.


Methods of Use


Provided is a method for inhibiting mutant IDH1 activity comprising contacting a subject in need thereof with a compound (including its tautomers and/or isotopologues) of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId, or a compound described in any one of the embodiments herein, or a pharmaceutically acceptable salt thereof. In one embodiment, the cancer to be treated is characterized by a mutant allele of IDH1 wherein the IDH1 mutation results in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α-ketoglutarate to R(−)-2-hydroxyglutarate in a subject. In one aspect of this embodiment, the mutant IDH1 has an R132X mutation. In one aspect of this embodiment, the R132X mutation is selected from R132H, R132C, R132L, R132V, R132S and R132G. In another aspect, the R132X mutation is R132H or R132C. In yet another aspect, the R132X mutation is R132H.


In one embodiment, the cancer to be treated is characterized by a mutant allele of IDH1 wherein the IDH1 mutation results in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α-ketoglutarate to R(−)-2-hydroxyglutarate in a patient. In one aspect of this embodiment, the IDH1 mutation is an R132X mutation. In another aspect of this embodiment, the R132X mutation is selected from R132H, R132C, R132L, R132V, R132S and R132G. In another aspect, the R132X mutation is R132 H or R132C. A cancer can be analyzed by sequencing cell samples to determine the presence and specific nature of (e.g., the changed amino acid present at) a mutation at amino acid 132 of IDH1.


Without being bound by theory, applicants believe that mutant alleles of IDH1 wherein the IDH1 mutation results in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α-ketoglutarate to R(−)-2-hydroxyglutarate, and in particular R132H mutations of IDH1, characterize a subset of all types of cancers, without regard to their cellular nature or location in the body. Thus, the compounds and methods of this invention are useful to treat any type of cancer that is characterized by the presence of a mutant allele of IDH1 imparting such activity and in particular an IDH1 R132H or R132C mutation.


In one aspect of this embodiment, the efficacy of cancer treatment is monitored by measuring the levels of 2HG in the subject. Typically levels of 2HG are measured prior to treatment, wherein an elevated level is indicated for the use of the compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId, or a compound described in any one of the embodiments described herein to treat the cancer. Once the elevated levels are established, the level of 2HG is determined during the course of and/or following termination of treatment to establish efficacy. In certain embodiments, the level of 2HG is only determined during the course of and/or following termination of treatment. A reduction of 2HG levels during the course of treatment and following treatment is indicative of efficacy. Similarly, a determination that 2HG levels are not elevated during the course of or following treatment is also indicative of efficacy. Typically, the these 2HG measurements will be utilized together with other well-known determinations of efficacy of cancer treatment, such as reduction in number and size of tumors and/or other cancer-associated lesions, improvement in the general health of the subject, and alterations in other biomarkers that are associated with cancer treatment efficacy.


2HG can be detected in a sample by LC/MS. The sample is mixed 80:20 with methanol, and centrifuged at 3,000 rpm for 20 minutes at 4 degrees Celsius. The resulting supernatant can be collected and stored at −80 degrees Celsius prior to LC-MS/MS to assess 2-hydroxyglutarate levels. A variety of different liquid chromatography (LC) separation methods can be used. Each method can be coupled by negative electrospray ionization (ESI, −3.0 kV) to triple-quadrupole mass spectrometers operating in multiple reaction monitoring (MRM) mode, with MS parameters optimized on infused metabolite standard solutions. Metabolites can be separated by reversed phase chromatography using 10 mM tributyl-amine as an ion pairing agent in the aqueous mobile phase, according to a variant of a previously reported method (Luo et al. J Chromatogr A 1147, 153-64, 2007). One method allows resolution of TCA metabolites: t=0, 50% B; t=5, 95% B; t=7, 95% B; t=8, 0% B, where B refers to an organic mobile phase of 100% methanol. Another method is specific for 2-hydroxyglutarate, running a fast linear gradient from 50%-95% B (buffers as defined above) over 5 minutes. A Synergi Hydro-RP, 100 mm×2 mm, 2.1 μm particle size (Phenomonex) can be used as the column, as described above. Metabolites can be quantified by comparison of peak areas with pure metabolite standards at known concentration. Metabolite flux studies from 13C-glutamine can be performed as described, e.g., in Munger et al. Nat Biotechnol 26, 1179-86, 2008.


In one embodiment 2HG is directly evaluated.


In another embodiment a derivative of 2HG formed in process of performing the analytic method is evaluated. By way of example such a derivative can be a derivative formed in MS analysis. Derivatives can include a salt adduct, e.g., a Na adduct, a hydration variant, or a hydration variant which is also a salt adduct, e.g., a Na adduct, e.g., as formed in MS analysis.


In another embodiment a metabolic derivative of 2HG is evaluated. Examples include species that build up or are elevated, or reduced, as a result of the presence of 2HG, such as glutarate or glutamate that will be correlated to 2HG, e.g., R-2HG.


Exemplary 2HG derivatives include dehydrated derivatives such as the compounds provided below or a salt adduct thereof:




embedded image


In one embodiment the cancer is a tumor wherein at least 30, 40, 50, 60, 70, 80 or 90% of the tumor cells carry an IDH1 mutation, and in particular an IDH1 R132H or R132C mutation, at the time of diagnosis or treatment.


IDH1 R132X mutations are known to occur in certain types of cancers as indicated in Table 2, below.









TABLE 2







IDH mutations associated with certain cancers










IDH1 R132X



Cancer Type
Mutation
Tumor Type





brain tumors
R132H
primary tumor



R132C
primary tumor



R132S
primary tumor



R132G
primary tumor



R132L
primary tumor



R132V
primary tumor


fibrosarcoma
R132C
HT1080 fibrosarcoma




cell line


Acute Myeloid Leukemia
R132H
primary tumor


(AML)
R132G
primary tumor



R132C
primary tumor


Prostate cancer
R132H
primary tumor



R132C
primary tumor


Acute lymphoblastic leukemia
R132C
primary tumor


(ALL)


paragangliomas
R132C
primary tumor









IDH1 R132H mutations have been identified in glioblastoma, acute myelogenous leukemia, sarcoma, melanoma, non-small cell lung cancer, cholangiocarcinomas, chondrosarcoma, myelodysplastic syndromes (MDS), myeloproliferative neoplasm (MPN), colon cancer, and angio-immunoblastic non-Hodgkin's lymphoma (NHL). Accordingly, in one embodiment, the methods described herein are used to treat glioma (glioblastoma), acute myelogenous leukemia, sarcoma, melanoma, non-small cell lung cancer (NSCLC), cholangiocarcinomas, chondrosarcoma, myelodysplastic syndromes (MDS), myeloproliferative neoplasm (MPN), colon cancer, or angio-immunoblastic non-Hodgkin's lymphoma (NHL) in a patient.


In another embodiment, the methods described herein are used to treat glioma (glioblastoma), acute myelogenous leukemia, sarcoma, melanoma, non-small cell lung cancer (NSCLC), cholangiocarcinomas (e.g., intrahepatic cholangiocarcinoma (IHCC)), chondrosarcoma, myelodysplastic syndromes (MDS), myeloproliferative neoplasm (MPN), prostate cancer, chronic myelomonocytic leukemia (CMML), B-acute lymphoblastic leukemias (B-ALL), B-acute lymphoblastic leukemias (B-ALL), myeloid sarcoma, multiple myeloma, lymphoma colon cancer, or angio-immunoblastic non-Hodgkin's lymphoma (NHL) in a patient.


In another embodiment, the advanced hematologic malignancy to be treated is lymphoma (e.g., Non-Hodgkin lymphoma (NHL) such B-cell lymphoma (e.g., Burkitt lymphoma, chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), diffuse large B-cell lymphoma, follicular lymphoma, immunoblastic large cell lymphoma, precursor B-lymphoblastic lymphoma, and mantle cell lymphoma) and T-cell lymphoma (e.g., mycosis fungoides, anaplastic large cell lymphoma, and precursor T-lymphoblastic lymphoma).


Accordingly in one embodiment, the cancer is a cancer selected from any one of the cancer types listed in Table 2, and the IDH R132X mutation is one or more of the IDH1 R132X mutations listed in Table 2 for that particular cancer type.


Treatment methods described herein can additionally comprise various evaluation steps prior to and/or following treatment with a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the embodiments described herein.


In one embodiment, prior to and/or after treatment with a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the embodiments described herein, the method further comprises the step of evaluating the growth, size, weight, invasiveness, stage and/or other phenotype of the cancer.


In one embodiment, prior to and/or after treatment with a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the embodiments described herein, the method further comprises the step of evaluating the IDH1 genotype of the cancer. This may be achieved by ordinary methods in the art, such as DNA sequencing, immuno analysis, and/or evaluation of the presence, distribution or level of 2HG.


In one embodiment, prior to and/or after treatment with a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the embodiments described herein, the method further comprises the step of determining the 2HG level in the subject. This may be achieved by spectroscopic analysis, e.g., magnetic resonance-based analysis, e.g., MRI and/or MRS measurement, sample analysis of bodily fluid, such as serum or spinal cord fluid analysis, or by analysis of surgical material, e.g., by mass-spectroscopy.


Also provided is a method for inhibiting a mutant IDH2 activity comprising contacting a subject in need thereof with a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId, a compound described in any one of the embodiments herein, or a pharmaceutically acceptable salt thereof. In one embodiment, the cancer to be treated is characterized by a mutant allele of IDH2 wherein the IDH2 mutation results in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α-ketoglutarate to R(−)-2-hydroxyglutarate in a subject. In one aspect of this embodiment, the mutant IDH2 has an R140X mutation. In another aspect of this embodiment, the R140X mutation is a R140Q mutation. In another aspect of this embodiment, the R140X mutation is a R140W mutation. In another aspect of this embodiment, the R140X mutation is a R140L mutation. In another aspect of this embodiment, the mutant IDH2 has an R172X mutation. In another aspect of this embodiment, the R172X mutation is a R172K mutation. In another aspect of this embodiment, the R172X mutation is a R172G mutation.


Also provided are methods of treating a cancer characterized by the presence of a mutant allele of IDH2 comprising the step of administering to subject in need thereof (a) a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the embodiments herein, or a pharmaceutically acceptable salt thereof, or (b) a pharmaceutical composition comprising (a) and a pharmaceutically acceptable carrier.


In one embodiment, the cancer to be treated is characterized by a mutant allele of IDH2 wherein the IDH2 mutation results in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α-ketoglutarate to R(−)-2-hydroxyglutarate in a patient. In one aspect of this embodiment, the mutant IDH2 has an R140X mutation. In another aspect of this embodiment, the R140X mutation is a R140Q mutation. In another aspect of this embodiment, the R140X mutation is a R140W mutation. In another aspect of this embodiment, the R140X mutation is a R140L mutation. In another aspect of this embodiment, the mutant IDH2 has an R172X mutation. In another aspect of this embodiment, the R172X mutation is a R172K mutation. In another aspect of this embodiment, the R172X mutation is a R172G mutation. A cancer can be analyzed by sequencing cell samples to determine the presence and specific nature of (e.g., the changed amino acid present at) a mutation at amino acid 140 and/or 172 of IDH2.


Without being bound by theory, applicants believe that mutant alleles of IDH2 wherein the IDH2 mutation results in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α-ketoglutarate to R(−)-2-hydroxyglutarate, and in particular R140Q and/or R172K mutations of IDH2, characterize a subset of all types of cancers, without regard to their cellular nature or location in the body. Thus, the compounds and methods of one aspect of this invention are useful to treat any type of cancer that is characterized by the presence of a mutant allele of IDH2 imparting such activity and in particular an IDH2 R140Q and/or R172K mutation.


In one aspect of this embodiment, the efficacy of cancer treatment is monitored by measuring the levels of 2HG as described herein.


In one embodiment the cancer is a tumor wherein at least 30, 40, 50, 60, 70, 80 or 90% of the tumor cells carry an IDH2 mutation, and in particular an IDH2 R140Q, R140W, or R140L and/or R172K or R172G mutation, at the time of diagnosis or treatment.


In another embodiment, one aspect of the invention provides a method of treating a cancer selected from glioblastoma (glioma), myelodysplastic syndrome (MDS), myeloproliferative neoplasm (MPN), acute myelogenous leukemia (AML), sarcoma, melanoma, non-small cell lung cancer, chondrosarcoma, cholangiocarcinomas or angioimmunoblastic lymphoma in a patient by administering to the patient a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId in an amount effective to treat the cancer. In a more specific embodiment the cancer to be treated is glioma, myelodysplastic syndrome (MDS), myeloproliferative neoplasm (MPN), acute myelogenous leukemia (AML), melanoma, chondrosarcoma, or angioimmunoblastic non-Hodgkin's lymphoma (NHL).


2HG is known to accumulate in the inherited metabolic disorder 2-hydroxyglutaric aciduria. This disease is caused by deficiency in the enzyme 2-hydroxyglutarate dehydrogenase, which converts 2HG to α-KG (Struys, E. A. et al. Am J Hum Genet 76, 358-60 (2005)). Patients with 2-hydroxyglutarate dehydrogenase deficiencies accumulate 2HG in the brain as assessed by MRI and CSF analysis, develop leukoencephalopathy, and have an increased risk of developing brain tumors (Aghili, M., Zahedi, F. & Rafiee, J Neurooncol 91, 233-6 (2009); Kolker, S., Mayatepek, E. & Hoffmann, G. F. Neuropediatrics 33, 225-31 (2002); Wajner, M., Latini, A., Wyse, A. T. & Dutra-Filho, C. S. J Inherit Metab Dis 27, 427-48 (2004)). Furthermore, elevated brain levels of 2HG result in increased ROS levels (Kolker, S. et al. Eur J Neurosci 16, 21-8 (2002); Latini, A. et al. Eur J Neurosci 17, 2017-22 (2003)), potentially contributing to an increased risk of cancer. The ability of 2HG to act as an NMDA receptor agonist may contribute to this effect (Kolker, S. et al. Eur J Neurosci 16, 21-8 (2002)). 2HG may also be toxic to cells by competitively inhibiting glutamate and/or αKG utilizing enzymes. These include transaminases which allow utilization of glutamate nitrogen for amino and nucleic acid biosynthesis, and αKG-dependent prolyl hydroxylases such as those which regulate HIF1-alpha levels.


Thus, according to another embodiment, one aspect of the invention provides a method of treating 2-hydroxyglutaric aciduria, particularly D-2-hydroxyglutaric aciduria, in a patient by administering to the patient a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the embodiments described herein.


Also provided are methods of treating a disease selected from Maffucci syndrome and Ollier disease, characterized by the presence of a mutant allele of IDH1 comprising the step of administering to subject in need thereof (a) a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId, or a compound described in any one of the embodiments herein, or a pharmaceutically acceptable salt thereof, or (b) a pharmaceutical composition comprising (a) and a pharmaceutically acceptable carrier.


Treatment methods described herein can additionally comprise various evaluation steps prior to and/or following treatment with a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the embodiments described herein.


In one embodiment, prior to and/or after treatment with a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the embodiments described herein, the method further comprises the step of evaluating the growth, size, weight, invasiveness, stage and/or other phenotype of the cancer.


In one embodiment, prior to and/or after treatment with a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the embodiments described herein, the method further comprises the step of evaluating the IDH2 genotype of the cancer. This may be achieved by ordinary methods in the art, such as DNA sequencing, immuno analysis, and/or evaluation of the presence, distribution or level of 2HG. In one embodiment, prior to and/or after treatment with a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the embodiments described herein, the method further comprises the step of determining the 2HG level in the subject. This may be achieved by spectroscopic analysis, e.g., magnetic resonance-based analysis, e.g., MRI and/or MRS measurement, sample analysis of bodily fluid, such as serum or spinal cord fluid analysis, or by analysis of surgical material, e.g., by mass-spectroscopy.


Combination Therapies


In some embodiments, the methods described herein comprise the additional step of co-administering to a subject in need thereof a second therapy e.g., an additional cancer therapeutic agent or an additional cancer treatment. Exemplary additional cancer therapeutic agents include for example, chemotherapy, targeted therapy, antibody therapies, immunotherapy, and hormonal therapy. Additional cancer treatments include, for example: surgery, and radiation therapy. Examples of each of these treatments are provided below.


The term “co-administering” as used herein with respect to an additional cancer therapeutic agents means that the additional cancer therapeutic agent may be administered together with a compound of one aspect of this invention as part of a single dosage form (such as a composition of one aspect of this invention comprising a compound of one aspect of the invention and an second therapeutic agent as described above) or as separate, multiple dosage forms. Alternatively, the additional cancer therapeutic agent may be administered prior to, consecutively with, or following the administration of a compound of one aspect of this invention. In such combination therapy treatment, both the compounds of one aspect of this invention and the second therapeutic agent(s) are administered by conventional methods. The administration of a composition of one aspect of this invention, comprising both a compound of one aspect of the invention and a second therapeutic agent, to a subject does not preclude the separate administration of that same therapeutic agent, any other second therapeutic agent or any compound of one aspect of this invention to said subject at another time during a course of treatment. The term “co-administering” as used herein with respect to an additional cancer treatment means that the additional cancer treatment may occur prior to, consecutively with, concurrently with or following the administration of a compound of one aspect of this invention.


In some embodiments, the additional cancer therapeutic agent is a chemotherapy agent. Examples of chemotherapeutic agents used in cancer therapy include, for example, antimetabolites (e.g., folic acid, purine, and pyrimidine derivatives), alkylating agents (e.g., nitrogen mustards, nitrosoureas, platinum, alkyl sulfonates, hydrazines, triazenes, aziridines, spindle poison, cytotoxic agents, topoisomerase inhibitors and others), and hypomethylating agents (e.g., decitabine (5-aza-deoxycytidine), zebularine, isothiocyanates, azacitidine (5-azacytidine), 5-flouro-2′-deoxycytidine, 5,6-dihydro-5-azacytidine and others). Exemplary agents include Aclarubicin, Actinomycin, Alitretinoin, Altretamine, Aminopterin, Aminolevulinic acid, Amrubicin, Amsacrine, Anagrelide, Arsenic trioxide, Asparaginase, Atrasentan, Belotecan, Bexarotene, bendamustine, Bleomycin, Bortezomib, Busulfan, Camptothecin, Capecitabine, Carboplatin, Carboquone, Carmofur, Carmustine, Celecoxib, Chlorambucil, Chlormethine, Cisplatin, Cladribine, Clofarabine, Crisantaspase, Cyclophosphamide, Cytarabine, Dacarbazine, Dactinomycin, Daunorubicin, Decitabine, Demecolcine, Docetaxel, Doxorubicin, Efaproxiral, Elesclomol, Elsamitrucin, Enocitabine, Epirubicin, Estramustine, Etoglucid, Etoposide, Floxuridine, Fludarabine, Fluorouracil (5FU), Fotemustine, Gemcitabine, Gliadel implants, Hydroxycarbamide, Hydroxyurea, Idarubicin, Ifosfamide, Irinotecan, Irofulven, Ixabepilone, Larotaxel, Leucovorin, Liposomal doxorubicin, Liposomal daunorubicin, Lonidamine, Lomustine, Lucanthone, Mannosulfan, Masoprocol, Melphalan, Mercaptopurine, Mesna, Methotrexate, Methyl aminolevulinate, Mitobronitol, Mitoguazone, Mitotane, Mitomycin, Mitoxantrone, Nedaplatin, Nimustine, Oblimersen, Omacetaxine, Ortataxel, Oxaliplatin, Paclitaxel, Pegaspargase, Pemetrexed, Pentostatin, Pirarubicin, Pixantrone, Plicamycin, Porfimer sodium, Prednimustine, Procarbazine, Raltitrexed, Ranimustine, Rubitecan, Sapacitabine, Semustine, Sitimagene ceradenovec, Strataplatin, Streptozocin, Talaporfin, Tegafur-uracil, Temoporfin, Temozolomide, Teniposide, Tesetaxel, Testolactone, Tetranitrate, Thiotepa, Tiazofurine, Tioguanine, Tipifarnib, Topotecan, Trabectedin, Triaziquone, Triethylenemelamine, Triplatin, Tretinoin, Treosulfan, Trofosfamide, Uramustine, Valrubicin, Verteporfin, Vinblastine, Vincristine, Vindesine, Vinflunine, Vinorelbine, Vorinostat, Zorubicin, and other cytostatic or cytotoxic agents described herein. Because some drugs work better together than alone, two or more drugs are often given at the same time. Often, two or more chemotherapy agents are used as combination chemotherapy. In some embodiments, the additional cancer therapeutic agent is a differentiation agent. Such differentiation agent includes retinoids (such as all-trans-retinoic acid (ATRA), 9-cis retinoic acid, 13-cis-retinoic acid (13-cRA) and 4-hydroxy-phenretinamide (4-HPR)); arsenic trioxide; histone deacetylase inhibitors HDACs (such as azacytidine (Vidaza) and butyrates (e.g., sodium phenylbutyrate)); hybrid polar compounds (such as hexamethylene bisacetamide ((HMBA)); vitamin D; and cytokines (such as colony-stimulating factors including G-CSF and GM-CSF, and interferons).


In some embodiments the additional cancer therapeutic agent is a targeted therapy agent. Targeted therapy constitutes the use of agents specific for the deregulated proteins of cancer cells. Small molecule targeted therapy drugs are generally inhibitors of enzymatic domains on mutated, overexpressed, or otherwise critical proteins within the cancer cell. Prominent examples are the tyrosine kinase inhibitors such as Axitinib, Bosutinib, Cediranib, dasatinib, erlotinib, imatinib, gefitinib, lapatinib, Lestaurtinib, Nilotinib, Semaxanib, Sorafenib, Sunitinib, and Vandetanib, and also cyclin-dependent kinase inhibitors such as Alvocidib and Seliciclib. Monoclonal antibody therapy is another strategy in which the therapeutic agent is an antibody which specifically binds to a protein on the surface of the cancer cells. Examples include the anti-HER2/neu antibody trastuzumab (HERCEPTIN®) typically used in breast cancer, and the anti-CD20 antibody rituximab and Tositumomab typically used in a variety of B-cell malignancies. Other exemplary antibodies include Cetuximab, Panitumumab, Trastuzumab, Alemtuzumab, Bevacizumab, Edrecolomab, and Gemtuzumab. Exemplary fusion proteins include Aflibercept and Denileukin diftitox. In some embodiments, the targeted therapy can be used in combination with a compound described herein, e.g., a biguanide such as metformin or phenformin, preferably phenformin.


Targeted therapy can also involve small peptides as “homing devices” which can bind to cell surface receptors or affected extracellular matrix surrounding the tumor. Radionuclides which are attached to these peptides (e.g., RGDs) eventually kill the cancer cell if the nuclide decays in the vicinity of the cell. An example of such therapy includes BEXXAR®.


In some embodiments, the additional cancer therapeutic agent is an immunotherapy agent. Cancer immunotherapy refers to a diverse set of therapeutic strategies designed to induce the subject's own immune system to fight the tumor. Contemporary methods for generating an immune response against tumors include intravesicular BCG immunotherapy for superficial bladder cancer, and use of interferons and other cytokines to induce an immune response in renal cell carcinoma and melanoma subjects.


Allogeneic hematopoietic stem cell transplantation can be considered a form of immunotherapy, since the donor's immune cells will often attack the tumor in a graft-versus-tumor effect. In some embodiments, the immunotherapy agents can be used in combination with a compound or composition described herein.


In some embodiments, the additional cancer therapeutic agent is a hormonal therapy agent. The growth of some cancers can be inhibited by providing or blocking certain hormones. Common examples of hormone-sensitive tumors include certain types of breast and prostate cancers. Removing or blocking estrogen or testosterone is often an important additional treatment. In certain cancers, administration of hormone agonists, such as progestogens may be therapeutically beneficial. In some embodiments, the hormonal therapy agents can be used in combination with a compound or a composition described herein.


Other possible additional therapeutic modalities include imatinib, gene therapy, peptide and dendritic cell vaccines, synthetic chlorotoxins, and radiolabeled drugs and antibodies.


EXAMPLES

General Experimental Notes:


In the following examples, the reagents (chemicals) were purchased from commercial sources (such as Alfa, Acros, Sigma Aldrich, TCI and Shanghai Chemical Reagent Company), and used without further purification. Nuclear magnetic resonance (NMR) spectra were obtained on a Brucker AMX-400 NMR (Brucker, Switzerland). Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Mass spectra were given with electrospray ionization (ESI) from a Waters LCT TOF Mass Spectrometer (Waters, USA) or Shimadzu LCMS-2020 Mass Spectrometer (Shimadzu, Japan). Microwave reactions were run on an Initiator 2.5 Microwave Synthesizer (Biotage, Sweden).


For exemplary compounds disclosed in this section, the specification of a stereoisomer (e.g., an (R) or (S) stereoisomer) indicates a preparation of that compound such that the compound is enriched at the specified stereocenter by at least about 90%, 95%, 96%, 97%, 98%, or 99%. The chemical name of each of the exemplary compound described below is generated by ChemDraw software.


ABBREVIATIONS LIST

General




  • anhy. anhydrous

  • aq. aqueous

  • min minute(s)

  • hrs hours

  • mL milliliter

  • mmol millimole(s)

  • mol mole(s)

  • MS mass spectrometry

  • NMR nuclear magnetic resonance

  • TLC thin layer chromatography

  • HPLC high-performance liquid chromatography

  • satd. saturated


    Spectrum

  • Hz hertz

  • δ chemical shift

  • J coupling constant

  • s singlet

  • d doublet

  • t triplet

  • q quartet

  • m multiplet

  • br broad

  • qd quartet of doublets

  • dquin doublet of quintets

  • dd doublet of doublets

  • dt doublet of triplets


    Solvents and Reagents

  • DAST diethylaminosulfurtrifluoride

  • CHCl3 chloroform

  • DCM dichloromethane

  • DMF dimethylformamide

  • Et2O diethyl ether

  • EtOH ethyl alcohol

  • EtOAc ethyl acetate

  • MeOH methyl alcohol

  • MeCN acetonitrile

  • PE petroleum ether

  • THF tetrahydrofuran

  • DMSO dimethyl sulfoxide

  • AcOH acetic acid

  • HCl hydrochloric acid

  • H2SO4 sulfuric acid

  • NH4Cl ammonium chloride

  • KOH potassium hydroxide

  • NaOH sodium hydroxide

  • K2CO3 potassium carbonate

  • Na2CO3 sodium carbonate

  • TFA trifluoroacetic acid

  • Na2SO4 sodium sulfate

  • NaBH4 sodium borohydride

  • NaHCO3 sodium bicarbonate

  • NaHMDS sodium hexamethyldisilylamide

  • LiHMDS lithium hexamethyldisilylamide

  • LAH lithium aluminum hydride

  • NaBH4 sodium borohydride

  • LDA lithium diisopropylamide

  • Et3N triethylamine

  • Py pyridine

  • DMAP 4-(dimethylamino)pyridine

  • DIPEA N,N-diisopropylethylamine

  • Xphos 2-dicyclohexylphosphino-2,4,6-triisopropylbiphenyl

  • BINAP 2,2′-bis(diphenylphosphanyl)-1,1′-binaphthyl

  • dppf 1,1′-bis(diphenylphosphino)ferrocene

  • TBTU 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate

  • DPPA diphenylphosphoryl azide

  • NH4OH ammonium hydroxide

  • EDCI 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide

  • HOBt 1-hydroxybenzotriazole

  • Py Pyridine

  • Dppf 1,1′-bis(diphenylphosphino)ferrocene

  • HATU O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetra-methyluronium

  • BINAP 2,2′-bis(diphenylphosphanyl)-1,1′-binaphthyl



Preparation of Intermediates
Preparation of 1-phenylcyclopropanamine



embedded image


Ethylmagnesium bromide (48.5 mL, 146 mmol) was added dropwise over 30 min to a solution of benzonitrile (5 g, 48 mmol, 3 eq) and titanium tetraisopropanolate (21.5 mL, 73 mmol, 1.5 eq) in dry THF (140 mL) at −70° C. The solution was stirred at r.t. for 1.5 hr, followed by dropwise addition of boron trifluorideetherate (15 mL, 121 mmol, 2.5 eq) over 15 min. The mixture was stirred at r.t. for another 1.5 hr followed by addition of 1N aq. HCl and Et2O. The resulting mixture was poured into 10% aq. NaOH, and extracted with Et2O. Combined organic layers were dried over anhydrous Na2SO4, and concentrated. The residue was purified by column chromatography using PE/EtOAc/NH3.H2O (4:1:0.1%) to afford the desired product. LC-MS: m/z 134.1 (M+H)+.


Preparation of 2-amino-2-methylpropanenitrile



embedded image


To a mixture of NH4Cl (4.9 g, 92.3 mmol) and acetone (7 mL, 92.3 mmol) in ammonium hydroxide (40 mL, 230.7 mmol) was added KCN (5 g, 76.9 mmol) at r.t. The reaction mixture was stirred at r.t for 3 days. The mixture was extracted with DCM (2×30 mL). Combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated to afford the desired product which was used directly in the next step without any further purification.


Preparation of 2-aminopropanenitrile



embedded image


To a mixture of NH4Cl (981 mg, 18.5 mmol), acetaldehyde (1 mL, 18.5 mmol) in ammonium hydroxide (3 mL) was added KCN (1 g, 15.4 mmol) at room temperature. The reaction mixture was stirred at r.t for 2 days. The mixture was extracted with DCM (2×30 mL). Combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated to afford the desired product which was used directly in the next step without any further purification.


Preparation of dicyclopropylmethanamine



embedded image


Step 1. Preparation of dicyclopropylmethanoneoxime

To a mixture of dicyclopropylmethanone (500 mg, 4.5 mmol) in pyridine (5 mL) was added hydroxylamine hydrochloride (469 mg, 6.75 mmol). The reaction mixture was stirred at 100° C. for 4 hr and cooled to r.t followed by addition of EtOAc. The resulting mixture was washed with 1 N aq. HCl and brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure to give the desired product which was used directly in the next step without any further purification.




embedded image


LC-MS: m/z 124.1 (M−H).


Step 2. Preparation of dicyclopropylmethanamine

To a cooled solution of dicyclopropylmethanoneoxime (550 mg, 4.4 mmol) in THF (5 mL) was added LiAlH4 (200 mg, 5.3 mmol). The mixture was then stirred at 80° C. for 6 hr and cooled to room temperature. The mixture was quenched by 1N aq.NaOH until gas evolution ceased and then filtered. The filtrate was extracted with EtOAc. Combined organic layers were dried over anhydrous Na2SO4, and concentrated under reduced pressure to give the desired product which was used directly in the next step without any further purification.




embedded image


LC-MS: m/z 112.1 (M+H)+.


Preparation of bicyclo[3.1.0]hexan-3-amine



embedded image


Step 1: Preparation of benzyl cyclopent-3-enylcarbamate

To a solution of cyclopent-3-enecarboxylic acid (5 g, 44.6 mmol, 1 eq) and DPPA (13.5 g, 49 mmol, 1.1 eq) in toluene (80 mL) was added Et3N (7.4 mL, 53.5 mmol, 1.2 eq) at r.t. The mixture was then stirred at reflux for 2 hr during which period a larger amount of nitrogen evolved. After BnOH (7 mL, 66.9 mmol, 1.5 eq) was added, the resulting mixture was stirred at 100° C. overnight and cooled to room temperature. After quenched with saturated aqueous NaHCO3 The resulting mixture was extracted with EtOAc. Combined organic layers were washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by flash chromatography using PE/EtOAc (5:1) as eluent to give the desired product.




embedded image


LC-MS: m/z 218.0 (M+H)+.


Step 2: Preparation of benzyl bicyclo[3.1.0]hexan-3-ylcarbamate

To a solution of benzyl cyclopent-3-enylcarbamate (1 g, 4.6 mmol, 1 eq) in anhydrous DCM at 0° C. under an atmosphere of nitrogen was added ZnEt2 (9.7 mL, 9.7 mmol, 2.1 eq), followed by dropwise addition of CH2I2 (0.78 mL, 9.7 mmol, 2.1 eq). The reaction mixture was warmed to room temperature and stirred for 4 hr. The resulting reaction mixture was quenched with brine and extracted with DCM. The organic layer was dried over anhydrous Na2SO4, and concentrated. The residue was purified by column chromatography using PE/EtOAc (5:1) as eluent to give the desired product.




embedded image


LC-MS: m/z 232.1 (M+H)+.


Step 3: Preparation of bicyclo[3.1.0]hexan-3-amine

To a solution of benzyl bicyclo[3.1.0]hexan-3-ylcarbamate (2 g) in MeOH (20 mL) at r.t. under an atmosphere of nitrogen was added Pd/C (0.2 g) in one portion. The resulting mixture was then stirred under a hydrogen balloon overnight. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure to give the desired product which was used directly in the next step without any further purification.




embedded image


LC-MS: m/z 98.1 (M+H)+.


Preparation of 2-(1,1-difluoroethyl)pyridin-4-amine



embedded image


Step 1: Preparation of 4-chloro-N-methoxy-N-methylpicolinamide

To a solution of 4-chloropicolinic acid (10 g, 63.5 mmol) in DMF (150 mL) was added TBTU (30.6 g, 95.2 mmol), N,O-dimethylhydroxylamine (9.3 g, 95.2 mmol) and DIPEA (24.6 g, 190.4 mmol) at 0° C. The mixture was stirred at room temperature overnight. The reaction mixture was diluted with saturated aqueous NH4Cl and extracted with EtOAc. The organic layer was dried over Na2SO4 and concentrated. The residue was purified by flash chromatography to give the desired product.




embedded image


LC-MS: m/z 201.0 (M+H)+.


Step 2: Preparation of 1-(4-chloropyridin-2-yl)ethanone

To a solution of 4-chloro-N-methoxy-N-methylpicolinamide (11.25 g, 56.08 mmol) in THF (50 mL) at 0° C. was added MeMgBr (28.04 mL, 84.12 mmol). The mixture was then stirred at r.t. overnight and quenched with saturated aqueous NH4Cl. The resulting mixture was extracted with EtOAc. The organic layer was dried over anhydrous Na2SO4 and concentrated. The residue was purified by flash chromatography to give the desired product.




embedded image



1H NMR (400 MHz, CDCl3): δ8.52 (d, J=5.2 Hz, 1H), 7.96 (s, 1H), 7.40 (d, J=5.2 Hz, 1H), 2.64 (s, 3H). LC-MS: m/z 156.0 (M+H)+.


Step 3: 4-chloro-2-(1,1-difluoroethyl)pyridine

To a solution of 1-(4-chloropyridin-2-yl)ethanone (6.3 g, 40.5 mmol) in DCM (30 mL) was added DAST (65.2 g, 405 mmol) at 0° C. The mixture was then stirred at r.t. overnight and quenched with saturated aqueous NaHCO3. The resulting mixture was extracted with DCM. The organic layer was dried over anhydrous Na2SO4 and concentrated. The residue was purified by flash chromatography to give the desired product.




embedded image



1H NMR (400 MHz, CDCl3): δ8.48 (d, J=5.2 Hz, 1H), 7.60 (s, 1H), 7.31 (d, J=5.2 Hz, 1H), 1.90-1.99 (m, 3H). LC-MS: m/z 178.0 (M+H)+.


Step 4: Preparation of tert-butyl (2-(1,1-difluoroethyl)pyridin-4-yl)carbamate

To a solution of 4-chloro-2-(1,1-difluoroethyl)pyridine (6.0 g, 33.8 mmol) in dioxane (20 mL) was added BocNH2 (4.74 g, 40.5 mmol), X-phos (1.14 g, 1.7 mmol), CsCO3 (16.5 g, 50.7 mmol) and Pd(OAc)2 (1.32 g, 2.7 mmol) at room temperature. The mixture was then stirred at 80° C. overnight and then cooled to room temperature. The reaction mixture was diluted with Sat. aq. NH4Cl and extracted with EtOAc. The organic layer was dried over anhydrous Na2SO4 and concentrated. The residue was purified by flash chromatography to give the desired product.




embedded image


LC-MS: m/z 259.1 (M+H)+.


Step 5: Preparation of 2-(1,1-difluoroethyl)pyridin-4-amine

A solution of tert-butyl (2-(1,1-difluoroethyl)pyridin-4-yl)carbamate (7.97 g, 30.86 mmol) in DCM (30 mL) was cooled under ice-water bath. TFA (10 mL) was then added dropwise. The reaction mixture was stirred at room temperature for 4 hrs and monitored by TLC. Once the reaction completed, the mixture was diluted with water and adjusted pH>7 by saturated aqueous NaHCO3. The resulting mixture was extracted with DCM. Combined organic layers were dried over anhydrous Na2SO4 and concentrated to give the desired product which was used in the next step without further purification.




embedded image


LC-MS: m/z 159.1 (M+H)+.


Preparation of 1-(4-aminopyridin-2-yl)cyclopropanecarbonitrile



embedded image


Step 1: Preparation of 1-(4-bromopyridin-2-yl)cyclopropanecarbonitrile

LiHMDS (1M in toluene, 17.6 mL, 17.6 mmol, 3.1 eq) was added dropwise to a cold (−5° C.) mixture of 4-bromo-2-fluoropyridine (1 g, 5.7 mmol), cyclopanecarbonitrile (1.25 mL, 17 mmol, 3 eq) and 4A MS in toluene (20 mL). The reaction mixture was allowed to warm to room temperature and stirred for 16 hr. After it was poured into water, the mixture was filtered. The filtrate was diluted with EtOAc and H2O, and extracted with EtOAc. The organic phase was washed with water and brine, dried over anhydrous Na2SO4, and concentrated. The residue was purified by column chromatography using PE/EtOAc (9:1) as eluent to give the desired product.




embedded image


LC-MS: m/z 223.0 (M+H)+.


Step 2: Preparation of 1-(4-(diphenylmethyleneamino)pyridin-2-yl) cyclopropanecarbonitrile

To a mixture of 1-(4-bromopyridin-2-yl)cyclopropanecarbonitrile (0.45 g, 2.1 mmol), BINAP (0.04 g, 0.063 mmol), Pd2(dba)3 (0.019 g, 0.021 mmol) and NaOtBu (0.282 g, 2.94 mmol) in toluene (6 mL) at r.t. under an atmosphere of nitrogen was added diphenylmethanimine (0.45 g, 2.51 mmol). The reaction mixture was stirred at reflux for 2 hr and then cooled to room temperature. The mixture was concentrated under reduced pressure and the residue was purified by column chromatography to give the desired product.




embedded image


LC-MS: m/z 324.1 (M+H)+.


Step 3: Preparation of 1-(4-aminopyridin-2-yl)cyclopropanecarbonitrile

A mixture of 1-(4-(diphenylmethyleneamino)pyridin-2-yl)cyclopropanecarbonitrile (0.48 g, 1.49 mmol), THF (10 mL) and aq. HCl (2N, 2.0 mL) was stirred at room temperature for 1 hour. The mixture was then partitioned between EtOAc (15 mL) and water (15 mL). The aqueous phase was extracted with EtOAc (2×25 mL). Combined organic layers were dried over anhydrous Na2SO4 and concentrated. The residue was purified by column chromatography to give the desired product.




embedded image


LC-MS: m/z 160.1 (M+H)+.


Example 1. Preparation of Di-Aliphatic Triazine Compounds of Formula D Wherein Ring A is Substituted Pyridin-2-Yl or Phenyl

The compounds of this Example are prepared by general Scheme 1, set forth below.




embedded image


Step 1: Preparation of 6-trifluomethyl-pyridine-2-carboxylic acid methyl ester (2)

To a solution of 2-chloro-6-trifluoromethyl-pyridine (2 g, 11.1 mmol, 1.0 eq) in MeOH (20 mL) was add Pd(OAc)2 (124 mg, 0.05 eq) and dppf (600 mg, 0.1 eq) under an atmosphere of nitrogen. Et3N (2.3 mL, 1.5 eq) was then added to the resulting orange solution. The reaction solution was then stirred under an atmosphere of carbon monoxide (40 psi) at 60° C. for 22 hr. Once the reaction completed, the mixture was filtered and the filtrate was concentrated in high vacuum. The residue was purified by column chromatography to afford the desired product.




embedded image



1HNMR (400 MHz, CDCl3): δ 8.32 (d, J=8 Hz, 1H), 8.06 (t, J=8 Hz, 1H), 8.88 (d, J=8 Hz, 1H), 4.04 (s, 3H). LC-MS: m/z 206 (M+H)+.


Step 2: Preparation of 6-(6-trifluomethylpyridin-2-yl)-1,3,5-triazine-2,4-dione

To a solution of freshly prepared NaOEt from Na (3.84 g, 0.16 mol, 3 eq) in ethanol (500 mL) was added methyl 6-trifluoromethylpicolinate (33 g, 0.16 mol, 3 eq) and biuret (5.3 g, 0.052 mol). The resulting mixture was heated to reflux for 1 hr and then concentrated. The residue was poured into water and treated with Sat. aq. NaHCO3 to adjust pH to 7. The precipitated solid was collected by filtration and dried under air to give the desired compound.




embedded image



1H NMR (400 MHz, DMSO-d6): δ 10.88 (s, 1H), 8.46 (d, J=7.4 Hz, 1H), 8.28 (t, J=7.3 Hz, 1H), 8.11 (d, J=7.4 Hz, 1H). LC-MS: m/z 259 (M+H)+.


Step 3: Preparation of 2,4-dichloro-6-(6-trifluomethyl-pyridin-2-yl)-1,3,5-triazine

To a solution of 6-(6-trifluomethyl-pyridin-2-yl)-1,3,5-triazine-2,4(1H,3H)-dione (3.37 g, 0.013 mol) in POCl3 (48 mL) was added PCl5 (23 g, 0.1 mol). The mixture was stirred at 100° C. for 2 hr and then concentrated. The residue was dissolved in EtOAc and then washed with Sat. aq. NaHCO3. The organic layer was dried over anhydrous Na2SO4 and then concentrated to give the desired product.




embedded image



1H NMR (400 MHz, CDCl3): δ 8.76 (d, J=7.9 Hz, 1H), 8.19 (t, J=7.9 Hz, 1H), 7.97 (d, J=7.8 Hz, 1H). LC-MS: m/z 294.9 (M+H)+.


Step 4: Preparation of N2,N4-bis((R)-1-cyclopropylethyl)-6-(6-(trifluoromethyl)-pyridin-2-yl)-1,3,5-triazine-2,4-diamine

To a mixture of 2,4-dichloro-6-(6-(trifluoromethyl)pyridine-2-yl)-1,3,5-triazine (600 mg, 2.0 mmol, 1.0 eq) and (R)-1-cyclopropylethanamine hydrochloride salt (536 mg, 4.4 mmol, 2.2 eq) in THF (12 mL) were added CsF (1.2 g, 8.0 mmol, 2 eq) and DIPEA (1.4 mL, 8.0 mmol, 4 eq) at room temperature. The mixture was stirred at 60° C. overnight and then filtered. The filtrate was concentrated under reduced pressure and the residue was purified by a standard method to give the desired product.




embedded image



1H NMR (400 MHz, CD3OD): δ 8.70-8.68 (m, 1H), 8.34-8.32 (m, 1H), 8.16-8.14 (m, 1H), 3.61-3.57 (m, 2H), 1.36-1.32 (m, 6H), 1.06-1.01 (m, 2H), 0.61-0.39 (m, 8H). LC-MS: m/z 393.2 (M+H)+.


The procedure set forth in Example 1 was used to produce the following compounds using the appropriate starting materials.


Compound N2,N4-bis((S)-1-cyclopropylethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.50 (s, 1H), 7.99 (t, J=7.9 Hz, 1H), 7.77 (d, J=7.7 Hz, 1H), 5.44-5.18 (m, 2H), 3.66-3.57 (m, 2H), 1.27 (d, J=5.4 Hz, 6H), 0.93-0.88 (m, 2H), 0.52-0.27 (m, 8H). LC-MS: m/z 393.2 (M+H)+.


Compound N2—((R)-1-cyclopropylethyl)-N4—((S)-1-cyclopropylethyl)-6-(6-(trifluoro methyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.51 (s, 1H), 7.99 (t, J=7.9 Hz, 1H), 7.77 (d, J=7.3 Hz, 1H), 5.46-5.19 (m, 2H), 3.67-3.54 (m, 2H), 1.32-1.22 (m, 6H), 0.95-0.83 (m, 2H), 0.59-0.23 (m, 8H). LC-MS: m/z 393.2 (M+H)+.


Compound N2,N4-bis(1-cyclopropylethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1HNMR (400 MHz, CD3OD): δ8.6 (m, 1H), 8.2-8.1 (m, 1H), 8.0-7.9 (m, 1H), 4.0-3.52 (m, 2H), 1.4-1.2 (m, 6H), 1.0 (m, 2H), 0.6-0.35 (m, 6H), 0.35-0.2 (m, 2H). LC-MS: m/z 393.2 (M+H)+.


Compound N2,N4-bis(cyclobutylmethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.54 (m, 1H), 8.00 (m, 1H), 7.78 (d, J=5.9 Hz, 1H), 5.27 (m, 2H), 3.69-3.32 (m, 4H), 2.59 (m, 2H), 2.10 (m, 4H), 1.92 (m, 4H), 1.84-1.62 (m, 4H). LC-MS: m/z 393.2 (M+H)+.


Compound N2,N4-bis((R)-1-cyclobutylethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.71-8.41 (m, 1H), 7.99 (d, J=7.4 Hz, 1H), 7.77 (d, J=7.7 Hz, 1H), 5.34-4.84 (m, 2H), 4.30-3.96 (m, 2H), 2.44-2.28 (m, 2H), 2.09-1.96 (m, 4H), 1.93-1.78 (m, 8H), 1.14 (d, J=5.9 Hz, 6H). LC-MS: m/z 421.2 (M+H)+.


Compound N2,N4-bis(2-methylcyclopropyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1HNMR (400 MHz, CD3OD): δ8.65-8.4 (m, 1H), 8.1-7.75 (m, 2H), 2.55-2.25 (m, 2H), 1.2-1.0 (m, 6H), 0.9-0.8 (m, 2H), 0.7-0.6 (m, 2H), 0.5-0.38 (m, 2H). LC-MS: m/z 365.3 (M+H)+.


Compound N2,N4-bis(cyclopropylmethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CD3OD): δ 8.60-8.68 (m, 1H), 8.21 (t, J=8.0 Hz, 1H), 7.93-8.00 (m, 1H), 3.26-3.42 (m, 4H), 1.08-1.19 (m, 2H), 0.51-0.58 (m, 4H), 0.25-0.34 (m, 4H). LC-MS: m/z 365.2 (M+H)+.


Compound N2,N4-bis((l-methylcyclopropyl)methyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1HNMR (400 MHz, CD3OD): δ 8.61-8.59 (m, 1H), 8.17-8.15 (m, 1H), 7.94-7.92 (m, 1H), 3.43-3.33 (m, 4H), 1.14 (s, 6H), 0.55-0.53 (m, 4H), 0.34-0.32 (m, 4H). LC-MS: m/z 393.2 (M+H)+.


Compound N2,N4-dicyclobutyl-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.67-8.38 (m, 1H), 7.99 (d, J=6.8 Hz, 1H), 7.78 (d, J=7.5 Hz, 1H), 5.52 (m 2H), 4.80-4.32 (m, 2H), 2.41 (s, 4H), 2.20 (s, 1H), 2.06-1.62 (m, 8H). LC-MS: m/z 365.2 (M+H)+.


Compound N2,N4-di(bicyclo[3.1.0]hexan-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CD3OD): δ 8.66-8.57 (m, 1H), 8.14 (t, J=8.0 Hz, 1H), 7.92 (d, J=7.5 Hz, 1H), 4.60-4.44 (m, 2H), 2.44-2.21 (m, 4H), 1.80-1.69 (m, 4H), 1.35 (d, J=3.4 Hz, 4H), 0.69-0.53 (m, 2H), 0.32 (d, J=4.3 Hz, 2H). LC-MS: m/z 417.2 (M+H)+.


Compound N,N′-dicyclopentyl-6-(6-trifluoromethyl-pyridin-2-yl)-[1,3,5]triazine-2,4-diamine



embedded image



1HNMR (400 MHz, CD3OD): δ 8.60-8.68 (m, 1H), 8.20 (t, J=7.6 Hz, 1H), 7.95-8.01 (m, 1H), 4.29-4.55 (m, 2H), 2.00-2.15 (m, 4H), 1.75-1.84 (m, 4H), 1.51-1.74 (m, 8H). LC-MS: m/z 393.5 (M+H)+.


Compound N2,N4-bis(3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.53 (m, 1H), 8.08-8.02 (m, 1H), 7.85-7.80 (m, 1H), 5.78-5.18 (m, 2H), 4.82-4.38 (m, 2H), 2.82-2.50 (m, 2H), 2.31-2.05 (m, 8H), 1.93-1.80 (m, 2H). LC-MS: m/z 465.2 (M+H)+.


Compound N2,N4-bis(4,4-difluorocyclohexyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.64-8.42 (m, 1H), 8.05 (t, J=7.8 Hz, 1H), 7.84 (d, J=6.6 Hz, 1H), 6.24-5.25 (m, 2H), 4.18-4.01 (m, 2H), 2.43-1.48 (m, 16H). LC-MS: m/z 493.2 (M+H)+.


Compound N,N′-bis-(tetrahydro-pyran-4-yl)-6-(6-trifluoromethyl-pyridin-2-yl)-[1,3,5]triazine-2,4-diamine



embedded image



1HNMR (400 MHz, DMSO-d6): δ 7.43-8.55 (m, 5H), 3.82-4.15 (m, 6H), 3.48-3.50 (m, 4H), 1.75-1.87 (m, 4H), 1.46-1.60 (m, 4H). LC-MS: m/z 425.1 (M+H)+.


Compound N2,N4-diisopropyl-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.67-8.41 (m, 1H), 7.99 (s, 1H), 7.77 (d, J=7.7 Hz, 1H), 5.18 (m, 2H), 4.45-4.03 (m, 2H), 2.15 (m, 1H), 1.26 (d, J=4.5 Hz, 12H). LC-MS: m/z 341.2 (M+H)+.


Compound N2,N4-di-tert-butyl-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, DMSO-d6): δ 8.44-8.31 (m, 1H), 8.19-8.12 (m, 1H), 7.93 (d, J=7.3 Hz, 1H), 7.16-6.77 (m, 2H), 1.35 (s, 18H). LC-MS: m/z 369.2 (M+H)+.


Compound N,N′-di-sec-butyl-6-(6-trifluoromethyl-pyridin-2-yl)-[1,3,5]triazine-2,4-diamine



embedded image



1HNMR (400 MHz, CD3OD): δ 8.42-8.68 (m, 1H), 8.15-8.21 (m, 1H), 7.94 (d, J=8.0 Hz, 1H), 4.01-4.29 (m, 2H), 1.55-1.69 (m, 4H), 1.19-1.30 (m, 6H), 0.95-1.05 (m, 6H). LC-MS: m/z 369.5 (M+H)+.


Compound N,N′-Di-sec-butyl-6-(6-trifluoromethyl-pyridin-2-yl)-[1,3,5]triazine-2,4-diamine



embedded image



1HNMR (400 MHz, CD3OD): δ 8.72-8.79 (m, 1H), 8.38-8.43 (m, 1H), 8.20-8.23 (m, 1H), 4.13-4.45 (m, 2H), 1.67-1.74 (m, 4H), 1.29-1.33 (m, 6H), 1.01-1.05 (m, 6H). LC-MS: m/z 369.2 (M+H)+.


Compound N2,N4-di-sec-butyl-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1HNMR (400 MHz, CD3OD): δ 8.72-8.79 (m, 1H), 8.38-8.43 (m, 1H), 8.20-8.23 (m, 1H), 4.13-4.45 (m, 2H), 1.67-1.74 (m, 4H), 1.29-1.33 (m, 6H), 1.01-1.05 (m, 6H). LC-MS: m/z 369.2 (M+H)+.


Compound N2—((R)-sec-butyl)-N4—((S)-sec-butyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CD3OD): δ 8.59-8.65 (m, 1H), 8.15-8.19 (m, 1H), 7.94-7.95 (m, 1H), 4.06-4.24 (m, 2H), 1.58-1.65 (m, 4H), 1.21-1.26 (m, 6H), 0.98-1.01 (m, 6H). LC-MS: m/z 369.2 (M+H)+.


Compound N2,N4-bis(3-methylbutan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.58-8.47 (m, 1H), 7.99 (t, J=7.2 Hz, 1H), 7.77 (d, J=7.7 Hz, 1H), 5.30-5.03 (m, 2H), 4.16-3.97 (m, 2H), 1.93-1.75 (m, 2H), 1.16 (d, J=6.6 Hz, 6H), 0.97-0.93 (m, 12H). LC-MS: m/z 397.2 (M+H)+.


Compound N2,N4-bis((R)-3-methylbutan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, DMSO-d6): δ 8.46 (m, 1H), 8.21 (m, 1H), 8.00 (d, J=7.7 Hz, 1H), 7.36 (m, 2H), 3.90 (m 2H), 1.79 (m, 2H), 1.05 (t, J=7.6 Hz, 6H), 0.87 (t, J=7.6 Hz, 12H). LC-MS: m/z 397.2 (M+H)+.


Compound N2,N4-bis((S)-3-methylbutan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, DMSO-d6): δ 8.46 (d, J=7.9 Hz, 1H), 8.24 (d, J=6.9 Hz, 1H), 8.03 (d, J=7.7 Hz, 1H), 7.55 (m, 2H), 4.25-3.78 (m, 1H), 1.93-1.65 (m, 1H), 1.15-1.00 (m, 6H), 0.89 (t, J=7.8 Hz, 12H). LC-MS: m/z 397.2 (M+H)+.


Compound N2,N4-bis((R)-1-cyclopropylethyl)-6-(4-(trifluoromethyl)pyrimidin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 9.20 (s, 1H), 7.74 (s, 1H), 5.46 (m, 2H), 3.59 (m, 2H), 1.26 (m, 8H), 0.91 (s, 2H), 0.65-−0.27 (m, 8H). LC-MS: m/z 394.2 (M+H)+.


Compound N2—((R)-1-phenylethyl)-N4—((S)-1-phenylethyl)-6-(6-(trifluoromethyl) pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.52-8.33 (m, 1H), 8.05-7.86 (m, 1H), 7.76 (d, J=7.7 Hz, 1H), 7.52-7.18 (m, 10H), 5.82-5.40 (m, 2H), 5.37-4.92 (m, 2H), 1.65-1.39 (m, 6H). LC-MS: m/z 465.2 (M+H)+.


Compound 6-(6-chloropyridin-2-yl)-N2,N4-bis((R)-1-cyclopropylethyl)-1,3,5-tria-zine-2,4-diamine



embedded image



1H NMR (400 MHz, CD3OD): δ 8.37 (t, J=7.8 Hz, 1H), 8.02 (t, J=7.8 Hz, 1H), 7.71-7.65 (m, 1H), 3.74-3.54 (m, 2H), 1.32 (d, J=6.6 Hz, 6H), 1.08-0.94 (m, 2H), 0.63-0.21 (m, 8H). LC-MS: m/z 359.2 (M+H)+.


Compound 6-(6-chloropyridin-2-yl)-N2,N4-diisobutyl-1,3,5-triazine-2,4-diamine



embedded image



1HNMR (400 MHz, CD3OD): δ8.5-8.38 (m, 1H), 8.0-7.9 (m, 1H), 7.6-7.5 (m, 1H), 3.35-3.16 (m, 4H), 2.0-1.9 (m, 2H), 1.0-0.9 (m, 12H). LC-MS: m/z 335.1 (M+H)+.


Compound 6-(6-chloropyridin-2-yl)-N2,N4-diisopropyl-1,3,5-triazine-2,4-diamine



embedded image



1HNMR (400 MHz, CD3OD): δ 8.25-8.19 (m, 1H), 7.81 (brs, 1H), 7.46 (d, J=7.6 Hz, 1H), 4.26-4.11 (m, 2H), 1.15 (d, J=6.0 Hz, 12H). LC-MS: m/z 307.1 (M+H)+.


Compound N2,N4-di(but-3-en-1-yl)-6-phenyl-1,3,5-triazine-2,4-diamine



embedded image



1HNMR (400 MHz, CD3OD): δ8.19-8.13 (m, 2H), 7.77-7.61 (m, 3H), 5.95-5.85 (m, 2H), 5.20-5.11 (m, 4H), 3.72-3.59 (m, 4H), 2.49-2.44 (m, 4H). LC-MS: m/z 296.3 (M+H)+.


Compound N2,N4-di(3-oxabicyclo[3.1.0]hexan-6-yl)-6-phenyl-1,3,5-triazine-2,4-diamine



embedded image



1HNMR (400 MHz, CD3OD): δ 8.35-8.1 (m, 2H), 8.3-8.2 (m, 1H), 7.7-7.6 (m, 2H), 4.1-4.0 (m, 4H), 3.85-3.7 (m, 4H), 2.9-2.55 (m, 2H), 2.1-2.0 (m, 2H). LC-MS: m/z 352.2 (M+H)+.


Compound N2,N4-bis((1S,3S)-3-(4-fluorophenyl)cyclobutyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

To a mixture of 2,4-dichloro-6-(6-(trifluoromethyl)pyridine-2-yl)-1,3,5-triazine (600 mg, 2.0 mmol, 1.0 eq) and (1s,3s)-3-(4-fluorophenyl)cyclobutanamine (726 mg, 4.4 mmol, 2.2 eq) in THF (12 mL) at r.t. were added CsF (0.6 g, 2.0 mmol, 1 eq.) and DIPEA (0.7 mL, 4.0 mmol, 2 eq). The resulting mixture was stirred at 60° C. overnight and then filtered. The filtrate was concentrated and purified via standard techniques to afford the desired product.




embedded image



1H NMR (400 MHz, CDCl3) δ 8.48 (m, 1H), 7.95 (m, 1H), 7.75 (d, J=7.6 Hz, 1H), 7.16-7.04 (m, 4H), 6.93 (t, J=8.5 Hz, 4H), 6.46-5.32 (m, 2H), 4.47 (m, 2H), 3.28-3.02 (m, 2H), 2.81 (d, J=7.6 Hz, 4H), 2.01 (m, 4H). LC-MS: m/z 553.2 (M+H)+.


Compound N2,N4-bis((1R,3R)-3-(4-fluorophenyl)cyclobutyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.56 (m, 1H), 8.01 (s, 1H), 7.80 (s, 1H), 7.25-6.93 (m, 8H), 5.64 (m, 2H), 4.82-4.37 (m, 2H), 3.68 (s, 1H), 3.24 (s, 1H), 2.89 (m, 2H), 2.54 (m, 4H), 2.09-1.98 (m, 2H). LC-MS: m/z 553.2 (M+H)+.


Compound 6-(6-(Trifluoromethyl)pyridin-2-yl)-N2,N4-bis((R)-1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image


1H NMR (400 MHz, CDCl3) δ 8.62 (m, 1H), 8.03 (d, J=7.8 Hz, 1H), 7.83 (d, J=7.7 Hz, 1H), 5.59 (d, J=9.4 Hz, 1H), 5.34 (m, 3H), 1.42 (m, 6H); LC-MS: m/z 449 (M+H)+.


Compound N2,N4-bis((S)-1,1,1-trifluorobutan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.55 (d, J=8 Hz, 1H), 8.06-8.02 (m, 1H), 7.83 (d, J=8 Hz, 1H), 5.64-5.15 (m, 2H), 4.93-4.71 (m, 2H), 2.0-1.94 (m, 2H), 1.69-1.57 (m, 2H), 1.08-1.02 (m, 6H). LCMS: m/z 477 (M+H)+.


Compound N2,N4-bis((2,2-difluorocyclopropyl)methyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.59-8.51 (m, 1H), 8.02 (bs, 1H), 7.80 (d, J=7.6 Hz, 1H), 5.70-5.38 (m, 2H), 3.81-3.41 (m, 4H), 2.04-1.92 (m, 2H), 1.73-1.59 (m, 2H), 1.28-1.23 (m, 2H). LC-MS: m/z 437 (M+H)+.


Compound N2,N4-bis((3,3-difluorocyclobutyl)methyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.54 (m, 1H), 8.02 (m, 1H), 7.80 (d, J=7.2 Hz, 1H), 5.84-5.11 (m, 2H), 3.95-3.27 (m, 4H), 2.94-1.99 (m, 10H). LC-MS: m/z 465 (M+H)+.


Compound N2,N4-bis(3,3-difluorocyclobutyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ8.56-8.48 (m, 1H), 8.04-8.02 (m, 1H), 7.82-7.80 (m, 1H), 5.76-5.41 (m, 2H), 4.52-4.37 (m, 2H), 3.06 (bs, 4H), 2.63-2.61 (m, 4H). LC-MS: m/z 437.1 (M+H)+.


Compound N2,N4-bis((S)-3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.54-8.38 (m, 1H), 7.95 (m 1H), 7.73 (m, 1H), 5.60-5.25 (m, 2H), 4.63-4.42 (m, 2H), 2.68-2.52 (m, 2H), 2.16-1.77 (m, 10H). LCMS: m/z 465.1 (M+H)+.


Compound N2,N4-bis((R)-3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 57-8.48 (m, 1H), 8.02-8.01 (m, 1H), 7.80 (s, 1H), 5.66-5.32 (m, 2H), 4.71-4.49 (m, 2H), 2.64-2.61 (m, 2H), 2.31-2.05 (m, 8H), 1.86-1.79 (m, 2H). LC-MS: m/z 465 (M+H)+.


Compound N2-((R)-3,3-difluorocyclopentyl)-N4-((S)-3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.56-8.48 (m, 1H), 8.02 (d, J=8 Hz, 1H), 7.80-7.81 (m, 1H), 5.66-5.32 (m, 2H), 4.71-4.54 (m, 2H), 2.65-2.60 (m, 2H), 2.31-2.05 (m, 8H), 1.86-1.81 (m, 2H).


LC-MS: m/z 465 (M+H)+.


Compound N2,N4-bis(4,4-difluorocyclohexyl)-6-(4-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.70-8.62 (m, 2H), 7.62 (d, 1H), 6.70-6.43 (m, 1H), 5.22-3.95 (m, 3H), 2.11-1.69 (m, 16H). LCMS: m/z 493 (M+H)+.


Compound N2,N4-bis((R)-1-cyclopropylethyl)-6-(6-methoxypyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.18-7.65 (m, 2H), 7.15-6.98 (m, 1H), 6.34-5.67 (m, 2H), 4.15 (s, 3H), 3.71-3.48 (m, 2H), 1.33-1.25 (m, 6H), 0.98-0.86 (m, 2H), 0.62-0.26 (m, 8H). LCMS: m/z 355.2 (M+H)+.


Compound N2,N4-bis(3,3-difluorocyclobutyl)-6-(6-(trifluoromethoxy)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.34-8.27 (m, 1H), 7.96-7.92 (m, 1H), 7.22 (d, J=8 Hz, 1H), 5.83-5.41 (m, 2H), 4.49-4.35 (m, 2H), 3.05 (d, J=4 Hz, 4H), 2.63-2.54 (m, 4H). LCMS: m/z 453 (M+H)+.


Compound N2,N4-bis(3,3-difluorocyclopentyl)-6-(6-(trifluoromethoxy)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.33-8.26 (m, 1H), 7.95-7.92 (m, 1H), 7.22 (d, J=8 Hz, 1H), 5.65-5.28 (m, 2H), 4.67-4.52 (m, 2H), 2.64-2.59 (m, 2H), 2.30-1.79 (m, 10H). LCMS: m/z 481 (M+H)+.


Compound N2,N4-bis(4,4-difluorocyclohexyl)-6-(6-(trifluoromethoxy)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.31 (d, J=8 Hz, 1H), 7.98-7.92 (m, 1H), 7.24 (d, J=12 Hz, 1H), 5.44-5.08 (m, 2H), 4.16-3.98 (m, 2H), 2.15-1.65 (m, 16H). LCMS: m/z 509 (M+H).+


Compound N2,N4-bis(4,4-difluorocyclohexyl)-6-(3-fluoro-6-methoxypyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 7.45-7.41 (t, 1H), 6.84 (d, 1H), 5.43-5.07 (m, 2H), 4.08-3.98 (m, 5H), 2.11-2.01 (m, 8H), 1.96-1.89 (m, 4H), 1.87-1.83 (m, 4H). LCMS: m/z 473 (M+H)+.









TABLE 1







The following compounds were prepared by following the procedure described in


Scheme 1 above.













LCMS











Compound


Expected
Found


No.
Name
Structure
MW
(M + 1)+





72
N2,N4-di((1R,5S)-3- oxabicyclo[3.1.0]hexan- 6-yl)-6-(6- chloropyridin-2-yl)- 1,3,5-triazine-2,4- diamine


embedded image


386.1
387.1





73
6-(6-aminopyridin-2- yl)-N2,N4- dineopentyl-1,3,5- triazine-2,4-diamine


embedded image


343.2
344.2





74
6-(6-aminopyridin-2- yl)-N2,N4-diisobutyl- 1,3,5-triazine-2,4- diamine


embedded image


315.2
316.2






6-(6-aminopyridin-2- yl)-N2,N4-bis(3- methylbutan-2-yl)- 1,3,5-triazine-2,4- diamine


embedded image


343.2
344.2









Example 2. Preparation of Di-Aliphatic Triazine Compounds of Formula E Wherein Ring A is substituted Pyridin-2-yl or Phenyl

The compounds of this Example are prepared by general Scheme 2, set forth below.




embedded image


Step 1: Preparation of (R)-4-chloro-N-(1-cyclopropylethyl)-6-(6-(trifluoromethyl) pyridin-2-yl)-1,3,5-triazin-2-amine

To a mixture of 2,4-dichloro-6-(6-(trifluoromethyl)pyridine-2-yl)-1,3,5-triazine (600 mg, 2.0 mmol, 1.0 eq) and (R)-1-cyclopropylethanamine hydrochloride salt (268 mg, 2.2 mmol, 1.1 eq) in THF (6 mL) were added CsF (608 mg, 4.0 mmol, 2 eq) and DIPEA (0.7 mL, 4.0 mmol, 2 eq) at room temperature. The mixture was stirred at 40° C. overnight and then filtered. The filtrate was concentrated under reduced pressure and the residue was purified by a standard method to give the desired product.




embedded image


LC-MS: m/z 344.1 (M+H)+.


Step 2: Preparation of N2—((R)-1-cyclopropylethyl)-N4-(pentan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

To a mixture of (R)-4-chloro-N-(1-cyclopropylethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-amine (80 mg, 0.23 mmol, 1.0 eq) and pentan-2-amine (25 mg, 0.28 mmol, 1.2 eq) in THF (2 mL) were added CsF (70 mg, 0.46 mmol, 2 eq) and DIPEA (0.08 mL, 0.46 mmol, 2 eq) at room temperature. The mixture was stirred at 60° C. overnight and filtered. The filtrate was concentrated under reduced pressure and then purified by a standard method to give the desired product.




embedded image



1H NMR (400 MHz, DMSO-d6): δ 8.54-8.42 (m, 1H), 8.23 (t, J=7.8 Hz, 1H), 8.02 (d, J=7.7 Hz, 1H), 7.65 (d, J=8.4 Hz, 1H), 7.52 (t, J=9.5 Hz, 1H), 4.27-3.96 (m, 1H), 3.65-3.47 (m, 1H), 1.60-1.46 (m, 1H), 1.41-1.29 (m, 3H), 1.22 (d, 6.5 Hz, 3H), 1.12 (d, J=6.1 Hz, 3H), 1.01-0.96 (m, 1H), 0.88 (t, J=7.1 Hz, 3H), 0.50-0.29 (m, 3H), 0.26-0.07 (m, 1H). LC-MS: m/z 395.2 (M+H)+.


The procedure set forth in Example 2 was used to produce the following compounds using the appropriate starting materials.




embedded image



1H NMR (400 MHz, CDCl3): δ 8.52 (m, 1H), 8.00 (t, J=7.6 Hz, 1H), 7.78 (d, J=7.7 Hz, 1H), 5.63 (m, 2H), 3.73 (m, 9H), 2.66 (d, J=5.9 Hz, 2H), 1.29 (m, 3H), 1.01-0.79 (m, 1H), 0.60-0.17 (m, 4H). LC-MS: m/z 411.2 (M+H)+.


Compound (R)—N2-(1-cyclopropylethyl)-N4-(4,4-difluorocyclohexyl)-6-(6-(trifluoro methyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.66-8.39 (m, 1H), 8.02 (t, J=7.7 Hz, 1H), 7.80 (d, J=7.7 Hz, 1H), 5.34 (m, 2H), 4.11 (m, 1H), 3.63 (m, 1H), 2.32-1.54 (m, 9H), 1.29 (m, 3H), 0.95 (s, 1H), 0.70-0.16 (m, 4H). LC-MS: m/z 443.2 (M+H)+.


Compound N2—((R)-1-cyclopropylethyl)-N4-(6,6-difluorospiro[3.3]heptan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.54-8.49 (m, 1H), 8.01 (t, J=7.3 Hz, 1H), 7.78 (d, J=7.7 Hz, 1H), 5.60-5.27 (m, 2H), 4.57-4.37 (m, 1H), 3.67-3.57 (m, 1H), 2.70-2.65 (m, 2H), 2.57 (m, 3H), 2.22-1.92 (m, 4H), 1.30 (d, J=5.8 Hz, 2H), 0.93 (s, 1H), 0.54-0.29 (m, 4H). LC-MS: m/z 455.2 (M+H)+.


Compound N2—((1R,3R,5R,7R)-adamantan-2-yl)-N4—((R)-1-cyclopropylethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.63-8.34 (m, 1H), 8.00 (t, J=7.8 Hz, 1H), 7.78 (d, J=7.7 Hz, 1H), 5.57 (m, 2H), 4.21 (m, 1H), 3.85-3.32 (m, 1H), 2.22-1.57 (m, 15H), 1.25 (m, 4H), 0.90 (m, 1H), 0.66-0.24 (m, 4H). LC-MS: m/z 459.2 (M+H)+.


Compound (R)—N2-(1-cyclopropylethyl)-N4-(dicyclopropylmethyl)-6-(6-(trifluoro methyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.49 (d, J=7.5 Hz, 1H), 7.99 (t, J=7.9 Hz, 1H), 7.77 (d, J=7.7 Hz, 1H), 5.71-5.05 (m, 2H), 3.59 (m, 2H), 1.25 (m, 3H), 1.07-0.80 (m, 3H), 0.64-0.19 (m, 12H). LC-MS: m/z 419.2 (M+H)+.


Compound N2—((R)-1-cyclopropylethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-N4-(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.53 (s, 1H), 8.01 (s, 1H), 7.80 (d, J=7.6 Hz, 1H), 5.91-4.65 (m, 3H), 3.67 (m, 1H), 1.51-1.15 (m, 6H), 0.93 (s, 1H), 0.74-0.10 (m, 4H). LC-MS: m/z 421.1 (M+H)+.


Compound (R)—N2-(1-cyclopropylethyl)-N4-(2,3-dihydro-1H-inden-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.61-8.46 (m, 1H), 7.99 (t, J=8.1 Hz, 1H), 7.77 (d, J=7.7 Hz, 1H), 7.26-7.17 (m, 4H), 5.75-5.30 (m, 2H), 5.11-4.75 (m, 1H), 3.78-3.54 (m, 1H), 3.46-3.31 (m, 2H), 2.94-2.88 (m, 2H), 1.32 (d, J=6.4 Hz, 3H), 1.24-1.19 (m, 1H), 0.98-0.86 (m, 1H), 0.52-043 (m, 3H), 0.29 (s, 1H). LC-MS: m/z 441.2 (M+H)+.


Compound (R)—N2-(1-cyclopropylethyl)-N4-(prop-2-yn-1-yl)-6-(6-(trifluoromethyl) pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.55 (m, 1H), 8.01 (t, J=7.8 Hz, 1H), 7.79 (d, J=7.7 Hz, 1H), 5.94-5.12 (m, 2H), 4.30 (m 2H), 3.59 (m, 1H), 2.23 (s, 1H), 2.01 (s, 3H), 0.90 (m, 1H), 0.59-0.16 (m, 4H). LC-MS: m/z 363.1 (M+H)+.


Compound (R)—N2-(1-cyclopropylethyl)-N4-(2-phenoxyethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.43 (d, J=8.0 Hz, 1H), 7.93 (t, J=7.6 Hz, 1H), 7.71 (d, J=7.7 Hz, 1H), 7.34-7.18 (m, 2H), 7.00-6.69 (m, 3H), 6.03-5.08 (m, 2H), 4.07 (s, 2H), 3.94-3.71 (m, 2H), 3.53 (d, J=6.8 Hz, 1H), 1.34-1.04 (m, 4H), 0.35 (m, 4H). LC-MS: m/z 445.2 (M+H)+.


Compound N2—((R)-1-cyclopropylethyl)-N4-(1-methoxypropan-2-yl)-6-(6-(trifluoro methyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.51 (m, 1H), 7.99 (t, J=7.9 Hz, 1H), 7.77 (d, J=7.7 Hz, 1H), 5.55-5.33 (m, 2H), 4.45-4.29 (m, 2H), 3.68-3.39 (m, 4H), 1.85 (s, 3H), 1.28-0.93 (m, 6H), 0.60-0.27 (m, 3H). LC-MS: m/z 397.2 (M+H)+.


Compound (R)—N2-(1-cyclopropylethyl)-N4-(1,3-dimethoxypropan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): 8.47 (m, 1H), 8.05-7.80 (m, 1H), 7.71 (d, J=7.7 Hz, 1H), 5.90-5.06 (m, 2H), 4.57-4.05 (m, 1H), 3.65-3.38 (m, 4H), 3.33 (m, 6H), 1.23 (m, 4H), 0.84 (m, 1H), 0.61-0.05 (m, 4H). LC-MS: m/z 427.2 (M+H)+.


Compound 2-((4-(((R)-1-cyclopropylethyl)amino)-6-(6-(trifluoromethyl)pyridine-2-yl)-1,3,5-triazin-2-yl)amino)propanenitrile



embedded image



1H NMR (400 MHz, CDCl3): δ 8.56 (m, 1H), 8.03 (t, J=7.8 Hz, 1H), 7.81 (d, J=7.7 Hz, 1H), 5.52 (m, 2H), 5.16-4.85 (m, 1H), 3.76-3.44 (m, 1H), 1.72-1.55 (m, 3H), 1.39-1.21 (m, 3H), 0.95 (s, 1H), 0.65-0.16 (m, 4H). LC-MS: m/z 378.2 (M+H)+.


Compound (R)-2-(4-(1-cyclopropylethylamino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-ylamino)-2-methylpropanenitrile



embedded image



1H NMR (400 MHz, CDCl3): δ 8.56 (d, J=8.2 Hz, 1H), 8.03 (t, J=7.7 Hz, 1H), 7.80 (d, J=7.7 Hz, 1H), 5.71-5.54 (m, 2H), 3.70 (m, 1H), 1.82 (s, 6H), 1.36-1.25 (m, 4H), 0.97 (d, J=7.7 Hz, 1H), 0.62-0.26 (m, 4H). LC-MS: m/z 392 (M+H)+.


Compound N2—((R)-1-cyclopropylethyl)-N4-(tetrahydrofuran-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.57-8.47 (m, 1H), 7.99 (t, J=7.2 Hz, 1H), 7.78 (d, J=7.6 Hz, 1H), 5.73-5.32 (m, 2H), 4.79-4.60 (m, 1H), 3.99-3.49 (m, 5H), 2.29 (m, 2H), 1.91 (m, 1H), 1.30 (m, 3H), 0.56-0.23 (m, 4H). LC-MS: m/z 395.2 (M+H)+.


Compound (1S,2S)-2-(4-((R)-1-cyclopropylethylamino)-6-(6-(trifluoro-methyl)pyridin-2-yl)-1,3,5-triazin-2-ylamino)cyclohexanol



embedded image



1H NMR (400 MHz, CDCl3): δ 8.48 (d, J=7.4 Hz, 1H), 8.01 (t, J=7.8 Hz, 1H), 7.79 (d, J=7.7 Hz, 1H), 5.67-5.28 (m, 2H), 3.65 (m, 4H), 2.09 (s, 3H), 1.47-1.23 (m, 8H), 0.92 (s, 1H), 0.62-0.40 (m, 3H), 0.30 (s, 1H). LC-MS: m/z 423.2 (M+H)+.


Compound (1R,2S)-2-(4-((R)-1-cyclopropylethylamino)-6-(6-(trifluoromethyl)-pyridin-2-yl)-1,3,5-triazin-2-ylamino)cyclopentanol



embedded image



1H NMR (400 MHz, CDCl3): δ 8.51 (m, 1H), 8.01 (t, J=7.6 Hz, 1H), 7.80 (t, J=6.4 Hz, 1H), 5.40-5.31 (m, 1H), 4.10-3.97 (m, 2H), 3.69-3.52 (m, 1H), 2.25-2.09 (m, 2H), 1.95-1.55 (m, 7H), 1.29 (d, J=6.0 Hz, 2H), 0.93 (d, J=7.5 Hz, 1H), 0.66-0.16 (m, 4H). LC-MS: m/z 409.2 (M+H)+.


Compound (R)—N2-benzyl-N4-(1-cyclopropylethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.49 (d, J=7.2 Hz, 1H), 7.98 (t, J=7.7 Hz, 1H), 7.77 (d, J=7.7 Hz, 1H), 7.31 (m, 5H), 5.51 (m, 2H), 4.67 (m, 2H), 3.63 (m, 1H), 1.27 (m, 3H), 0.91 (s, 1H), 0.38 (m, 4H). LC-MS: m/z 415.2 (M+H)+.


Compound N2—((R)-1-cyclopropylethyl)-N4—((S)-1-phenylethyl)-6-(6-(trifluoromethyl) pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.45 (t, J=10.4 Hz, 1H), 7.98 (t, J=7.7 Hz, 1H), 7.77 (d, J=7.7 Hz, 1H), 7.54-7.03 (m, 5H), 5.70 (d, J=6.9 Hz, 1H), 5.45 (m, 1H), 5.15 (m, 1H), 3.50 (m, 1H), 1.55 (m, 3H), 1.28 (m, 1H), 0.96 (m, 3H), 0.64-0.18 (m, 4H). LC-MS: m/z 429.2 (M+H)+.


Compound N2—((R)-1-cyclopropylethyl)-N4—((R)-1-phenylethyl)-6-(6-(trifluoro methyl) pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.47 (d, J=8.3 Hz, 1H), 7.98 (t, J=7.7 Hz, 1H), 7.76 (d, J=7.7 Hz, 1H), 7.50-7.02 (m, 5H), 5.78-5.07 (m, 3H), 3.55 (m, 1H), 1.72 (m, 1H), 1.56 (d, J=6.7 Hz, 3H), 0.97 (m, 3H), 0.58-0.15 (m, 4H). LC-MS: m/z 429.2 (M+H)+.


Compound N2—((R)-1-cyclopropylethyl)-N4-(1-(3-fluorophenyl)ethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.55-8.36 (m, 1H), 8.00 (t, J=7.7 Hz, 1H), 7.78 (d, J=7.7 Hz, 1H), 7.27 (d, J=7.8 Hz, 2H), 7.18-6.90 (m, 3H), 5.71-5.06 (m, 3H), 3.78-3.32 (m, 1H), 1.54 (d, J=6.8 Hz, 3H), 1.34-1.22 (m, 3H), 1.00 (d, J=6.3 Hz, 1H), 0.94-0.72 (m, 1H), 0.54-0.37 (m, 2H), 0.31-0.20 (m, 1H). LC-MS: m/z 447.2 (M+H)+.


Compound N2—((R)-1-cyclopropylethyl)-N4-(1-(3-(trifluoromethyl)phenyl)ethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.42 (m, 1H), 8.08-7.93 (m, 1H), 7.79 (d, J=7.6 Hz, 1H), 7.67-7.38 (m, 4H), 5.84-5.49 (m, 1H), 5.49-5.03 (m, 2H), 3.72-3.16 (m, 1H), 1.57 (d, J=6.9 Hz, 3H), 1.26 (d, J=6.3 Hz, 3H), 0.92 (d, J=6.4 Hz, 1H), 0.73 (m, 1H), 0.53-0.41 (m, 1H), 0.37 (m, 1H), 0.25 (m, 1H). LC-MS: m/z 497.2 (M+H)+.


Compound N2—((R)-1-cyclopropylethyl)-N4-((1R,2S)-2-phenylcyclopropyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.47 (d, J=8.3 Hz, 1H), 7.98 (t, J=7.7 Hz, 1H), 7.76 (d, J=7.7 Hz, 1H), 7.37 (m, 4H), 7.23 (m, 1H), 5.81-5.05 (m, 3H), 3.55 (m 1H), 1.72 (s, 1H), 1.56 (d, J=6.7 Hz, 3H), 0.97 (m 3H), 0.63-0.18 (m, 4H). LC-MS: m/z 441.2 (M+H)+.


Compound (R)—N2-(1-cyclopropylethyl)-N4-(1-phenylcyclopropyl)-6-(6-(trifluoro methyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, DMSO-d6): δ 8.53-8.13 (m, 3H), 7.99 (m, 1H), 7.70 (m, 1H), 7.45-7.04 (m, 5H), 3.30-3.19 (m, 1H), 1.38-1.09 (m, 5H), 1.07-0.75 (m, 3H), 0.43-−0.09 (m, 4H). LC-MS: m/z 441.2 (M+H)+.


Compound (R)-6-(6-chloropyridin-2-yl)-N2-(1-cyclopropylethyl)-N4,N4-diethyl-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.32 (d, J=6.6 Hz, 1H), 7.75 (s, 1H), 7.42 (s, 1H), 5.51 (s, 1H), 3.62 (m, 5H), 1.42-1.03 (m, 9H), 0.92 (d, J=7.7 Hz, 1H), 0.63-0.17 (m, 4H). LC-MS: m/z 347.2 (M+H)+.


Compound (R)-methyl 3-((4-((1-cyclopropylethyl)amino)-6-(6-(trifluoromethyl)pyri-din-2-yl)-1,3,5-triazin-2-yl)amino)propanoate



embedded image



1H NMR (400 MHz, CDCl3): δ 8.52 (m, 1H), 8.00 (t, J=7.6 Hz, 1H), 7.78 (d, J=7.7 Hz, 1H), 5.63 (m, 2H), 3.73 (m, 9H), 2.66 (d, J=5.9 Hz, 2H), 1.29 (m, 3H), 1.01-0.79 (m, 1H), 0.60-0.17 (m, 4H). LC-MS: m/z 411.2 (M+H)+.


Compound (R)—N2-(1-cyclopropylethyl)-N4-(2-phenoxyethyl)-6-(6-(trifluoromethyl) pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.43 (d, J=8.0 Hz, 1H), 7.93 (t, J=7.6 Hz, 1H), 7.71 (d, J=7.7 Hz, 1H), 7.34-7.18 (m, 2H), 7.00-6.69 (m, 3H), 6.03-5.08 (m, 2H), 4.07 (s, 2H), 3.94-3.71 (m, 2H), 3.53 (d, J=6.8 Hz, 1H), 1.34-1.04 (m, 4H), 0.35 (m, 4H). LC-MS: m/z 445.2 (M+H)+.


Compound (1R,2S)-2-((4-(cyclopentylamino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)cyclopentanol



embedded image



1HNMR (400 MHz, CD3OD): δ8.63-8.57 (m, 1H), 8.17-8.14 (m, 1H), 7.94-7.92 (m, 1H), 4.48-4.23 (m, 3H), 2.05-1.91 (m, 5H), 1.78-1.59 (m, 9H). LC-MS: m/z 409.3 (M+H).


Compound N2-(3,3-difluorocyclopentyl)-N4-(tetrahydrofuran-3-yl)-6-(6-(trifluoro methyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CD3OD): δ 8.68-8.56 (m, 1H), 8.15 (t, J=8.3 Hz, 1H), 7.93 (d, J=7.5 Hz, 1H), 4.81-4.43 (m, 2H), 4.11-3.92 (m, 2H), 3.86 (m, 1H), 3.78-3.66 (m, 1H), 2.74-2.50 (m, 1H), 2.38-1.75 (m, 7H). LC-MS: m/z 431.2 (M+H)+.


Compound tert-butyl 3-((4-((3,3-difluorocyclopentyl)amino)-6-(6-(trifluoromethyl) pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyrrolidine-1-carboxylate



embedded image



1H NMR (400 MHz, CDCl3): δ 8.62-8.46 (m, 1H), 8.03 (d, J=6.9 Hz, 1H), 7.81 (d, J=7.7 Hz, 1H), 5.91-5.19 (m, 2H), 4.61 (m, 2H), 3.82-3.59 (m, 1H), 3.50 (s, 1H), 3.29 (m, 1H), 2.65 (m, 1H), 2.43-2.06 (m, 5H), 1.97 (s, 1H), 1.47 (s, 9H). LC-MS: m/z 530.2 (M+H)+.


Compound N2-isobutyl-N4-(tetrahydro-2H-pyran-4-yl)-6-(6-(trifluoromethyl)-pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CD3OD): δ8.7-8.6 (m, 1H), 8.25-8.15 (m, 1H), 8.0-7.9 (m, 1H), 4.4-4.1 (m, 1H), 4.05-3.96 (m, 2H), 3.3-3.2 (m, 2H), 2.1-1.9 (m, 3H), 1.63-1.5 (m, 2H), 1.05-0.9 (m, 6H). LC-MS: m/z 397.3 (M+H)+.


Compound N2—((R)-1-cyclopropylethyl)-N4-(1-(2-methoxyethoxy)propan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.61-8.42 (m, 1H), 7.99 (t, J=7.9 Hz, 1H), 7.77 (d, J=7.7 Hz, 1H), 5.78-5.37 (m, 2H), 4.52-4.22 (m, 1H), 3.79-3.47 (m, 7H), 3.40 (s, 3H), 1.29 (d, J=5.7 Hz, 6H), 0.99-0.80 (m, 1H), 0.61-0.21 (m, 4H). LC-MS: m/z 441 (M+H)+.


Compound 2-((4-(((R)-1-cyclopropylethyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)propan-1-ol



embedded image



1H NMR (400 MHz, CDCl3) δ 8.57-8.47 (m, 1H), 8.01 (t, J=7.6 Hz, 1H), 7.79 (d, J=7.6 Hz, 1H), 5.62-5.20 (m, 2H), 4.23 (m, 1H), 3.82-3.49 (m, 3H), 1.35-1.22 (m, 6H), 0.93 (m, 1H), 0.58-0.29 (m, 4H). LCMS: m/z 383.2 (M+H)+.


Compound N2—((R)-1-cyclopropylethyl)-N4-(1-isopropoxypropan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.65-8.42 (m, 1H), 7.99 (t, J=7.9 Hz, 1H), 7.78 (d, J=7.3 Hz, 1H), 5.92-5.08 (m, 2H), 4.44-4.13 (m, 1H), 3.73-3.27 (m, 4H), 1.27 (m, 6H), 1.17 (d, J=6.1 Hz, 6H), 1.04-0.84 (m, 1H), 0.63-0.16 (m, 4H). LC-MS: m/z 425 (M+H)+.


Compound N2—((R)-1-cyclopropylethyl)-N4-(4-methoxybutan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.63-8.48 (m, 1H), 8.01-7.97 (m, 1H), 7.77 (d, J=7.6 Hz, 1H), 5.54-5.25 (m, 2H), 4.44-4.22 (m, 1H), 3.64-3.49 (m, 3H), 3.33 (d, J=2.4 Hz, 3H), 1.89-1.78 (m, 2H), 1.30-1.25 (m, 5H), 0.93-0.83 (m, 2H), 0.53-0.28 (m, 4H). LCMS: m/z 411 (M+H)+.


Compound N2—((R)-1-cyclopropylethyl)-N4-(1-phenylpropan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.41 (d, J=7.6 Hz, 1H), 7.92 (t, J=7.8 Hz, 1H), 7.70 (d, J=7.6 Hz, 1H), 7.25-7.14 (m, 5H), 5.50-4.92 (m, 2H), 4.25 (m, 1H), 3.68-3.39 (m, 1H), 2.99 (m, 1H), 2.61 (m, 1H), 1.26-1.06 (m, 8H), 0.52-0.28 (m, 3H). LC-MS: m/z 443 (M+H)+.


Compound N2—((R)-1-cyclopropylethyl)-N4-(1-morpholinopropan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.51-8.50 (m, 1H), 8.22 (s, 1H), 8.03-7.99 (m, 1H), 7.83-7.79 (m, 1H), 6.39-5.86 (m, 2H), 4.44 (m, 7H), 3.79-3.52 (m, 5H), 3.25-2.53 (m, 5H), 0.95 (s, 1H), 0.54-0.26 (m, 4H). LCMS: m/z 452 (M+H)+.


Compound N2—((R)-1-cyclopropylethyl)-N4-(1-(piperidin-1-yl)propan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.54-8.51 (m, 2H), 8.01-7.98 (m, 1H), 7.77 (d, J=7.6 Hz, 1H), 6.66-6.17 (m, 1H), 5.72-5.54 (m, 1H), 4.84-4.44 (m, 1H), 4.21 (s, 5H), 3.67-2.63 (m, 7H), 1.77 (d, J=5.2 Hz, 4H), 1.53 (s, 2H), 0.93 (d, J=4 Hz, 1H), 0.52-0.27 (m, 4H). LCMS: m/z 450 (M+H)+.


Compound (R)-3-((4-((1-cyclopropylethyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-2,2-dimethylpropanamide



embedded image



1H NMR (400 MHz, CDCl3) δ 8.52-8.37 (m, 1H), 8.00-7.96 (m, 1H), 7.87-7.75 (m, 1H), 6.01-5.22 (m, 2H), 4.26-3.53 (m, 3H), 2.32-1.45 (m, 2H), 1.41-1.29 (m, 8H), 1.23-1.21 (m, 1H), 0.97-0.28 (m, 5H). LCMS: m/z 424 (M+H)+.


Compound 3-((4-(((R)-1-cyclopropylethyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)butanenitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.50 (d, J=7.6 Hz, 1H), 8.03-7.99 (m, 1H), 7.80 (d, J=7.6 Hz, 1H), 5.64-5.17 (m, 2H), 4.55-4.32 (m, 1H), 3.70-3.51 (m, 1H), 2.87-2.69 (m, 2H), 1.46 (d, J=6.8 Hz, 3H), 1.33-1.25 (m, 3H), 0.96-0.89 (m, 1H), 0.55-0.30 (m, 4H). LCMS: m/z 392 (M+H)+.


Compound (R)-3-((4-((1-cyclopropylethyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-2,2-dimethylpropanenitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.55 (s, 1H), 8.11 (s, 1H), 7.91 (d, J=8 Hz, 1H), 3.73-3.62 (m, 4H), 1.47-1.42 (m, 7H), 1.37-1.35 (m, 3H), 0.75-0.69 (m, 1H), 0.58 (m, 2H), 0.40-0.34 (m, 2H). LCMS: m/z 406 (M+H)+.


Compound 1-((4-((3,3-Difluorocyclopentyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-2-methylpropan-2-ol



embedded image



1H NMR (400 MHz, CDCl3) δ 8.50 (s, 1H), 8.03 (d, J=7.3 Hz, 1H), 7.80 (d, J=7.4 Hz, 1H), 5.68 (m, 2H), 4.60 (m, 1H), 3.83-3.03 (m, 3H), 2.74-2.56 (m, 1H), 2.31 (s, 2H), 2.19-1.97 (m, 2H), 1.83 (m, 1H), 1.30 (s, 6H). LCMS: m/z 433 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-(1-(4-fluorophenyl)azetidin-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 10.05-8.37 (m, 1H), 8.31-7.54 (m, 2H), 7.60-6.68 (m, 4H), 5.49-4.41 (m, 4H), 3.80-3.35 (m, 2H), 2.55-2.12 (m, 6H). LC-MS: m/z 510 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-(1-(pyridin-2-yl)azetidin-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.50 (s, 1H), 8.09 (m, 2H), 7.80 (s, 1H), 7.49 (s, 1H), 6.66 (s, 1H), 6.26 (m, 2H), 5.77 (m, 1H), 4.99-4.34 (m, 4H), 3.96 (m, 2H), 2.42-1.71 (m, 6H). LCMS: m/z 493 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-(1-(pyridin-3-yl)azetidin-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.50 (d, J=8 Hz, 1H), 8.07-8.01 (m, 2H), 7.92 (s, 1H), 7.80 (d, J=8 Hz, 1H), 7.17-7.14 (m, 1H), 6.80-6.79 (m, 1H), 6.15-5.34 (m, 2H), 5.14-4.51 (m, 2H), 4.39-4.35 (m, 2H), 3.89-3.78 (m, 2H), 2.62-2.57 (m, 1H), 2.30-2.11 (m, 5H). LCMS: m/z 493 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-((1r,3r)-3-(4-fluorophenyl)cyclobutyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.55 (d, J=7.6 Hz, 1H), 8.21-8.01 (m, 1H), 7.88 (m, 1H), 7.26-7.15 (m, 2H), 7.04 (t, J=8.4 Hz, 2H), 4.89-4.35 (m, 2H), 3.88-3.40 (m, 1H), 3.00-1.75 (m, 11H). LC-MS: m/z 509 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-((1s,3s)-3-(4-fluorophenyl)cyclobutyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.65-8.42 (m, 1H), 8.02 (t, J=7.3 Hz, 1H), 7.80 (d, J=7.6 Hz, 1H), 7.20-7.12 (m, 2H), 7.01 (t, J=8.6 Hz, 2H), 5.82-5.20 (m, 2H), 4.83-4.37 (m, 2H), 3.40-3.11 (m, 1H), 3.00-1.75 (m, 10H). LC-MS: m/z 509 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-(3-phenylcyclobutyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.65-8.42 (m, 1H), 8.01 (t, J=7.8 Hz, 1H), 7.80 (d, J=7.4 Hz, 1H), 7.42-7.29 (m, 3H), 7.23 (t, J=6.4 Hz, 1H), 6.07-5.20 (m, 2H), 4.90-4.40 (m, 2H), 4.13-3.56 (m, 1H), 2.75-1.75 (m, 10H). LC-MS: m/z 491 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-(1-methylpyrrolidin-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.62-8.48 (m, 1H), 8.09-7.94 (m, 1H), 7.80 (t, J=7.4 Hz, 1H), 4.91-4.27 (m, 2H), 3.42-2.56 (m, 9H), 2.44-2.22 (m, 4H), 2.00-1.57 (m, 4H). LC-MS: m/z 444 (M+H)+.


Compound (3-((4-((3,3-Difluorocyclopentyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyrrolidin-1-yl)(phenyl)methanone



embedded image



1H NMR (400 MHz, CDCl3) δ 8.76-8.35 (m, 1H), 8.10-7.91 (m, 1H), 7.84 (s, 1H), 7.53 (d, J=7.4 Hz, 2H), 7.43 (d, J=6.5 Hz, 3H), 5.75-5.29 (m, 2H), 4.86-3.77 (m, 4H), 3.70-3.23 (m, 2H), 2.79-1.74 (m, 8H). LC-MS: m/z 534 (M+H)+.


Compound N2-(1-benzylpyrrolidin-3-yl)-N4-(3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ: 8.62-8.40 (m, 1H), 8.12-7.93 (m, 1H), 7.79 (d, J=7.3 Hz, 1H), 7.57-7.28 (m, 5H), 6.23-5.45 (m, 2H), 5.07-3.75 (m, 4H), 3.06-2.40 (m, 4H), 2.38-1.60 (m, 8H). LC-MS: m/z 520 (M+H)+.


Compound (4S)-4-((4-((3,3-difluorocyclopentyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-1-(pyridin-2-yl)pyrrolidin-2-one



embedded image



1H NMR (400 MHz, CDCl3) δ 8.66-8.29 (m, 3H), 8.00 (s, 1H), 7.73 (m, 2H), 7.12-7.01 (m, 1H), 5.73 (m, 2H), 5.00-4.40 (m, 3H), 4.24-4.05 (m, 1H), 3.15 (m, 6.3 Hz, 1H), 2.85-2.51 (m, 2H), 2.21 (m, 5H). LCMS: m/z 521 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-(3-phenylcyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.59-8.48 (m, 1H), 8.03-7.99 (m, 1H), 7.80 (d, J=4 Hz, 1H), 7.34-7.30 (m, 3H), 7.23-7.19 (m, 2H), 5.63-5.31 (m, 2H), 4.70-4.56 (m, 2H), 3.29-3.17 (m, 1H), 2.65-2.04 (m, 9H), 1.81 (m, 3H). LCMS: m/z 505 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-(2,3-dihydro-1H-inden-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image


1H NMR (400 MHz, CDCl3): δ 8.64-8.46 (m, 1H), 8.01 (d, J=12.8 Hz, 1H), 7.78 (d, J=7.6 Hz, 1H), 7.21 (m, 3H), 5.76-5.31 (m, 2H), 5.02-4.44 (m, 2H), 3.45-3.36 (m, 2H), 2.97-2.91 (m, 2H), 2.68-2.58 (m, 1H), 2.31-2.09 (m, 4H), 1.85-1.84 (m, 1H), 1.25 (m, 1H). LCMS: m/z 477 (M+H)+.


Compound N2-(5-chloro-2,3-dihydro-1H-inden-2-yl)-N4-(3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.57-8.48 (m, 1H), 8.01 (d, J=8 Hz, 1H), 7.81 (d, J=8 Hz, 1H), 7.26-7.18 (m, 3H), 6.02-5.36 (m, 2H), 5.05-4.43 (m, 2H), 3.48-3.32 (m, 2H), 3.04-2.87 (m, 2H), 2.70-2.58 (m, 1H), 2.36-2.10 (m, 4H), 1.99-1.82 (m, 1H). LCMS: m/z 511 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-(5-fluoro-2,3-dihydro-1H-inden-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.59-8.47 (m, 1H), 8.04-7.97 (m, 1H), 7.79 (d, J=7.2 Hz, 1H), 7.26-7.17 (m, 1H), 6.96-6.87 (m, 2H), 5.75-5.30 (m, 2H), 5.06-4.44 (m, 2H), 3.39-3.32 (m, 2H), 2.95-2.62 (m, 3H), 2.33-2.05 (m, 4H), 1.87-1.82 (m, 1H). LCMS: m/z 495 (M+H)+.


Compound N2-(5-bromo-2,3-dihydro-1H-inden-2-yl)-N4-(3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.57-8.47 (m, 1H), 8.04-7.99 (m, 1H), 7.82-7.78 (m, 1H), 7.52-7.29 (m, 2H), 7.18-7.00 (m, 1H), 5.70-5.30 (m, 2H), 5.03-4.48 (m, 2H), 3.40-3.30 (m, 2H), 2.96-2.63 (m, 3H), 2.35-2.07 (m, 4H), 1.87-1.25 (m, 1H). LCMS: m/z 556 (M+H)+.


Compound 2-((4-((3,3-Difluorocyclopentyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-2,3-dihydro-1H-indene-5-carbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.57-8.47 (m, 1H), 8.01 (d, J=8 Hz, 1H), 7.80 (d, J=4 Hz, 1H), 7.54-7.50 (m, 2H), 7.37-7.33 (m, 1H), 5.77-5.34 (m, 2H), 5.07-4.56 (m, 2H), 3.43 (m, 2H), 3.03-2.99 (m, 2H), 2.70-2.58 (m, 1H), 2.32-2.04 (m, 5H). LCMS: m/z 502 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-(5-methoxy-2,3-dihydro-1H-inden-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.69-8.46 (m, 1H), 8.00 (d, J=8 Hz, 1H), 7.79-7.74 (m, 1H), 7.14 (s, 1H), 6.81-6.75 (m, 2H), 5.76-5.33 (m, 2H), 5.02-4.78 (m, 1H), 4.58-4.47 (m, 1H), 3.80 (s, 3H), 3.39-3.33 (m, 2H), 2.93-2.62 (m, 4H), 2.31-2.10 (m, 4H). LCMS: m/z 507 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-(6,7-dihydro-5H-cyclopenta[b]pyridin-6-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ: 8.64-8.35 (m, 2H), 8.07-7.76 (m, 2H), 7.53 (m, 1H), 7.11 (m, 1H), 5.86-5.30 (m, 2H), 5.01-4.54 (m, 2H), 3.62-2.60 (m, 5H), 2.40-1.86 (m, 5H). LCMS: m/z 478.2 (M+H)+.


Compound N2-(4,6-dibromo-2,3-dihydro-1H-inden-2-yl)-N4-(3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.55-8.46 (m, 1H), 8.07-7.99 (m, 1H), 7.80 (d, J=8 Hz, 1H), 7.51-7.44 (m, 2H), 7.09-7.04 (m, 2H), 6.03-5.38 (m, 2H), 5.03-4.43 (m, 2H), 3.48-3.25 (m, 2H), 3.06-2.88 (m, 2H), 2.69-2.58 (m, 1H), 2.31-2.29 (d, J=8 Hz, 2H), 2.17-2.01 (m, 2H), 1.90-1.77 (m, 1H). LCMS: m/z 635 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-(1-phenylpyrrolidin-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.61-8.49 (m, 1H), 8.04-7.98 (m, 1H), 7.80-7.78 (m, 1H), 7.27-7.23 (m, 2H), 6.74-6.70 (t, 1H), 6.59 (d, 2H), 5.73-5.33 (m, 2H), 4.91-4.48 (m, 2H), 3.75-3.28 (m, 4H), 2.62-1.87 (m, 8H). LCMS: m/z 506 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-(1-(pyridin-2-yl)pyrrolidin-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.67-8.44 (m, 1H), 8.17 (s, 1H), 8.01 (d, J=8.8 Hz, 1H), 7.79 (d, J=6.4 Hz, 1H), 7.48 (t, J=7.7 Hz, 1H), 6.59 (t, J=5.9 Hz, 1H), 6.39 (d, J=8.1 Hz, 1H), 5.84-4.30 (m, 4H), 4.07-3.51 (m, 4H), 2.83-1.97 (m, 8H). LC-MS: m/z 507 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-(1-(pyrimidin-2-yl)pyrrolidin-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.64-8.48 (m, 1H), 8.34-8.33 (m, 2H), 8.04-7.38 (m, 1H), 7.80-7.79 (m, 1H), 6.54-6.52 (m, 1H), 5.73-5.35 (m, 2H), 4.61-4.58 (m, 2H), 4.00-3.93 (m, 1H), 3.79-3.58 (m, 3H), 2.90-2.61 (m, 1H), 2.38-2.12 (m, 6H), 1.88-1.82 (m, 1H). LCMS: m/z 508 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-(6,6-difluorospiro[3.3]heptan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.66-8.39 (m, 1H), 8.02 (d, J=7.2 Hz, 1H), 7.80 (d, J=6.6 Hz, 1H), 5.73-5.20 (m, 2H), 4.80-4.30 (m, 2H), 2.83-1.78 (m, 14H). LC-MS: m/z 491 (M+H)+.


Compound 1-((4-((4,4-Difluorocyclohexyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-2-methylpropan-2-ol



embedded image



1H NMR (400 MHz, DMSO-d6) δ 8.63-8.45 (m, 1H), 8.24 (t, J=7.7 Hz, 1H), 8.03 (d, J=7.5 Hz, 1H), 7.83 (d, J=7.2 Hz, 1H), 7.57-7.10 (m, 1H), 4.62 (m, 1H), 4.03-4.04 (m, 1H), 3.37 (s, 2H), 2.08 (s, 2H), 1.93-1.85 (m, 4H), 1.62 (d, J=12.2 Hz, 2H), 1.12 (s, 6H). LC-MS: m/z 447 (M+H)+.


Compound N2-(4,4-difluorocyclohexyl)-N4-(tetrahydro-2H-pyran-4-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.55-8.48 (m, 1H), 8.05-7.99 (m, 1H), 7.80 (d, J=7.6 Hz, 1H), 5.44-5.12 (m, 2H), 4.26-4.01 (m, 4H), 3.74-3.52 (m, 2H), 2.20-1.83 (m, 8H), 1.73-1.50 (m, 4H); LCMS: m/z 459.2 (M+H)+.


Compound Tert-butyl 4-((4-((4,4-difluorocyclohexyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)piperidine-1-carboxylate



embedded image



1H NMR (400 MHz, CDCl3) δ 8.48-8.40 (m, 1H), 7.97-7.91 (m, 1H), 7.74-7.69 (m, 1H), 5.56-5.15 (m, 2H), 4.18-3.85 (m, 4H), 2.95-2.82 (m, 2H), 2.10-1.54 (m, 9H), 1.40 (m, 12H). LCMS: m/z 558.3 (M+H)+.


Compound 1-(4-((4-((4,4-Difluorocyclohexyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)piperidin-1-yl)ethanone



embedded image



1H NMR (400 MHz, CDCl3) δ 8.54-8.48 (m, 1H), 8.06-7.97 (m, 1H), 7.81 (d, J=7.2 Hz, 1H), 5.57-5.14 (m, 2H), 4.54-3.83 (m, 4H), 3.25-2.83 (m, 4H), 2.24-2.05 (m, 7H), 1.77-1.44 (m, 6H). LCMS: m/z 500.2 (M+H)+.


Compound N2-(4,4-difluorocyclohexyl)-N4-(1-(methylsulfonyl)piperidin-4-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image


1H NMR (400 MHz, CDCl3) δ 8.58-8.48 (m, 1H), 8.05-7.96 (m, 1H), 7.80 (d, J=6.8 Hz, 1H), 5.56-5.18 (m 2H), 4.25-3.95 (m, 4H), 3.64-3.45 (m, 2H), 2.26-1.55 (m, 15H). LCMS: m/z 536.2 (M+H)+.


Compound N2-(4,4-difluorocyclohexyl)-N4-(6,6-difluorospiro[3.3]heptan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.66-8.39 (m, 1H), 8.14-7.94 (m, 1H), 7.81 (d, J=7.7 Hz, 1H), 6.04-5.01 (m, 2H), 4.74-3.74 (m, 2H), 2.79-2.42 (m, 6H), 2.31-1.96 (m, 6H), 1.85-1.50 (m, 4H). LC-MS: m/z 505 (M+H)+.


Compound N2-(3,3-difluorocyclobutyl)-N4-(4,4-difluorocyclohexyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.54-8.48 (m, 1H), 8.02 (d, J=8 Hz, 1H), 7.81 (d, J=4 Hz, 1H), 5.77-5.14 (m, 2H), 4.53-3.96 (m, 2H), 3.11-3.03 (m, 2H), 2.70-2.54 (m, 2H), 2.15-2.09 (m, 4H), 1.93 (m, 2H), 1.69 (m, 2H). LCMS: m/z 465 (M+H)+.


Compound N2-(4,4-difluorocyclohexyl)-N4-(3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.48-8.56 (m, 1H), 8.01 (d, J=4 Hz, 1H), 7.80 (d, J=4 Hz, 1H), 5.63-5.13 (m, 2H), 4.72-3.97 (m, 2H), 2.62 (m, 1H), 2.31 (m, 2H), 2.14-1.86 (m, 9H), 1.74 (m, 2H). LCMS: m/z 479 (M+H)+.


Compound (R)-6-(6-chloropyridin-2-yl)-N2-(1,1,1,3,3,3-hexafluoropropan-2-yl)-N4-(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.40-8.34 (m, 1H), 7.87-7.84 (m, 1H), 7.53 (d, J=8 Hz, 1H), −6.15-5.83 (m, 1H), 5.77-5.31 (m, 2H), 5.17-4.76 (m, 1H), 1.51-1.43 (m, 3H); LC-MS: m/z 469 (M+H)+.


Compound (R)-6-(6-chloropyridin-2-yl)-N2-(4,4-difluorocyclohexyl)-N4-(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, DMSO-d6) δ 8.33 (m, 2H), 8.13-7.92 (m, 2H), 7.78-7.59 (m, 1H), 5.21-4.76 (m, 1H), 4.06 (m, 1H), 2.23-1.45 (m, 8H), 1.42-1.25 (m, 3H). LCMS: m/z 437 (M+H)+.









TABLE 2







The following targets were prepared by the procedure described in Scheme 2


above.













LCMS











Compound


Expected
Found


ID
Name
Structure
MW
(M + 1)+





12
1-(4-((R)-1- cyclopropylethylamino)- 6-(6- (trifluoromethyl) pyridin-2-yl)-1,3,5-triazin- 2-ylamino)propan-2- ol


embedded image


382.2
383.2





10
1-(4-(1- cyclopropylethylamino)- 6-(6- (trifluoromethyl) pyridin-2-yl)-1,3,5-triazin- 2-ylamino)-2- methylpropan-2-ol


embedded image


396.2
397.2





24
(R)-N2-(1- cyclopropylethyl)-N4- (pyridin-2-ylmethyl)- 6-(6-(trifluoro- methyl)pyridin-2-yl)- 1,3,5-triazine-2,4- diamine


embedded image


415.2
416.2





25
N2-((R)-1- cyclopropylethyl)-N4- (1-(pyridin-2- yl)ethyl)-6-(6- (trifluoromethyl) pyridin-2-yl)- 1,3,5-triazine-2,4- diamine


embedded image


429.2
430.2






N2-cyclohexyl-N4- isopropyl-6-phenyl- 1,3,5-triazine-2,4- diamine


embedded image


311.2
312.2





69
N2-isopropyl-6- phenyl-N4- (tetrahydro-2H- pyran-3-yl)-1,3,5- triazine-2,4-diamine


embedded image


313.2
314.2









Example 3. Preparation of Di-Aliphatic Triazine Compounds of Formula F

The compounds of this Example are prepared by general Scheme 3, set forth below.




embedded image


Step 1: Preparation of 6-chloro-N2,N4-bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine

To a mixture of 2,4,6-trichloro-1,3,5-triazine (2 g, 10.9 mmol, 1 eq) and (R)-1-cyclopropylethanamine hydrochloride (2.7 g, 22.8 mmol, 2.1 eq) in acetone (50 mL) was added DIPEA (4.5 mL, 27.3 mmol, 2.5 eq) and CsF (3.3 g, 21.8 mmol, 2.0 eq). The mixture was stirred at 40° C. for 3 hr and then at 50° C. for another 3 hr. The mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by a standard method to afford the desired product.




embedded image


LC-MS: m/z 282.1 (M+H)+.


Step 2: Preparation of N2,N4-bis((R)-1-cyclopropylethyl)-6-(pyridin-4-yl)-1,3,5-triazine-2,4-diamine

To a mixture of 6-chloro-N2,N4-bis((R)-1-cyclo-propylethyl)-1,3,5-triazine-2,4-diamine (100 mg, 0.36 mmol), pyridin-4-ylboronic acid (66 mg, 0.52 mmol), and K2CO3 (99 mg, 0.72 mmol) in 1,4-dioxane (3 mL) and water (1 mL) stirred at r.t. under the atmosphere of nitrogen was added Pd(PPh3)4 (42 mg, 0.036 mmol) in one portion. The reaction mixture was stirred at 80° C. overnight. The mixture was partitioned between water and EtOAc. The organic layer was dried over anhydrous Na2SO4 and concentrated. The residue was purified by a standard method to give the desired product.




embedded image



1H NMR (400 MHz, DMSO-d6): δ 7.61-7.28 (m, 6H), 3.58-3.39 (m, 2H), 1.23-1.10 (m, 3H), 1.02-0.89 (m, 2H), 0.48-0.26 (m, 6H), 0.20-0.10 (m, 2H). LC-MS: m/z 325.2 (M+H)+.


The procedure set forth above was used to produce the following compounds using the appropriate starting materials.


Compound 6-(3-chlorophenyl)-N2,N4-bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, DMSO-d6): δ 8.30-8.14 (m, 2H), 7.58 (d, J=7.7 Hz, 1H), 7.52 (t, J=7.8 Hz, 1H), 7.41 (d, J=8.2 Hz, 1H), 7.35-7.26 (m, 1H), 3.70-3.43 (m, 2H), 1.26-1.15 (m, 6H), 1.02-0.92 (m, 2H), 0.49-0.30 (m, 6H), 0.26-0.11 (m, 2H). LC-MS: m/z 358.2 (M+H)+.


Compound 3-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl)phenol



embedded image



1H NMR (400 MHz, CDCl3): δ 7.99-7.64 (m, 2H), 7.29 (d, J=7.9 Hz, 1H), 6.96 (d, J=7.8 Hz, 1H), 5.78-5.04 (m, 2H), 4.07 (s, 1H), 3.60 (m, 2H), 1.27 (d, J=4.3 Hz, 6H), 0.89 (d, J=3.6 Hz, 2H), 0.43 (m, 8H). LC-MS: m/z 340.2 (M+H)+.









TABLE 3







The following targets were prepared by the procedure described in Scheme 3


above.













LCMS











Compound


Expected
Found


ID
Name
Structure
MW
(M + 1)+





92
N2,N4-bis((R)-1- cyclopropylethyl)-6- (pyridin-3-yl)-1,3,5- triazine-2,4-diamine


embedded image


324.2
325.2





78
N2,N4-bis((R)-1- cyclopropylethyl)-6- (2-fluoro-5- methoxyphenyl)- 1,3,5-triazine-2,4- diamine


embedded image


371.2
372.2





66
6-(2-chlorophenyl)- N2,N4-bis((R)-1- cyclopropylethyl)- 1,3,5-triazine-2,4- diamine


embedded image


357.2
358.2





77
6-(2-fluorophenyl)- N2,N4-bis((R)-1- cyclopropylethyl)- 1,3,5-triazine-2,4- diamine


embedded image


341.2
342.2





82
(3-(4,6-bis((R)-1- cyclopropylethylamino)- 1,3,5-triazin-2- yl)phenyl) methanol


embedded image


353.2
354.2






N2,N4-bis(1- cyclopropylethyl)-6- (1H-indol-4-yl)-1,3,5- triazine-2,4-diamine


embedded image


362.2
363.2






N2,N4-bis((R)-1- cyclopropylethyl)-6- (1H-indol-4-yl)-1,3,5- triazine-2,4-diamine


embedded image


362.2
363.2









Example 4. Preparation of Di-Aliphatic Triazine Compounds of Formula G

The compounds of this Example are prepared by general Scheme 4, set forth below.




embedded image


Step 1. Preparation of N2-(3,3-difluorocyclopentyl)-N4-(pyrrolidin-3-yl)-6-(6-(trifluoro methyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

To a solution of tert-butyl 3-(4-(3,3-difluorocyclopentylamino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-ylamino)pyrrolidine-1-carboxylate (160 mg, 0.3 mmol) in DCM (3 mL) at 0° C. was added TFA (1 mL). The mixture was stirred at room temperature for 2 hrs and then concentrated. The residue was extracted with EtOAc. Combined organic layers were washed with saturated aqueous NaHCO3 and brine, dried over anhydrous Na2SO4 and then concentrated to afford the desired product which was used in the next step without any further purification.




embedded image


LC-MS: m/z 430.2 (M+H)+.


Step 2. Preparation of N2-(3,3-difluorocyclopentyl)-N4-(1-(methylsulfonyl)pyrroli-din-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

A mixture of N2-(3,3-difluorocyclopentyl)-N4-(pyrrolidin-3-yl)-6-(6-(trifluoromethyl) pyridin-2-yl)-1,3,5-triazine-2,4-diamine (20 mg, 0.05 mmol), Et3N (9.4 mg, 0.09 mmol), MsCl (6 mg, 0.06 mmol) in DCM (2 mL) was stirred at room temperature overnight. The mixture was concentrated and the residue was purified by a standard method to afford the desired product.




embedded image



1H NMR (400 MHz, CDCl3): δ 8.62-8.46 (m, 1H), 8.04 (d, J=7.5 Hz, 1H), 7.81 (d, J=7.6 Hz, 1H), 5.79-5.38 (m, 2H), 4.80-4.53 (m, 2H), 3.76-3.52 (m, 2H), 3.39-3.23 (m, 1H), 2.91 (s, 3H), 2.69-2.57 (m, 1H), 2.45-2.25 (m, 3H), 2.20-1.98 (m, 3H), 1.95-1.81 (m, 1H), 1.22-1.18 (m, 1H). LC-MS: m/z 508.1 (M+H)+.


The procedure set forth above was used to produce the following compounds using the appropriate starting material.


Compound methyl 3-((4-((3,3-difluorocyclopentyl)amino)-6-(6-(trifluoro methyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyrrolidine-1-carboxylate



embedded image



1H NMR (400 MHz, CDCl3): δ 8.58-8.48 (m, 1H), 8.02 (d, J=7.5 Hz, 1H), 7.81 (d, J=7.5 Hz, 1H), 5.94-5.18 (m, 2H), 4.72-4.47 (m, 2H), 3.83-3.74 (m, 1H), 3.72 (s, 3H), 3.65-3.51 (m, 2H), 3.44-3.28 (m, 1H), 2.45-1.80 (m, 7H). LC-MS: m/z 488.2 (M+H)+.


Compound 1-(3-((4-(3,3-difluorocyclopentyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyrrolidin-1-yl)ethanone



embedded image



1H NMR (400 MHz, CDCl3): δ 8.55 (m, 1H), 8.07 (d, J=6.8 Hz, 1H), 7.85 (t, J=6.7 Hz, 1H), 4.84-4.30 (m, 2H), 3.97-3.52 (m, 4H), 2.62 (m, 1H), 2.50-2.22 (m, 3H), 2.22-1.98 (m, 3H), 1.25 (s, 3H). LC-MS: m/z 472.2 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-(1-methylpyrrolidin-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

To a solution of tert-butyl 3-(4-(3,3-difluorocyclopentylamino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-ylamino)pyrrolidine-1-carboxylate (25 mg, 0.05 mmol) in THF (3 mL) at 0° C. was added LiAlH4 (5 mg, 0.14 mmol). The mixture was stirred at 0° C. for 2 hr, then at r.t for 30 min, and finally at 60° C. for 2 hr. The reaction mixture was quenched with water and extracted by EtOAc. Combined organic layers were washed with brine, dried over anhydrous Na2SO4, and concentrated. The residue was purified by a standard method to give the desired product.




embedded image



1H NMR (400 MHz, CDCl3): δ 8.55 (m, 1H), 8.08-7.93 (m, 1H), 7.80 (t, J=7.4 Hz, 1H), 4.63 (m, 2H), 3.47-2.87 (m, 3H), 2.69 (m, 6H), 2.28 (m, 4H), 1.84 (m, 4H). LC-MS: m/z 444.2 (M+H)+.


Example 5. Preparation of Di-Aliphatic Triazine Compounds

The compounds of this Example are prepared by general Scheme 5, set forth below.




embedded image


Step 1: Preparation of 6-(6-(azetidin-1-yl)pyridin-2-yl)-N2,N4-bis((R)-1-cyclopropyl-ethyl)-1,3,5-triazine-2,4-diamine

A mixture of 6-(6-chloropyridin-2-yl)-N2,N4-bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine (40 mg, 0.11 mmol), azetidine (7.6 mg, 0.13 mmol), 2,2′-bis-(diphenylphosphino)-1,1′-binaphthyl (6.9 mg, 0.01 mmol), sodium tert-butoxide (15 mg, 0.16 mmol) and tris(dibenzylideneacetone)-dipalladium (10.2 mg, 0.01 mmol) in toluene (3 mL) was stirred at 100° C. under an atmosphere of nitrogen overnight. The mixture was cooled to room temperature and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by a standard method to afford the desired product.




embedded image



1H NMR (400 MHz, CD3OD): δ 8.49 (s, 1H), 7.72-7.53 (m, 2H), 6.56 (d, J=7.4, 1H), 4.11 (t, J=7.4, 4H), 3.59 (m, 2H), 2.42 (p, J=7.4, 2H), 1.30 (d, J=6.5, 6H), 0.98 (s, 2H), 0.67-0.13 (m, 8H). LC-MS: m/z 380.2 (M+H)+.


Step 2: Preparation of N2,N4-bis((R)-1-cyclopropylethyl)-6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine

To a solution of 6-(6-chloropyridin-2-yl)-N2,N4-bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine (20 mg, 0.05 mmol) in methanol (2 mL) was added Pd/C (2 mg) under an atmosphere of nitrogen. The mixture was then stirred at room temperature under a hydrogen balloon overnight. The mixture was filtered and the filtrate was concentrated. The residue was purified by a standard method to afford the desired product.




embedded image



1H NMR (400 MHz, DMSO-d6): δ 8.82-8.03 (m, 4H), 7.75 (m, 2H), 3.79-3.45 (m, 2H), 1.21 (d, J=6.3 Hz, 6H), 1.07-0.84 (m, 2H), 0.55-0.05 (m, 8H). LC-MS: m/z 325.2 (M+H)+.


Example 6. Preparation of Di-Aliphatic Triazine Compounds of Formula H

The compounds of this Example are prepared by general Scheme 6, set forth below.




embedded image


Step 1: Preparation of 2-((4-(2-fluoro-5-hydroxyphenyl)-6-(isopropylamino)-1, 3,5-triazin-2-yl)amino)-2-methylpropanenitrile

To a solution of 2-((4-(2-fluoro-5-methoxyphenyl)-6-(isopropylamino)-1,3,5-triazin-2-yl)amino)-2-methylpropanenitrile (200 mg, 0.6 mmol) in anhydrous DCM (3 mL) at −65° C. was added dropwise BBr3 (0.6 mL) and the reaction mixture was stirred at this temperature for 20 min. The mixture was slowly warmed up to 0° C. and stirred for 10 min. and then stirred at room temperature for 1 hr. The reaction was quenched with icy Sat. aq. NaHCO3 till pH=8. The resulting mixture was extracted with EtOAc (2×10 mL). Combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated under reduced pressure. The residue was purified by a standard method to afford the desired product.




embedded image



1H NMR (400 MHz, CDCl3): δ 7.20 (s, 1H), 6.96 (t, J=9.6 Hz, 1H), 6.83 (d, J=8.6 Hz, 1H), 5.72 (m, 2H), 4.26 (s, 1H), 1.79 (s, 6H), 1.26 (d, J=6.1 Hz, 6H). LC-MS: m/z 331.2 (M+H)+.


Example 7. Preparation of Di-Aliphatic Pyrimidine Compounds of Formula J

The compounds of this Example are prepared by general Scheme 7, set forth below.




embedded image


Step 1: Preparation of 6-(trifluoromethyl)picolinimidamide

To a solution of 6-(trifluoromethyl)picolinonitrile (50 mg, 0.3 mmol, 1 eq) in EtOH (3 mL) was added NaOMe (1.6 mg, 0.03 mmol, 0.1 eq) at 0° C. The mixture was stirred at r.t. for 1 hr, followed by addition of NH4Cl (21 mg, 0.39 mmol, 13 eq). The resulting mixture was stirred at 90° C. for 1 hr and cooled to room temperature. The mixture was adjusted pH to 9 with saturated aqueous NaHCO3 and then extracted with EtOAc. Combined organic layers were washed with brine, dried over anhydrous Na2SO4, and concentrated. The residue was purified by a standard method to afford the desired product.




embedded image


LC-MS: m/z 190.1 (M+H)+.


Step 2: Preparation of 2-(6-(trifluoromethyl)pyridin-2-yl)pyrimidine-4,6-diol

To a solution of sodium (366 mg, 15.9 mmol, 5.0 eq) in anhydrous EtOH (6 mL) was added dropwise a solution of 6-(trifluoromethyl)picolinimidamide (600 mg, 3.2 mmol) in EtOH. The reaction mixture was stirred at r.t. for 1 hr, followed by addition of diethyl malonate (1 mL, 6.4 mmol, 2.0 eq). The mixture was stirred at reflux overnight and then cooled to room temperature. The resulting mixture was adjusted pH to 7 by 1 N aq. HCl solution. The suspension was filtered and the filter cake was washed with water. The solid was suspended in MeOH and filtered. The filtrate was concentrated under reduced pressure to give the desired product which was used directly in the next step without any further purification.




embedded image


LC-MS: m/z 256.0 (M−H).


Step 3: Preparation of 4,6-dichloro-2-(6-(trifluoromethyl)pyridin-2-yl)pyrimidine

A solution of 2-(6-(trifluoromethyl)pyridin-2-yl)pyrimidine-4,6-diol (1 g, 3.9 mmol) in POCl3 (6 mL) was stirred at 90° C. overnight and then concentrated to remove the volatile. The residue was purified by a standard method to afford the desired product.




embedded image


LC-MS: m/z 294.0 (M+H)+.


Step 4: Preparation of (R)-6-chloro-N-(1-cyclopropylethyl)-2-(6-(trifluoromethyl)-pyridin-2-yl)pyrimidin-4-amine

To a solution of 4,6-dichloro-2-(6-(trifluoromethyl) pyridin-2-yl)pyrimidine (80 mg, 0.27 mmol, 1 eq) in THF (3 mL) was added (R)-1-cyclopropylethanamine (0.06 mL, 0.6 mmol, 2.2 eq) and Et3N (0.07 mL, 0.54 mmol, 2 eq). The reaction mixture was stirred at room temperature overnight and concentrated. The residue was purified by a standard method to give the desired product.




embedded image


LC-MS: m/z 343.1 (M+H)+.


Step 5: Preparation of N4,N6-bis((R)-1-cyclopropylethyl)-2-(6-(trifluoromethyl)pyri din-2-yl)pyrimidine-4,6-diamine

To a solution of (R)-6-chloro-N-(1-cyclopropylethyl)-2-(6-(trifluoromethyl)-pyridin-2-yl)pyrimidin-4-amine (50 mg, 0.15 mmol, 1 eq) in DMSO (2 mL) was added (R)-1-cyclopropylethanamine hydrochloride (22 mg, 0.18 mmol, 1.2 eq) and DIPEA (0.08 mL, 0.45 mmol, 3 eq). The mixture was irradiated under microwave at 160° C. for 1.5 hr. After addition of (R)-1-cyclopropylethanamine (0.18 mmol, 1.2 eq), the resulting mixture was stirred and irradiated under microwave at 160° C. for another 2 hr. The mixture was cooled to r.t. and then partitioned between EtOAc and water. The organic layer was washed with water and brine, dried over anhydrous Na2SO4, and concentrated. The residue was purified by a standard method to give the desired product.




embedded image



1H NMR (400 MHz, CDCl3): δ 8.40 (d, J=7.9 Hz, 1H), 7.87 (t, J=7.9 Hz, 1H), 7.62 (d, J=7.8 Hz, 1H), 5.19 (m, 3H), 3.13 (d, J=6.3 Hz, 2H), 1.19 (d, J=6.4 Hz, 6H), 0.96-0.72 (m, 2H), 0.52-0.33 (m, 4H), 0.33-0.10 (m, 4H). LC-MS: m/z 392.2 (M+H)+.


The procedure set forth above was used to produce the following compounds using the appropriate starting materials.


Compound N4,N6-bis((S)-1-cyclopropylethyl)-2-(6-(trifluoromethyl)pyridin-2-yl) pyrimidine-4,6-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.49 (d, J=7.8 Hz, 1H), 7.95 (t, J=7.9 Hz, 1H), 7.71 (d, J=7.8 Hz, 1H), 5.22 (m, 3H), 3.22 (d, J=6.5 Hz, 2H), 1.40-1.15 (m, 6H), 0.95 (m, 2H), 0.61-0.44 (m, 4H), 0.31 (m, 4H). LC-MS: m/z 392.2 (M+H)+.


Compound N4—((R)-1-cyclopropylethyl)-N6—((S)-1-cyclopropylethyl)-2-(6-(trifluoro methyl)pyridin-2-yl)pyrimidine-4,6-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.49 (d, J=7.8 Hz, 1H), 7.97 (t, J=7.9 Hz, 1H), 7.72 (d, J=7.8 Hz, 1H), 5.22 (m, 3H), 3.22 (d, J=6.5 Hz, 2H), 1.68-1.25 (m, 6H), 0.97 (m 2H), 0.61-0.44 (m, 4H), 0.31 (m, 4H). LC-MS: m/z 392.2 (M+H)+.









TABLE 7







The following targets were prepared by the procedure described in Scheme 7


above.













LCMS











Compound


Expected
Found


ID
Name
Structure
MW
(M + 1)+






N4,N6-bis(1- cyclopropylethyl)-2- (6- (trifluoromethyl) pyridin-2-yl) pyrimidine- 4,6-diamine


embedded image


391.2
392.2









Example 9. Preparation of Symmetric Di-Aliphatic Triazine Compounds of Formula K

The compounds of this Example are prepared by general Scheme 9, set forth below.




embedded image


Step 1: Preparation of 2-bromo-6-(1,1-difluoroethyl)pyridine

To a solution of 1-(6-bromopyridin-2-yl)ethanone (26 g, 130 mmol) in dry DCM (150 mL) at 0° C. was added dropwise DAST (84 mL, 650 mmol) over 30 min. The reaction mixture was then slowly allowed to warm up to r.t., and stirred until the reaction was complete. The resulting mixture was slowly poured into ice (300 g) and extracted with DCM (2×50 mL). The combined organic layers were washed with water, dried over anhydrous Na2SO4 and concentrated under reduced pressure. The residue was purified by standard methods to afford 2-bromo-6-(1,1-difluoroethyl)pyridine. LC-MS: m/z 222.0 (M+H)+.


Step 2: Preparation of methyl 6-(1,1-difluoroethyl)picolinate

To a solution of 2-bromo-6-(1,1-difluoroethyl)pyridine (30.2 g, 136 mmol) in MeOH (300 mL) were added 1,1′-bis(diphenylphosphino)-ferrocene (7.5 g, 13.6 mmol), triethylamine (28.4 mL, 204 mmol), and Pd(OAc)2 (1.52 g, 6.7 mmol). The mixture was stirred at 60° C. under CO atmosphere (60 psi) for 16 hr. The resulting mixture was filtered and concentrated under reduced pressure. The residue was purified by standard methods to afford methyl 6-(1,1-difluoroethyl) picolinate. LC-MS: m/z 202.2 (M+H)+.


Step 3: Preparation of 6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazine-2,4 (1H,3H)-dione

To a solution of NaOEt in EtOH (freshly prepared from sodium (1.9 g, 82.6 mmol and EtOH (150 mL)) was added methyl 6-(1,1-difluoroethyl)picolinate (2.8 g, 28 mmol) and biuret (14.0 g, 70 mmol). The mixture was stirred at 90° C. for 16 hr and concentrated under reduced pressure. To the residue was added water (50 mL). The resulting mixture was adjusted the pH to 7 with 1N HCl, and then filtered. The filter cake was washed with water, and dried under high vacuum to afford 6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazine-2,4(1H,3H)-dione. LC-MS: m/z 255.1 (M+H)+.


Step 4: Preparation of 2,4-dichloro-6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazine

To a solution of 6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazine-2,4 (1H,3H)-dione (6 g, 25 mmol) in POCl3 (60 mL) was added PCl5 (26 g, 125 mmol). The mixture was stirred at 100° C. for 16 hr and concentrated under reduced pressure. The residue was purified by standard methods to afford 2,4-dichloro-6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazine. 1H NMR (400 MHz, CDCl3) δ 8.62 (d, 1H), 8.07 (t, 1H), 7.94 (d, 1H), 2.16 (q, 3H). LC-MS: m/z 292.1 (M+H)+.


Step 5: Preparation of N2,N4-bis(4,4-difluorocyclohexyl)-6-(6-(1,1-difluoroethyl) pyridin-2-yl)-1,3,5-triazine-2,4-diamine

To a mixture of 2,4-dichloro-6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazine (582 mg, 2.0 mmol, 1.0 eq) and 4,4-difluorocyclohexanamine hydrochloride (752 mg, 4.4 mmol, 2.2 eq) in THF (12 mL) at r.t. were added CsF (1.2 g, 8.0 mmol, 2 eq) and DIPEA (1.4 mL, 8.0 mmol, 4 eq). The mixture was stirred at 60° C. overnight and then filtered. The filtrate was concentrated under reduced pressure and the residue was purified by standard methods to give the desired product.




embedded image



1H NMR (400 MHz, CDCl3) δ 8.32-8.40 (m, 1H), 7.94 (bs, 1H), 7.78 (bs, 1H), 5.07-5.46 (m, 2H), 3.99-4.18 (m, 2H), 1.71-2.17 (m, 19H). LC-MS: m/z 489.2 (M+H)+.


The procedure set forth in Example 9 was used to produce the following compounds using the appropriate starting materials.


Compound N2,N4-bis(3,3-difluorocyclopentyl)-6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.32-8.43 (m, 1H), 7.93-7.95 (m, 1H), 7.78 (bs, 1H), 5.28-5.70 (m, 2H), 4.54-4.71 (m, 2H), 1.72-2.65 (m, 15H). LC-MS: m/z 461.2 (M+H)+.


Compound N2,N4-bis(3,3-difluorocyclobutyl)-6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.35-8.42 (m, 1H), 7.95 (bs, 1H), 7.80 (bs, 1H), 5.42-5.85 (m, 2H), 4.35-4.52 (m, 2H), 3.04 (bs, 4H), 2.62 (bs, 4H), 2.04-2.16 (m, 3H). LC-MS: m/z 433.2 (M+H)+.


Example 10. Preparation of Symmetric Di-Aliphatic Triazine Compounds of Formula L

The compounds of this Example are prepared by general Scheme 10, set forth below.




embedded image


Step 1: Preparation of 6-(6-chloropyridin-2-yl)-1,3,5-triazine-2,4(1H,3H)-dione

To a dried three-necked round bottom flask were added biuret (14.8 g, 0.14 mol), methyl 6-chloropicolinate (21 g, 0.12 mol) and EtOH (250 mL). The mixture was degassed with N2 three times and then stirred at 25° C. for 20 min. Then the temperature was allowed to rise to 50° C., followed by addition of HC(OMe)3 (17 mL, 0.14 mol) and TFA (1.37 g, 0.01 mol). The reaction mixture (pale yellow slurry) was stirred at this temperature for 30 min, followed by dropwise addition of a solution of NaOEt in EtOH (20% wt, 163 g, 0.48 mol). The resulting yellowish thick slurry was heated to reflux for 2 hr until the reaction was complete. The mixture was cooled to r.t. and concentrated under reduced pressure. The residue was treated with water (200 mL) and concentrated under reduced pressure to remove the remaining ethanol. Then water (300 mL) was added to the residue (while stirring) to form a clear brown solution. The solution was cooled to 10° C. and slowly adjusted to pH 1 by 6N HCl. The resulting mixture was stirred for another 2 hr and filtered. The filter cake was washed with aq. HCl (pH=1), collected and suspended in DCM (300 mL). The suspension was stirred at r.t. for 2 hr, filtered and dried to afford the desired product. LC-MS: m/z 225.0 (M+H)+.


Step 2: Preparation of 2,4-dichloro-6-(6-chloropyridin-2-yl)-1,3,5-triazine

The procedure is the same as Example 1 Step 3 described above. LC-MS: m/z 260.9 (M+H)+.


Step 3: Preparation of 6-(6-chloropyridin-2-yl)-N2,N4-bis((R)-1,1,1-trifluoro propan-2-yl)-1,3,5-triazine-2,4-diamine

A mixture of 2,4-dichloro-6-(6-chloro-pyridin-2-yl)-1,3,5-triazine (0.27 g, 1.04 mol), (R)-1,1,1-trifluoropropan-2-amine hydrochloride (0.39 g, 2.6 mol), and potassium carbonate (0.43 g, 3.1 mol) in dry 1,4-dioxane (2.5 mL) was stirred under the atmosphere of N2 at 50° C. for 36 hr then at 100° C. for another 36 hr until the reaction was complete. The resulting mixture was filtered through Celite and the cake was washed with EtOAc. The filtrate was concentrated and the residue was purified by standard methods to give the desired product.




embedded image



1H NMR (400 MHz, CDCl3) δ 8.32 (m, 1H), 7.80 (m, 1H), 7.48 (d, J=7.9 Hz, 1H), 5.61 (m, 1.5H), 5.25 (m, 0.5H), 5.09 (m, 0.5H), 4.88 (m, 1.5H), 1.54-1.26 (m, 6H). LC-MS: m/z 415 (M+H)+.


The procedure set forth in Example 10 was used to produce the following compounds using the appropriate starting materials.


Compound 6-(6-Chloropyridin-2-yl)-N2,N4-bis((S)-1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.29-8.16 (m, 1H), 7.72 (d, J=7.6 Hz, 1H), 7.41 (d, J=7.9 Hz, 1H), 5.70-5.13 (m, 2H), 5.09-4.71 (m, 2H), 1.34 (m, 6H). LC-MS: m/z 415 (M+H)+.


Compound 6-(6-Chloropyridin-2-yl)-N2—((R)-1,1,1-trifluoropropan-2-yl)-N4—((S)-1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.41-8.23 (m, 1H), 7.83 (s, 1H), 7.51 (d, J=6.2 Hz, 1H), 5.68-5.20 (m, 2H), 5.18-4.81 (m, 2H), 1.48-1.39 (m, 6H). LC-MS: m/z 415 (M+H)+.


Compound 6-(6-Chloropyridin-2-yl)-N2,N4-bis(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.29-8.16 (m, 1H), 7.72 (d, J=7.6 Hz, 1H), 7.41 (d, J=7.9 Hz, 1H), 5.70-5.13 (m, 2H), 5.09-4.71 (m, 2H), 1.34 (m, 6H). LC-MS: m/z 415 (M+H)+.


Compound 6-(6-Chloropyridin-2-yl)-N2,N4-bis(1,1,1-trifluorobutan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.39-8.31 (m, 1H), 7.86-7.79 (m, 1H), 7.50 (d, J=7.8 Hz, 1H), 5.67-5.12 (m, 2H), 4.98-4.65 (m, 2H), 2.07-1.91 (m, 2H), 1.70-1.55 (m, 2H), 1.06 (dd, J=8.6, 6.0 Hz, 6H). LC-MS: m/z 443 (M+H)+.


Compound 6-(6-Chloropyridin-2-yl)-N2,N4-bis((S)-1,1,1-trifluorobutan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.30-8.35 (t, 1H), 7.78-7.82 (t, 1H), 7.47-7.52 (m, 1H), 5.49-5.63 (m, 2H), 4.72-4.89 (m, 2H), 1.95-1.99 (m, 2H), 1.59 (m, 2H), 1.02-1.08 (t, 6H). LC-MS: m/z 443 (M+H)+.


Compound 6-(6-Chloropyridin-2-yl)-N2,N4-bis((R)-1,1,1-trifluorobutan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.31-8.35 (t, 1H), 7.78-7.82 (t, 1H), 7.47-7.49 (m, 1H), 5.16-5.71 (m, 2H), 4.72-4.74 (m, 2H), 1.94-2.01 (m, 2H), 1.62-1.64 (m, 2H), 1.02-1.08 (t, 6H). LC-MS: m/z 443 (M+H)+.


Compound 6-(6-Chloropyridin-2-yl)-N2—((R)-1,1,1-trifluorobutan-2-yl)-N4—((S)-1,1,1-trifluorobutan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1HNMR (400 MHz, CDCl3) δ 8.30-8.35 (m, 1H), 7.81 (s, 1H), 7.47-7.49 (d, 1H), 5.35-5.66 (m, 2H), 4.91-5.13 (d, 1H), 4.72 (s, 1H), 2.00-2.23 (d, 3H), 1.31-1.42 (d, 1H), 1.03-1.07 (m, 6H). LC-MS: m/z 443 (M+H)+.


Compound 3,3′-((6-(6-Chloropyridin-2-yl)-1,3,5-triazine-2,4-diyl)bis(azanediyl))dibutanenitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.21 (s, 1H), 7.73 (t, J=7.6 Hz, 1H), 7.41 (d, J=7.8 Hz, 1H), 5.61-5.18 (m, 2H), 4.59-4.20 (m, 2H), 2.85-2.60 (m, 4H), 1.44-1.36 (m, 6H). LC-MS: m/z 357 (M+H)+.


Compound 6-(6-Chloropyridin-2-yl)-N2,N4-bis(1-cyclopropylpropyl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.26 (d, J=7.3 Hz, 1H), 7.76 (t, J=7.8 Hz, 1H), 7.43 (d, J=7.8 Hz, 1H), 5.37-5.08 (m, 2H), 3.48-3.37 (m, 2H), 1.73-1.56 (m, 4H), 0.98 (t, J=7.3 Hz, 6H), 0.92-0.80 (m, 2H), 0.66-0.20 (m, 8H). LC-MS (m/z): 387.2 (M+H)+.


Compound 6-(6-Chloropyridin-2-yl)-N2,N4-bis(dicyclopropylmethyl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.18 (d, J=7.6 Hz, 1H), 7.69 (t, J=7.8 Hz, 1H), 7.36 (d, J=7.8 Hz, 1H), 5.50-5.01 (m, 2H), 3.30 (s, 2H), 0.89 (m, 4H), 0.50-0.21 (m, 16H). LC-MS: m/z 411.2 (M+H)+.


Compound 6-(6-Chloropyridin-2-yl)-N2,N4-bis(4,4-difluorocyclohexyl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.28 (d, J=8.2 Hz, 1H), 7.80 (t, J=7.5 Hz, 1H), 7.44 (d, J=8.0 Hz, 1H), 6.64-6.12 (m, 2H), 4.17-3.98 (m, 2H), 2.17-1.70 (m, 16H). LC-MS: m/z 459 (M+H)+.


Compound 6-(6-Chloropyridin-2-yl)-N2,N4-bis(3,3-difluorocyclopentyl)-1,3,5-triazine-2,4-diamine



embedded image


1H NMR (400 MHz, CDCl3) δ 8.41-8.25 (m, 1H), 7.85 (t, J=7.6 Hz, 1H), 7.53 (d, J=7.6 Hz, 1H), 5.78-5.37 (m, 2H), 4.69-4.53 (m, 2H), 2.65-2.55 (m, 2H), 2.51-1.98 (m, 8H), 1.85-1.76 (m, 2H). LCMS: m/z 431.1 (M+H)+.


Compound 6-(6-Chloropyridin-2-yl)-N2,N4-bis(2,2-difluorocyclopentyl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.48-8.26 (m, 1H), 7.82 (s, 1H), 7.49 (s, 1H), 5.63 (m, 2H), 4.70 (m, 2H), 2.41-2.08 (m, 6H), 1.83 (m, 4H), 1.66 (s, 2H). LCMS: m/z 431 (M+H)+.


Compound 2,2′-((6-(6-Chloropyridin-2-yl)-1,3,5-triazine-2,4-diyl)bis(azanediyl))dicyclopentanol



embedded image



1H NMR (400 MHz, CDCl3) δ 8.27-8.17 (m, 1H), 7.77 (t, J=7.8 Hz, 1H), 7.45 (d, J=7.9 Hz, 1H), 6.30-5.83 (m, 1H), 5.52 (m, 2H), 5.00 (m, 1H), 4.05-3.88 (m, 2H), 2.32-2.17 (m, 2H), 2.10 (m, 1H), 2.01 (s, 1H), 1.88-1.65 (m, 6H), 1.51 (m, 2H). LCMS: m/z 391 (M+H)+.


Compound 6-(6-Chloropyridin-2-yl)-N2,N4-bis(6,6-difluorospiro[3.3]heptan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.25-7.78 (m, 4H), 7.64 (m, 1H), 4.45-4.24 (m, 2H), 2.72-2.66 (m, 4H), 2.61-2.50 (m, 4H), 2.46-2.41 (m, 4H), 2.22-2.19 (m, 4H). LCMS: m/z 483 (M+H)+.


Compound 6-(4-Chloropyridin-2-yl)-N2,N4-bis(4,4-difluorocyclohexyl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.68 (d, J=8.0 Hz, 1H), 8.48 (s, 1H), 7.62 (d, J=8.0 Hz, 1H), 5.28 (d, J=8.0 Hz, 2H), 4.20-4.02 (m, 2H), 1.98-1.61 (m, 16H). LC-MS: m/z 459.1 (M+H)+.


Compound 6-(5-Chloropyridin-3-yl)-N2,N4-bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.36 (m, 1H), 8.65 (d, J=2.1 Hz, 1H), 8.54 (t, J=1.9 Hz, 1H), 5.46-5.06 (m, 2H), 3.78-3.40 (m, 2H), 1.29 (s, 6H), 0.95-0.87 (m, 2H), 0.56-0.38 (m, 6H), 0.29 (s, 2H). LC-MS: m/z 359 (M+H)+.


Example 11

The compounds of this Example are prepared by general Scheme 11, set forth below.




embedded image


Step 1. Preparation of N2,N4-bis((R)-1-cyclopropylethyl)-6-(6-((4-methoxybenzyl) amino)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

To a solution of 6-(6-chloropyridin-2-yl)-N2,N4-bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine (120 mg, 0.33 mmol), (4-methoxyphenyl)methanamine (69 mg, 0.51 mmol), BINAP (42 mg, 0.66 mmol) and t-BuONa (63 mg, 0.66 mmol) in anhydrous dioxane (2 mL) at r.t. under N2 atmosphere was added Pd2(dba)3 (30 mg, 0.033 mmol) in one portion. The reaction mixture was then stirred at 100° C. overnight then concentrated under reduced pressure to afford the desired product.




embedded image


LCMS: m/z 460 (M+H)+.


Step 2. Preparation of 6-(6-aminopyridin-2-yl)-N2,N4-bis((R)-1-cyclopropyl ethyl)-1,3,5-triazine-2,4-diamine

N2,N4-bis((R)-1-cyclopropylethyl)-6-(6-(4-methoxybenzylamino) pyridin-2-yl)-1,3,5-triazine-2,4-diamine (80 mg, 0.17 mmol) was dissolved in TFA (0.5 mL) under N2 atmosphere. The solution mixture was then stirred at r.t. overnight then concentrated under reduced pressure. The residue was purified by standard methods to afford the desired product.




embedded image


1H NMR (400 MHz, CDCl3) δ 7.71-7.54 (m, 2H), 6.74-6.69 (m, 1H), 6.24-5.30 (m, 2H), 3.70-3.54 (m, 2H), 1.29-1.25 (m, 6H), 0.95-0.90 (m, 2H), 0.58-0.26 (m, 8H). LCMS: m/z 340.2 (M+H)+.


Example 12

The compounds of this example are prepared by general Scheme 12, set forth below.




embedded image


Step 1. Preparation of 6-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl) pyridin-2-ol

To a mixture of N2,N4-bis((R)-1-cyclopropylethyl)-6-(6-methoxypyridin-2-yl)-1,3,5-triazine-2,4-diamine (50 mg, 0.14 mmol) and NaI (63 mg, 0.42 mmol) in anhydrous CH3CN (1 mL) at r.t. was added TMSCl (46 mg, 0.42 mmol) in one portion. The reaction mixture was stirred 80° C. for 6 hr then concentrated under reduced pressure. The residue was purified by standard methods to afford the desired product. 1H NMR (400 MHz, CDCl3) δ 10.24 (br s, 1H), 7.51 (t, J=8.0 Hz, 1H), 7.29-7.20 (m, 1H), 6.71 (d, J=8.0 Hz, 1H), 5.42-5.31 (m, 2H), 3.63-3.52 (m, 2H), 1.30-1.25 (m, 6H), 0.98-0.87 (m, 2H), 0.62-0.21 (m, 8H). LCMS: m/z 341.2 (M+H)+.


Example 13

The compounds of this Example are prepared by general Scheme 13, set forth below.




embedded image


Step 1. Preparation of N2,N4-bis((R)-1-cyclopropylethyl)-6-(6-vinylpyridin-2-yl)-1,3,5-triazine-2,4-diamine

To a suspension of 6-(6-chloropyridin-2-yl)-N2,N4-bis ((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine (200 mg, 0.56 mmol), 2,4,6-trivinyl-1,3,5,2,4,6-trioxatriborinane (135 mg, 0.84 mmol) and K2CO3 (154 mg, 1.11 mmol) in dioxane (2 mL) and H2O (0.8 mL) under an atmosphere of N2 was added Pd(dppf)Cl2 (41 mg, 0.06 mmol) in one portion. The reaction mixture was stirred at 100° C. overnight then cooled to r.t. and quenched with water. The resulting mixture was extracted with EtOAc (20 mL×2). The combined organic layers were washed with water and brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by standard methods to afford the desired product. 1H NMR (400 MHz, CDCl3) δ 8.28-8.15 (m, 1H), 7.77 (t, J=7.6 Hz, 1H), 7.58 (d, J=7.6 Hz, 1H), 7.05-6.99 (m, 1H), 6.15 (d, J=17.6 Hz, 1H), 5.42 (d, J=17.6 Hz, 1H), 5.44-5.16 (m, 2H), 3.72-3.52 (m, 2H), 1.35-1.22 (m, 6H), 0.98-0.86 (m, 2H), 0.58-0.21 (m, 8H). LCMS: m/z 351.1 (M+H)+.


Example 14

The compounds of this Example are prepared by general Scheme 14, set forth below.




embedded image


Step 1. Preparation of 6-(4,6-bis(((R)-1-cyclopropylethyl)amino)-1,3,5-triazin-2-yl) picolinaldehyde

Ozone was bubbled into a solution of N2, N4-bis((R)-1-cyclopropylethyl)-6-(6-vinylpyridin-2-yl)-1,3,5-triazine-2,4-diamine (120 mg, 0.34 mmol) in DCM (2 mL) at −78° C. for 1 hr. After excess ozone was purged by N2, Me2S (0.2 mL) was added into the reaction mixture at 0° C. The resulting mixture was concentrated and the residue was purified by standard methods to afford the desired product. LCMS: m/z 353 (M+H)+.


Step 2. Preparation of N2,N4-bis((R)-1-cyclopropylethyl)-6-(6-(difluoromethyl) pyridin-2-yl)-1,3,5-triazine-2,4-diamine

To a solution of 6-(4,6-bis((R)-1-cyclo propylethylamino)-1,3,5-triazin-2-yl)picolinaldehyde (50 mg, 0.14 mmol) in anhydrous DCM (2 mL) at 0° C. was added dropwise DAST (68 mg, 0.43 mmol). The reaction mixture was stirred at r.t overnight. The resulting mixture was slowly quenched with satd. aq. NaHCO3 (5 mL) at 0° C., then extracted with DCM (40 mL). The combined organic layers were washed with water and brine, dried over anhydrous Na2SO4, concentrated, and purified by standard methods to afford the desired product. 1H NMR (400 MHz, CDCl3) δ 8.46 (s, 1H), 7.97 (t, J=7.6 Hz, 1H), 7.77 (d, J=7.6 Hz, 1H), 6.98-6.70 (m, 1H), 5.47-5.21 (m, 2H), 3.67-3.50 (m, 2H), 1.32-1.25 (m, 6H), 0.92-0.86 (m, 2H), 0.58-0.21 (m, 8H). LCMS: m/z 375 (M+H)+.


The procedure set forth in Example 14 was used to produce the following compounds using the appropriate starting materials.


Compound N2,N4-bis(4,4-difluorocyclohexyl)-6-(6-(difluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.48 (1H), 8.01 (br s., 1H), 7.81 (d, J=8.0 Hz, 1H), 6.67-7.01 (m, 1H), 5.02-5.55 (m, 2H), 3.95-4.20 (m, 2H), 2.14 (m, 8H), 1.86-1.98 (m, 4H), 1.77 (m, 4H). LC-MS: m/z 475 (M+H)+.


Compound N2,N4-bis(3,3-difluorocyclobutyl)-6-(6-(difluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.64-8.35 (m, 1H), 8.10-7.92 (m, 1H), 7.81 (d, J=7.7 Hz, 1H), 6.82 (m, 1H), 5.98-5.29 (m, 2H), 4.70-4.16 (m, 2H), 3.24-2.92 (m, 4H), 2.79-2.44 (m, 4H). LC-MS: m/z 419 (M+H)+.


Example 15

The compounds of this Example are prepared by general Scheme 15, set forth below.




embedded image


Step 1: Preparation of methyl 6-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl)picolinate

To a mixture of 6-(6-chloropyridin-2-yl)-N2,N4-bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine (0.25 g, 0.7 mmol) in MeOH (10 mL) were added dppf (80 mg, 0.15 mmol), Pd(OAc)2 (60 mg, 0.27 mmol) and Et3N (150 mg, 1.5 mmol). The reaction mixture was degassed and back-filled with CO three times and then stirred under an atmosphere of CO (60 psi) at 70° C. for 12 hr. The resulting mixture was cooled to r.t. and concentrated under reduced pressure. The residue was triturated with EtOAc (100 mL) and filtered. The filtrate was concentrated and purified by standard methods to afford methyl 6-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl)picolinate. 1H NMR (400 MHz, CDCl3) δ 8.50 (m, 1H), 8.24-8.22 (dd, 1H), 7.99-7.95 (t, 1H), 5.49 (m, 2H), 4.02 (s, 3H), 3.57 (m, 2H), 1.92 (s, 6H), 0.96-0.87 (m, 2H), 0.52-0.26 (m, 8H). LCMS: m/z 383 (M+H)+.


Step 2: Preparation of 6-(4,6-bis(((R)-1-cyclopropylethyl)amino)-1,3,5-triazin-2-yl) picolinic acid

To a mixture of methyl 6-(4,6-bis((R)-1-cyclopropylethyl amino)-1,3,5-triazin-2-yl)picolinate (150 mg, 0.40 mmol) in water (2.0 mL) and THF (3.0 mL) was added lithium hydroxide (47 mg, 2.0 mmol). The reaction mixture was stirred at r.t. overnight then acidified with aq. HCl (1 N) to pH 5-6 and extracted with EtOAc. The combined organic layers were dried over anhydrous Na2SO4, and concentrated under reduced pressure to give the desired product. LCMS: m/z 367 (M−H).


Step 3: Preparation of 6-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl)picolinamide

To an ice cold mixture of 6-(4,6-bis(((R)-1-cyclopropylethyl)amino)-1,3,5-triazin-2-yl)picolinic acid (120 mg, 0.32 mmol) in dry DCM (5.0 mL) and DMF (0.1 mL) was added dropwise oxalyl chloride (65 mg, 0.5 mmol). The reaction mixture was stirred at r.t. for 2 hr then treated with ammonia. The resulting mixture was stirred for 10 min at 0° C., and then concentrated and purified by standard methods to give 6-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl)picolinamide. 1H NMR (400 MHz, CDCl3) δ 13.59 (s, 1H), 9.30-9.14 (m, 3H), 8.58-8.30 (m, 3H), 7.95 (s, 1H), 3.77-3.54 (m, 2H), 1.29 (d, 6H), 1.02 (m, 2H), 0.50-0.30 (m, 8H). LCMS: m/z 368 (M+H)+.


Step 4: Preparation of 6-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl)picolinonitrile

To a mixture of 6-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl)picolinamide (36 mg, 0.1 mmol) in dry pyridine (3.0 mL) was added phosphorous trichloride (0.1 mL). The reaction mixture was stirred at r.t. for 2 hr then concentrated under reduced pressure. The residue was purified by standard methods to give 6-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl) picolinonitrile. 1H NMR (400 MHz, CDCl3) δ 8.50-8.48 (m, 1H), 8.24-8.22 (t, 1H), 7.73-7.71 (dd, 1H), 5.46-5.14 (m, 2H), 3.62-3.50 (m, 2H), 1.22-1.18 (m, 6H), 0.89-0.84 (m, 2H), 0.46-0.20 (m, 8H). LCMS: m/z 350 (M+H)+.


Example 16

The compounds of this Example are prepared by general Scheme 16, set forth below.




embedded image


Step 1: Preparation of 3,6-difluoro-2-hydrazinylpyridine

To an ice-cold solution of 2,3,6-trifluoropyridine (1.0 g, 7.5 mmol) in ethanol (10 mL) was added hydrazine hydrate (0.75 g, 15.0 mmol). The reaction mixture was warmed up to r.t. and then heated at reflux for 2 hr. After it was cooled to r.t., the reaction mixture was diluted with water (10 mL) and extracted with DCM (2×20 mL). The combined organic layers were dried over anhydrous Na2SO4 and concentrated under reduced pressure to afford 3,6-difluoro-2-hydrazinylpyridine. LC-MS (m/z): 146 (M+H)+.


Step 2: Preparation of 2-bromo-3,6-difluoropyridine

To a stirred solution of 3,6-difluoro-2-hydrazinylpyridine (1.1 g, 7.0 mmol) in chloroform (20 mL) at r.t. was added dropwise bromine (1.8 g, 11.2 mmol). The reaction mixture was heated to 60° C. for 1.5 hr. The resulting mixture was cooled to r.t., quenched with satd. aq. NaHCO3, and extracted with dichloromethane (2×20 mL). The combined organic layers were dried over anhydrous Na2SO4 and concentrated and purified by standard methods to afford 2-bromo-3,6-difluoropyridine. LC-MS: m/z 194 (M+H)+.


Step 3: Preparation of methyl 3,6-difluoropicolinate

To a solution of 2-bromo-3,6-difluoropyridine (0.8 g, 4.1 mmol) in MeOH (10 mL) were added dppf (0.3 g, 0.56 mmol), Pd(OAc)2 (0.1 g, 0.45 mmol) and Et3N (1.6 mL, 8.2 mmol). The suspension was degassed and back-filled with CO atmosphere three times. The resulting mixture was stirred under CO atmosphere (60 psi) at 70° C. for 12 hr, then cooled to r.t. and concentrated under reduced pressure. The residue was triturated with EtOAc (150 mL) and filtered. The filtrate was concentrated and purified by standard methods to afford methyl 3,6-difluoropicolinate. LC-MS: m/z 174 (M+H)+.


Step 4: Preparation of N2,N4-bis(4,4-difluorocyclohexyl)-6-(3,6-difluoropyridin-2-yl)-1,3,5-triazine-2,4-diamine

To a suspension of N1,N5-bis(4,4-difluorocyclohexyl)-biguanide (167 mg, 0.50 mmol) and methyl 3,6-difluoropicolinate (130 mg, 0.75 mmol) in MeOH (5 mL) was added NaOMe (81 mg, 1.5 mmol). The reaction mixture was stirred at r.t. overnight, then poured into water, and extracted with EtOAc. The combined organic extracts were dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by standard methods to afford N2, N4-bis (4,4-difluorocyclohexyl)-6-(3,6-difluoropyridin-2-yl)-1,3,5-triazine-2,4-diamine. 1H NMR (400 MHz, CDCl3) δ 7.67-7.61 (m, 1H), 7.07-7.03 (m, 1H), 5.46-5.10 (m, 2H), 4.08-3.97 (m, 2H), 2.17-2.09 (m, 8H), 1.96-1.83 (m, 4H), 1.73-1.63 (m, 4H). LC-MS: m/z 461 (M+H)+.


Example 17

The compounds of this Example are prepared by general Scheme 17, set forth below.




embedded image


Step 1: Preparation of N2,N4-bis(4,4-difluorocyclohexyl)-6-(3-fluoro-6-hydrazinyl pyridin-2-yl)-1,3,5-triazine-2,4-diamine

To a solution of N2,N4-bis(4,4-difluoro-cyclohexyl)-6-(3,6-difluoropyridin-2-yl)-1,3,5-triazine-2,4-diamine (230 mg, 0.50 mmol) in THF (20 mL) was added hydrazine hydrate (150 mg, 3.0 mmol). The reaction mixture was stirred at 60° C. for 2.5 hr. After cooling to r.t., the reaction mixture was diluted with DCM and washed with water. The organic phase was separated, dried over anhydrous Na2SO4, and concentrated under reduced pressure to give the desired product. LC-MS (m/z): 473.2 (M+H)+.


Step 2: Preparation of 6-(6-amino-3-fluoropyridin-2-yl)-N2,N4-bis(4,4-difluoro cyclohexyl)-1,3,5-triazine-2,4-diamine

To a solution of N2,N4-bis(4,4-difluoro-cyclohexyl)-6-(3-fluoro-6-hydrazinylpyridin-2-yl)-1,3,5-triazine-2,4-diamine (47 mg, 0.1 mmol) in methanol (5.0 mL) was added Raney Ni (100 mg). The reaction mixture was stirred under H2 atmosphere overnight at r.t. then filtered. The filtrate was concentrated and purified by standard methods to afford the desired product. 1H NMR (400 MHz, CDCl3) δ 7.43-7.39 (m, 1H), 7.03-7.01 (m, 1H), 4.59 (s, 2H), 4.10-4.05 (m, 2H), 2.09-1.93 (m, 12H), 1.76-1.68 (m, 4H). LC-MS: m/z 458.2 (M+H)+.


Example 18

The compounds of this Example are prepared by general Scheme 18, set forth below.




embedded image


Step 1: Preparation of 6-(4,6-bis((4,4-difluorocyclohexyl)amino)-1,3,5-triazin-2-yl)-5-fluoropyridin-2-ol

A mixture of N2,N4-bis(4,4-difluorocyclohexyl)-6-(3,6-difluoropyridin-2-yl)-1,3,5-triazine-2,4-diamine (100 mg, 0.22 mmol) in conc. HCl (5.0 mL) was stirred at 100° C. overnight. The resulting mixture was concentrated and purified by standard methods to afford the desired product. 1H NMR (400 MHz, CDCl3) δ 9.96 (m, 1H), 7.40-7.27 (m, 2H), 6.73-6.67 (m, 1H), 5.47-5.17 (m, 2H), 4.02-3.92 (m, 2H), 2.11-1.66 (m, 16H). LCMS: m/z 459 (M+H)+.


Example 19

The compounds of this Example are prepared by general Scheme 19, set forth below.




embedded image


Step 1: Preparation of N1,N5-bis(3,3-difluorocyclopentyl)-biguanide

A mixture of 3,3-difluorocyclopentanamine hydrochloride (3 g, 19.1 mmol) and sodium dicyanamide (1.7 g, 19.1 mmol) was heated at 160° C. for 1 hr. The resulting product was dissolved in MeOH then filtered. The filtrate was concentrated to afford the desired product. LC-MS: m/z 310.2 (M+H)+.


Step 2: Preparation of ethyl 6-cyclopropylpicolinate

To a mixture of ethyl 6-bromopicolinate (200 mg, 0.87 mmol) and cyclopropylboronic acid (149 mg, 1.74 mmol) in toluene (15 mL) were added K3PO4 (369 mg, 1.74 mmol) and dichloro(diphenylphosphinoferrocene)palladium (11 mg, 0.017 mmol). The resulting mixture was stirred under N2 atmosphere at 100° C. overnight, then cooled to r.t. and filtered. The filtrate was concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 192.1 (M+H)+.


Step 3: 6-(6-cyclopropylpyridin-2-yl)-N2,N4-bis(3,3-difluorocyclopentyl)-1,3,5-triazine-2,4-diamine

To a mixture of N1,N5-bis(3,3-difluorocyclopentyl)-biguanide (50 mg, 0.16 mmol) and ethyl 6-cyclopropylpicolinate (62 mg, 0.33 mmol) in methanol (5 mL) was added NaOMe (44 mg, 0.80 mmol). The reaction mixture was stirred at r.t. overnight, and then concentrated under reduced pressure. The residue was partitioned between EtOAc and water. The organic layer was separated, washed with brine, and dried over anhydrous Na2SO4, concentrated, and purified by standard methods to afford the desired product. 1H NMR (400 MHz, CDCl3) δ 8.43-8.33 (m, 1H), 8.06-7.99 (m, 1H), 7.25-7.23 (d, J=8 Hz, 1H), 6.66-6.52 (m, 1H), 5.90-5.79 (m, 1H), 4.74-4.45 (m, 2H), 2.66-2.54 (m, 2H), 2.38-2.16 (m, 8H), 1.90-1.88 (m, 2H), 1.42-1.40 (m, 2H), 1.29-1.25 (m, 1H), 1.25-1.01 (m, 2H). LC-MS: m/z 437.2 (M+H)+.


The procedure set forth in Example 19 was used to produce the following compounds using the appropriate starting materials.


Compound 6-(6-Cyclopropylpyridin-2-yl)-N2,N4-bis(4,4-difluorocyclohexyl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.21 (s, 1H), 7.87 (s, 1H), 7.14 (s, 1H), 5.16 (s, 1H), 4.17-4.01 (m, 2H), 2.43 (s, 1H), 2.16-1.74 (m, 16H), 1.25 (s, 2H), 1.02 (s, 2H), 0.87 (m, 1H). LCMS: m/z 465 (M+H)+.


Compound N2,N4-bis(4,4-difluorocyclohexyl)-6-(6-methylpyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.181-8.11 (m, 1H), 7.71 (s, 1H), 7.29 (s, 1H), 5.46-5.07 (m, 2H), 4.19-3.99 (m, 2H), 2.69 (s, 3H), 2.17-2.12 (m, 9H), 1.97-1.84 (m, 4H), 1.63-1.55 (m, 3H). LCMS: m/z 439 (M+H)+.


Example 20. Preparation of Symmetric Di-Aliphatic Triazine Compounds of Formula M

The compounds of this Example are prepared by general Scheme 20, set forth below.




embedded image


Step 1: Preparation of methyl 6-(trifluoromethyl)pyrazine-2-carboxylate

To a mixture of 2-chloro-6-(trifluoromethyl)pyrazine (1 g, 5.5 mol) in MeOH (5.5 mL) was added dppf (0.16 g, 0.29 mmol), Pd(OAc)2 (0.1 g, 0.44 mmol) and Et3N (0.12 mL, 8.2 mmol). The suspension was degassed under vacuum and then backfilled with CO three times. The resulting mixture was stirred under CO atmosphere (80 psi) at 70° C. for 2 days until the reaction was completed. The mixture was cooled to r.t. and concentrated under reduced pressure at 30° C. To the residue was added EtOAc (150 mL). The suspension was filtered and the filtrate was concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 207 (M+H)+.


Step 2: Preparation of 6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4(1H,3H)-dione

The procedure is the same as Example 1 Step 2 described above. LC-MS: m/z 260 (M+H)+.


Step 3: Preparation of 2,4-dichloro-6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine

To a solution of 6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4(1H,3H)-dione (2.8 g, 0.011 mol) in POCl3 (30 mL) was added Et3N (0.3 mL). The mixture was stirred at 100° C. for 16 hr until the reaction was completed. The resulting mixture was concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 296 (M+H)+.


Step 4: Preparation of N2,N4-bis(4,4-difluorocyclohexyl)-6-(6-(trifluoromethyl) pyrazin-2-yl)-1,3,5-triazine-2,4-diamine

The procedure is the same as Example 1 Step 4.




embedded image



1H NMR (400 MHz, CDCl3) δ 9.73 (m, 1H), 9.07 (s, 1H), 5.49-5.15 (m, 2H), 4.17-3.99 (m, 2H), 2.17-1.58 (m, 16H). LC-MS: m/z 494 (M+H)+.


The procedure set forth in Example 20 above was used to produce the following compounds using the appropriate starting materials.


N2,N4-bis(3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.74 (m, 1H), 9.07 (d, J=3.2 Hz, 1H), 5.68-5.37 (m, 2H), 4.71-4.53 (m, 2H), 2.66-2.61 (m, 2H), 2.32-1.85 (m, 10H). LC-MS: m/z 466 (M+H)+.


N2,N4-bis((R)-3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.77-9.71 (m, 1H), 9.06 (s, 1H), 5.68-5.37 (m, 2H), 5.54-4.72 (m, 2H), 3.12 (m, 1H), 2.64 (m, 1H), 2.32 (m, 3H), 2.17-2.13 (m, 6H). LC-MS: m/z 466 (M+H)+.


N2,N4-bis((S)-3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.74 (m, 1H), 9.07 (d, J=3.6 Hz, 1H), 5.70-5.38 (m, 2H), 4.83-4.38 (m, 2H), 2.80-1.76 (m, 12H). LC-MS: m/z 466 (M+H)+.


N2—((R)-3,3-difluorocyclopentyl)-N4—((S)-3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.74 (m, 1H), 9.07 (d, J=3.3 Hz, 1H), 5.68-5.37 (m, 2H), 4.81-4.40 (m, 2H), 2.79-1.73 (m, 12H). LC-MS: m/z 466 (M+H)+.


N2,N4-bis(3,3-difluorocyclobutyl)-6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.74 (m, 1H), 9.08 (s, 1H), 5.84-5.49 (m, 2H), 4.53-4.37 (m, 2H), 3.12-3.02 (m, 4H), 2.70-2.57 (m, 4H). LC-MS: m/z 438 (M+H)+.


6-(6-(Trifluoromethyl)pyrazin-2-yl)-N2,N4-bis((R)-1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image


1H NMR (400 MHz, CD3OD) δ 9.80 (s, 1H), 9.17 (s, 1H), 5.22-4.88 (m, 2H), 1.43-1.38 (m, 6H). LC-MS: m/z 450.1 (M+H)+.


N2,N4-bis((S)-1,1,1-trifluorobutan-2-yl)-6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, DMSO-d6) δ 9.86-9.69 (m, 1H), 9.37 (d, 1H), 8.68-8.28 (m, 2H), 5.04-4.71 (m, 2H), 1.81-1.68 (m, 4H), 0.97-0.90, 6H). LC-MS: m/z 478.1 (M+H)+.


Example 21. Preparation of Symmetric Di-Aliphatic Triazine Compounds of Formula N

The compounds of this Example are prepared by general Scheme 21, set forth below.




embedded image


Step 1: Preparation of 1-(6-chloropyrazin-2-yl)ethanol

To a solution of methyl 6-formylpyrazine-2-carboxylate (590 mg, 4.15 mmol) in anhydrous THF (5 mL) at −5° C. was added dropwise CH3MgBr (2.1 mL, 6.2 mmol). The reaction mixture was stirred at r.t. for 1 hr, then quenched with satd. a.q. NH4Cl at 0° C. and extracted with DCM (3×10 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated to afford the desired product. LC-MS: m/z 159.0 (M+H)+.


Step 2: Preparation of 1-(6-chloropyrazin-2-yl)ethanone

To a solution of 1-(6-chloropyrazin-2-yl) ethanol (370 mg, 2.3 mmol) in DCM (5 mL) at r.t. was added DMP (1.5 g, 3.5 mmol). The reaction mixture was stirred at r.t. for 3 hr then filtered. The filtrate was concentrated and purified by standard methods to afford the desired product. 1H NMR (400 MHz, CDCl3) δ 9.12 (s, 1H), 8.78 (s, 1H), 2.72 (s, 3H). LC-MS: m/z 157.1 (M+H)+.


Step 3: Preparation of methyl 6-acetylpyrazine-2-carboxylate

To a solution of 1-(6-chloropyrazin-2-yl)ethanone (260.0 mg, 1.7 mmol) in MeOH (3 mL) were added dppf (94.0 mg, 0.17 mmol), Pd(OAc)2 (20 mg, 0.1 mmol) and Et3N (0.4 mL, 2.6 mmol). The mixture was stirred under CO (60 psi) atmosphere at 60° C. overnight. The resulting mixture was cooled to r.t. and filtered. The filtrate was concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 181.0 (M+H)+.


Step 4: Preparation of methyl 6-(1,1-difluoroethyl)pyrazine-2-carboxylate

To a solution of methyl 6-acetylpyrazine-2-carboxylate (240 mg, 1.3 mmol) in anhydrous DCM (3 mL) at 0° C. was slowly added DAST (0.86 mL, 6.5 mmol). The reaction mixture was stirred at r.t. for 3 hr, then quenched with cold satd. aq. NaHCO3 at 0° C. and extracted with DCM (3×10 mL). The combined organic layers were dried over anhydrous Na2SO4 and concentrated to afford the desired product. LC-MS: m/z 203.1 (M+H)+.


Step 5: Preparation of 6-(6-(1,1-difluoroethyl)pyrazin-2-yl)-1,3,5-triazine-2,4(1H,3H)-dione

The procedure is the same as Example 1 Step 2 described above. LC-MS: m/z 256.1 (M+H)+.


Step 6: Preparation of 2,4-dichloro-6-(6-(1,1-difluoroethyl)pyrazin-2-yl)-1,3,5-triazine

The procedure is the same as Example 1 Step 3 described above. LC-MS: m/z 292.0 (M+H)+.


Step 7: Preparation of N2,N4-bis(4,4-difluorocyclohexyl)-6-(6-(1,1-difluoroethyl) pyrazin-2-yl)-1,3,5-triazine-2,4-diamine

The procedure is the same as Example 1 Step 4 described above.




embedded image



1H NMR (400 MHz, CDCl3) δ 9.59 (m, 1H), 9.05 (s, 1H), 5.46 (s, 1H), 5.06 (m, 1H), 4.07 (m, 2H), 2.17 (s, 3H), 2.09 (s, 4H), 1.93 (m, 4H), 1.79-1.55 (m, 8H). LC-MS: m/z 490.2 (M+H)+.


The procedure set forth in Example 21 was used to produce the following compounds using the appropriate starting materials.


N2,N4-bis(3,3-difluorocyclopentyl)-6-(6-(1,1-difluoroethyl)pyrazin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.60 (m, 1H), 9.04 (d, J=6.0 Hz, 1H), 5.66-5.34 (m, 2H), 4.70-4.52 (m, 2H), 2.65-2.60 (m, 2H), 2.32-2.08 (m, 10H), 1.90-1.74 (m, 3H). LC-MS: m/z 462.2 (M+H)+.


N2,N4-bis(3,3-difluorocyclobutyl)-6-(6-(1,1-difluoroethyl)pyrazin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.62-9.57 (m, 1H), 9.05 (s, 1H), 5.75-5.44 (m, 2H), 4.51-4.37 (m, 2H), 3.07 (s, 4H), 2.65-2.61 (m, 4H), 2.17-2.08 (m, 3H). LC-MS: m/z 434.2 (M+H)+.


Example 22. Preparation of Symmetric Di-Aliphatic Triazine Compounds of Formula O

The compounds of this Example are prepared by general Scheme 22, set forth below.




embedded image


embedded image


Step 1: Preparation of 2-(methoxycarbonyl)pyrazine 1-oxide

To a solution of methyl pyrazine-2-carboxylate (10.0 g, 70 mmol) in 1,2-dichloroethane (120 mL) was added 3-chloroperoxybenzoic acid (25.0 g, 140 mmol). The reaction mixture was stirred at 60° C. overnight. The resulting mixture was cooled to r.t. and filtered. The filtrate was dried over anhydrous K2CO3 and concentrated under reduced pressure. The residue was triturated with hexane and filtered and dried to afford 2-(methoxycarbonyl)pyrazine 1-oxide. LC-MS: m/z 155.0 (M+H)+.


Step 2: Preparation of methyl 6-chloropyrazine-2-carboxylate

A mixture of 2-(methoxycarbonyl)pyrazine 1-oxide (4.8 g, 30 mmol) in SOCl2 (50 mL) was stirred at 85° C. overnight. The mixture was cooled to r.t. and concentrated under reduced pressure. The residue was neutralized by satd. aq. NaHCO3 and extracted with DCM (3×20 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated and purified by standard methods to afford methyl 6-chloropyrazine-2-carboxylate. 1H NMR (600 MHz, CDCl3) δ 8.59 (s, 1H), 8.53 (s, 1H), 4.84 (s, 2H), 3.01 (s, 1H). LC-MS: m/z 173.0 (M+H)+.


Step 3: Preparation of (6-chloropyrazin-2-yl)methanol

To a solution of methyl 6-chloropyrazine-2-carboxylate (2.0 g, 11.6 mmol) in water (20 mL) at 0° C. was added NaBH4 (2.3 g, 58.0 mmol) portionwise. The reaction mixture was warmed to r.t. and stirred for 30 min, followed by addition of satd. aq. K2CO3 (40 mL) and EtOH (20 mL). The resulting mixture was stirred for another 1 hr and extracted with EA (2×20 mL). The combined organic layers were dried over anhydrous Na2SO4 and concentrated and purified by standard methods to afford (6-chloropyrazin-2-yl)methanol. LC-MS: m/z 145.0 (M+H)+.


Step 4: Preparation of 6-chloropyrazine-2-carbaldehyde

To a solution of (6-chloropyrazin-2-yl)methanol (600 mg, 4.2 mmol) in DCM (10 mL) was added Dess-Martin reagent (2.6 g, 6.3 mmol). The reaction mixture was stirred at r.t. for 3 hr, and then filtered. The filtrate was concentrated and purified by standard methods to afford 6-chloropyrazine-2-carbaldehyde. LC-MS: m/z 143.0 (M+H)+.


Step 5: Preparation of methyl 6-formylpyrazine-2-carboxylate

To a mixture of 6-chloropyrazine-2-carbaldehyde (1.0 g, 7.0 mmol) in MeOH (10 mL) were added dppf (388 mg, 0.7 mmol), Pd(OAc)2 (90 mg, 0.4 mmol) and Et3N (1.5 mL, 10.5 mmol). The suspension was stirred under CO atmosphere (60 psi) at 60° C. overnight. The resulting mixture was cooled to r.t. and filtered. The filtrate was concentrated and purified by standard methods to afford methyl 6-formylpyrazine-2-carboxylate. LC-MS: m/z 167.0 (M+H)+.


Step 6: Preparation of methyl 6-(difluoromethyl)pyrazine-2-carboxylate

To a mixture of methyl 6-formylpyrazine-2-carboxylate (4.1 g, 24.7 mmol) in anhydrous DCM (40 mL) at 0° C. was slowly added DAST (16.3 mL, 123.5 mmol). The reaction mixture was stirred at r.t. for 3 hrs, then quenched with cold satd. aq. NaHCO3 at 0° C. and extracted with DCM (2×20 mL). Combined organic layers were dried over anhydrous Na2SO4 and concentrated to afford the desired product. LC-MS: m/z 189.0 (M+H)+.


Step 7: Preparation of 6-(6-(difluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4(1H,3H)-dione

To a flame-dried three necked round bottom flask was added biuret (659 mg, 6.4 mmol) and methyl 6-(difluoromethyl)pyrazine-2-carboxylate (1.0 g, 5.3 mmol), followed by addition of EtOH (12 mL). The mixture was degassed and back-filled with N2 three times. The mixture was stirred at 25° C. for 20 min, and then heated to 50° C. Then HC(OMe)3 (0.7 mL, 6.4 mmol) and TFA (0.04 mL, 0.53 mmol) were added to the above mixture. The mixture (pale yellow slurry) was stirred at this temperature for 30 min, followed by dropwise addition of a solution of NaOEt in EtOH (20% wt, 7.2 g, 21.2 mmol). The resulting mixture was heated at reflux for 2 hr, then cooled to r.t. and concentrated under reduced pressure. The residue was treated with water (10 mL) and concentrated again to remove the remaining ethanol. The final residue was suspended in water (30 mL), cooled to 10° C. when the acidity was adjusted to pH=1 by slow addition of 6N HCl (solid precipitated out), and then stirred for 2 hr. The mixture was filtered and the filter cake was washed with aq. HCl (pH=1). The solid was collected and suspended in DCM (30 mL). The suspension was stirred at r.t. for 2 hr and then filtered again. The filter cake was collected and dried to afford the desired product. LC-MS: m/z 242.0 (M+H)+.


Step 8: Preparation of 2,4-dichloro-6-(6-(difluoromethyl)pyrazin-2-yl)-1,3,5-triazine

The procedure is the same as Example 1 Step 3 described above. LC-MS: m/z 2782.0 (M+H)+.


Step 8: Preparation of N2,N4-bis(4,4-difluorocyclohexyl)-6-(6-(difluoromethyl) pyrazin-2-yl)-1,3,5-triazine-2,4-diamine

The procedure is the same as Example 1 Step 4 described above.




embedded image



1H NMR (400 MHz, CDCl3) δ 9.69 (m, 1H), 9.07 (s, 1H), 6.89 (m, 1H), 5.53-5.12 (m, 2H), 4.08 (m, 2H), 2.23-1.67 (m, 16H). LC-MS: m/z 476.2 (M+H)+.


The procedure set forth in Example 22 was used to produce the following compounds using the appropriate starting materials.


N2,N4-bis(3,3-difluorocyclopentyl)-6-(6-(difluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.73-9.67 (m, 1H), 9.07 (s, 1H), 7.03-6.76 (m, 1H), 5.63-5.35 (m, 2H), 4.73-4.55 (m, 2H), 2.66-2.61 (m, 2H), 2.32 (s, 4H), 2.13-1.57 (m, 6H). LC-MS: m/z 448.2 (M+H)+.


N2,N4-bis(3,3-difluorocyclobutyl)-6-(6-(difluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.72-9.67 (m, 1H), 9.07 (s, 1H), 6.85 (d, 1H), 5.76-5.48 (m, 2H), 4.54-4.38 (m, 2H), 3.08 (s, 4H), 2.66-2.61 (m, 4H). LC-MS: m/z 420.1 (M+H)+.


N2,N4-bis(3,3-difluorocyclobutyl)-6-(4-(difluoromethyl)pyrimidin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.17 (d, J=4.9 Hz, 1H), 7.77 (d, J=4.9 Hz, 1H), 6.77 (m, 1H), 5.76 (m, 2H), 4.55 (m, 2H), 3.07 m, 4H), 2.61 (m, 4H). LC-MS: m/z 420 (M+H)+.


N2,N4-bis(3,3-difluorocyclopentyl)-6-(4-(difluoromethyl)pyrimidin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, DMSO-d6) δ 9.19 (m, 1H), 8.16 (m, 1H), 7.88 (m, 1H), 7.04 (m, 1H), 4.47 (m, 2H), 2.63 (m, 1H), 2.25 (m, 9H), 1.83 (m, 2H). LC-MS: m/z 448 (M+H)+.


N2,N4-bis(4,4-difluorocyclohexyl)-6-(4-(difluoromethyl)pyrimidin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ (m, 1H), 7.79-7.78 (m, 1H), 6.91-6.64 (m, 1H), 5.72-5.20 (m, 2H), 4.26-4.02 (m, 2H), 2.13-2.10 (m, 8H), 1.98-1.87 (m, 4H), 1.76-1.73 (m, 4H). LC-MS: m/z 476 (M+H)+.


Example 23

The compounds of this Example are prepared by general Scheme 23, set forth below.




embedded image


Step 1: Preparation of 6-(6-chloropyrazin-2-yl)-N2,N4-bis(4,4-difluorocyclo hexyl)-1,3,5-triazine-2,4-diamine

To a mixture of methyl 6-chloropyrazine-2-carboxylate (300 mg, 1.74 mmol) and N1,N5-di-(4,4-difluorocyclohexanamine)-biguanide (700 mg, 2.10 mmol) in MeOH (8 mL) was added MeONa (340 mg, 6.28 mmol). The reaction mixture was stirred at r.t. overnight, and then partitioned between EtOAc (30 mL) and H2O (30 mL). The organic layer was separated, washed with brine (30 mL), dried over anhydrous Na2SO4, and concentrated and purified by standard methods to afford the desired product. 1H NMR (400 MHz, DMSO-d6) δ 9.48-9.32 (m, 1H), 8.93 (d, J=8 Hz, 1H), 7.92-7.59 (m, 2H), 4.15-3.95 (m, 2H), 2.08-1.60 (m, 16H). LCMS: m/z 460 (M+H)+.


The procedure set forth in Example 23 was used to produce the following compounds using the appropriate starting materials.


6-(6-Chloropyrazin-2-yl)-N2,N4-bis(3,3-difluorocyclopentyl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.45 (d, 1H), 8.72 (s, 1H), 5.65 (d, 2H), 4.53-4.37 (m, 2H), 3.07-2.60 (m, 8H). LC-MS: m/z 432 (M+H)+.


6-(6-Chloropyrazin-2-yl)-N2,N4-bis(3,3-difluorocyclobutyl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.45 (d, 1H), 8.71 (s, 1H), 5.69-5.36 (m, 2H), 4.70-4.52 (m, 2H), 2.65-2.05 (m, 12H). LC-MS: m/z 404 (M+H)+.


6-(6-chloropyrazin-2-yl)-N2,N4-bis(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.42 (d, 1H), 8.66 (s, 1H), 5.61-5.24 (m, 2H), 5.01-4.78 (m, 2H), 1.41-1.34 (m, 6H). LCMS: m/z 416 (M+H)+.


Example 24. Preparation of Symmetric Di-Aliphatic Triazine Compounds of Formula P

The compounds of this Example are prepared by general Scheme 24, set forth below.




embedded image


Step 1: Preparation of methyl 2-(trifluoromethyl)pyrimidine-4-carboxylate

To a solution of 4-chloro-2-(trifluoromethyl)pyrimidine (10 g, 54.9 mmol) in MeOH (60 mL) was added dppf (3.0 g, 5.5 mmol), Pd(OAc)2 (630 mg, 2.8 mmol) and Et3N (11.4 mL, 41.2 mmol). The mixture was stirred under CO atmosphere (60 psi) at 60° C. overnight. The resulting mixture was cooled to r.t. and filtered. The filtrate was concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 207.0 (M+H)+.


Step 2: Preparation of 6-(2-(trifluoromethyl)pyrimidin-4-yl)-1,3,5-triazine-2,4(1H, 3H)-dione

The procedure is the same as Example 1 Step 2 described above. LC-MS: m/z 260.0 (M+H)+.


Step 3: Preparation of 2,4-dichloro-6-(2-(trifluoromethyl)pyrimidin-4-yl)-1,3,5-triazine

The procedure is the same as Example 1 Step 3 described above. LC-MS: m/z 296.0 (M+H)+.


Step 4: Preparation of N2,N4-bis(4,4-difluorocyclohexyl)-6-(2-(trifluoromethyl)pyrimidin-4-yl)-1,3,5-triazine-2,4-diamine

The procedure is the same as Example 1 Step 4 described above.




embedded image



1H NMR (400 MHz, CDCl3) δ 9.08 (m, 1H), 8.42 (m, 1H), 5.54-5.19 (m, 2H), 4.16-3.99 (m, 2H), 2.29-1.73 (m, 16H). LC-MS: m/z 494.2 (M+H)+.


The procedure set forth in Example 24 was used to produce the following compounds using the appropriate starting materials.


N2,N4-bis(3,3-difluorocyclopentyl)-6-(2-(trifluoromethyl)pyrimidin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.06-9.10 (m, 1H), 8.39-8.45 (m, 1H), 5.66-5.68 (d, J=8.0 Hz, 2H), 4.52-4.70 (m, 2H), 2.60-2.65 (m, 2H), 2.13-2.32 (m, 8H), 1.67-1.87 (m, 2H). LC-MS: m/z 466.2 (M+H)+.


N2,N4-bis(3,3-difluorocyclobutyl)-6-(2-(trifluoromethyl)pyrimidin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.10 (m, 1H), 8.51-8.37 (m, 1H), 5.93-5.48 (m, 2H), 4.44 (m, 2H), 3.07 (m, 4H), 2.75-2.49 (m, 4H). LC-MS: m/z 438.1 (M+H)+.


6-(2-(Trifluoromethyl)pyrimidin-4-yl)-N2,N4-bis((R)-1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.11 (m, 1H), 8.45 (t, J=5.6 Hz, 1H), 5.74-5.32 (m, 2H), 5.16-4.79 (m, 2H), 1.43 (m, 6H). LC-MS: m/z 450.1 (M+H)+.


N2,N4-bis((S)-1,1,1-trifluorobutan-2-yl)-6-(2-(trifluoromethyl)pyrimidin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.11 (m, 1H), 8.46 (d, J=5.0 Hz, 1H), 5.78-5.22 (m, 2H), 4.97-4.63 (m, 2H), 2.12-1.90 (m, 2H), 1.61-1.69 (m, 2H), 1.05 (t, J=7.5 Hz, 6H). LC-MS: m/z 478.1 (M+H)+.


N2,N4-bis(4,4-difluorocyclohexyl)-6-(4-(trifluoromethyl)pyrimidin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.22 (d, J=4.9 Hz, 1H), 7.77 (d, J=4.9 Hz, 1H), 5.64-5.16 (m, 2H), 4.21-4.01 (m, 2H), 2.28-1.52 (m, 16H). LC-MS: m/z 494.2 (M+H)+.


N2,N4-bis(3,3-difluorocyclopentyl)-6-(4-(trifluoromethyl)pyrimidin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.22 (d, 1H), 7.77 (d, 1H), 5.87 (d, 2H), 4.58-4.53 (m, 2H), 2.69-2.56 (m, 2H), 2.31-2.29 (m, 4H), 2.17-2.08 (m, 4H), 1.87-1.68 (m, 2H). LC-MS: m/z 466.2 (M+H)+.


N2,N4-bis(3,3-difluorocyclobutyl)-6-(4-(trifluoromethyl)pyrimidin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, DMSO-d6) δ 9.34 (m, 1H), 8.64-8.00 (m, 3H), 4.46-4.10 (m, 2H), 3.07-2.83 (m, 4H), 2.74-2.62 (m, 4H). LC-MS: m/z 438.1 (M+H)+.


N2,N4-bis((R)-1-cyclopropylethyl)-6-(4-(trifluoromethyl)pyrimidin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.19 (s, 0.6H), 7.74-7.73 (m, 0.6H), 5.63-5.43 (m, 2H), 3.61-3.58 (m, 2H), 1.27-1.26 (m, 8H), 0.90 (m, 2H), 0.50-0.26 (m, 8H). LCMS: m/z 394 (M+H)+.


N2,N4-bis(4,4-difluorocyclohexyl)-6-(4-(2-methoxyethyl)pyrimidin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.83-8.82 (m, 1H), 7.40-7.39 (m, 1H), 5.60-5.58 (m, 2H), 4.26-4.01 (m, 2H), 3.81-3.77 (t, J=8 Hz, 2H), 3.35 (s, 3H), 3.21-3.18 (m, J=8 Hz, 2H), 2.11-2.05 (m, 8H), 1.94-1.86 (m, 4H), 1.74-1.69 (m, 4H). LC-MS: m/z 484 (M+H)+.


Example 25

The compounds of this Example are prepared by general Scheme 25, set forth below.




embedded image


Step 1: Preparation of ethyl 2-(trifluoromethyl)thiazole-4-carboxylate

To a solution of 2,2,2-trifluoroacetamide (1.42 g, 12.6 mmol) in dry THF (60 mL) was added Lawesson's reagent (3.06 g, 7.56 mmol). The reaction mixture was heated at reflux for 18 hr and then cooled, followed by addition of ethyl 3-bromo-2-oxopropanoate (1.6 mL, 12.6 mmol). The mixture was refluxed for another 18 hr and then cooled to r.t. The resulting mixture was partitioned between EtOAc and water. The organic layer was separated, dried over anhydrous Na2SO4 and concentrated and purified by standard methods to afford ethyl 2-(trifluoromethyl)thiazole-4-carboxylate. 1H NMR (400 MHz, CDCl3) δ 8.42 (s, 1H) 4.47 (q, J=7.1 Hz, 2H), 1.45 (t, J=7.2 Hz, 3H). LC-MS: m/z 226 (M+H)+.


Step 2: Preparation of N1,N5-bis (3,3-difluorocyclobutyl)-biguanide

A mixture of 3,3-difluorocyclobutanamine hydrochloride (3.024 g, 0.021 mol) and NaN(CN)2 (890 mg, 0.01 mol) was vigorously stirred at 160° C. for 2 hr then cooled to r.t. The resulting mixture was dissolved in MeOH and filtered. The filtrate was concentrated to afford the desired product. LC-MS: m/z 282 (M+H)+.


Step 3: Preparation of N2,N4-bis(3,3-difluorocyclobutyl)-6-(4-(trifluoromethyl) thiazol-2-yl)-1,3,5-triazine-2,4-diamine

To a mixture of N1,N5-bis(3,3-difluoro cyclobutyl)-biguanide (60 mg, 0.22 mmol) in MeOH (5 mL) were added ethyl 2-(trifluoromethyl)thiazole-4-carboxylate (58.5 mg, 0.26 mmol) and NaOMe (23.7 mg, 0.44 mmol). The reaction mixture was then stirred at r.t. for 48 hr then partitioned between EtOAc and H2O. The organic layer was separated, washed with brine, dried over anhydrous Na2SO4, and concentrated and purified by standard methods to afford the N2,N4-bis(3,3-difluorocyclobutyl)-6-(4-(trifluoromethyl)thiazol-2-yl)-1,3,5-triazine-2,4-diamine.




embedded image



1H NMR (400 MHz, CDCl3) δ 7.83 (d, J=5.2 Hz, 1H), 7.01-6.74 (m, 1H), 5.74-5.43 (m, 2H), 4.45-4.32 (m, 2H), 3.11-3.04 (m, 4H), 2.63-2.48 (m, 4H). LC-MS: m/z 443 (M+H)+.


The procedure set forth in Example 25 was used to produce the following compounds using the appropriate starting materials.


N2,N4-bis(4,4-difluorocyclohexyl)-6-(4-(trifluoromethyl)thiazol-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 7.84 (s, 1H), 5.42-5.07 (m, 2H), 3.89-3.79 (m, 2H), 2.06-1.79 (m, 13H), 1.67-1.57 (m, 3H). LCMS: m/z 499 (M+H)+.


N2,N4-bis(3,3-difluorocyclopentyl)-6-(4-(trifluoromethyl)thiazol-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 7.91 (d, J=4 Hz, 1H), 5.66-5.34 (m, 2H), 4.64-4.51 (m, 2H), 2.69-2.59 (m, 2H), 2.31-2.04 (m, 8H), 1.86-1.80 (m, 2H). LCMS: m/z 471 (M+H)+.


6-(4-(trifluoromethyl)thiazol-2-yl)-N2,N4-bis(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 7.94 (s, 1H), 5.81-5.31 (m, 2H), 5.01-4.83 (m, 2H), 1.47-1.39 (m, 6H). LCMS: m/z 455 (M+H)+.


N2,N4-bis(4,4-difluorocyclohexyl)-6-(2-(trifluoromethyl)thiazol-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.48 (m, 1H), 5.41-5.09 (m, 2H), 4.16-3.99 (m, 2H), 2.28-1.66 (m, 16H). LC-MS: m/z 499 (M+H)+.


N2,N4-bis(3,3-difluorocyclobutyl)-6-(2-(trifluoromethyl)thiazol-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.50 (m, 1H), 6.73-6.38 (m, 2H), 4.46-4.36 (m, 2H), 3.06 (s, 4H), 2.61 (s, 4H). LC-MS: m/z 443 (M+H)+.


6-(2-(trifluoromethyl)thiazol-4-yl)-N2,N4-bis((R)-1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.49 (d, 1H), 5.57-5.12 (m, 2H), 4.97-4.49 (m, 2H), 1.36-1.25 (m, 6H). LCMS: m/z 455 (M+H)+.


N2,N4-bis(4,4-difluorocyclohexyl)-6-(2-methyloxazol-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.11 (s, 1H), 5.27-4.92 (m, 2H), 4.02-3.81 (m, 2H), 2.47 (s, 3H), 2.03-1.79 (m, 12H), 1.63-1.54 (m, 4H). LCMS: m/z 429 (M+H)+.


N2,N4-bis(3,3-difluorocyclobutyl)-6-(2-methyloxazol-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.24 (m, 1H), 5.66 (m, 2H), 4.31 (s, 2H), 3.13-2.95 (m, 4H), 2.60 (m, 7H). LC-MS: m/z 373 (M+H)+.


N2,N4-bis(4,4-difluorocyclohexyl)-6-(5-methylisoxazol-3-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 6.52-6.48 (m, 1H), 5.44-5.09 (m, 2H), 4.15-3.96 (m, 2H), 2.49 (s, 3H), 2.11-1.89 (m, 13H), 1.70-1.63 (m, 3H). LCMS: m/z 429 (M+H)+.


N2,N4-bis(3,3-difluorocyclobutyl)-6-(5-methylisoxazol-3-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, DMSO-d6) δ 6.51 (m, 1H), 5.86-5.33 (m, 2H), 4.65-4.13 (m, 2H), 3.04 (dd, J=6.2, 5.4 Hz, 4H), 2.70-2.55 (m, 4H), 2.50 (s, 3H). LC-MS: m/z 373 (M+H)+.


Example 26

The compounds of this Example are prepared by general Scheme 26, set forth below.




embedded image


Step 1: Preparation of ethyl 2-bromothiazole-4-carboxylate

To a solution of ethyl 2-aminothiazole-4-carboxylate (15.0 g, 87.1 mmol) in MeCN (100 mL) was added isoamyl nitrite (24.5 g, 209 mmol) and CuBr2 (27.5 g, 122 mmol). The mixture was stirred at 70° C. overnight, then cooled to r.t., diluted with water (200 mL), and extracted with EtOAc (2×200 mL). The combined organic layers were dried over anhydrous Na2SO4 and concentrated and purified by standard methods to afford ethyl 2-bromothiazole-4-carboxylate. LC-MS: m/z 236 (M+H)+.


Step 2: Preparation of 2-bromothiazole-4-carboxylic acid

To a solution of ethyl 2-bromothiazole-4-carboxylate (18.0 g, 76.0 mmol) in THF (90 mL) and H2O (90 mL) was added LiOH (4.8 g, 114 mmol). The mixture was stirred at r,t for 3 hr and extracted with EtOAc (2×150 mL). The aqueous layer was separated, adjusted to pH 2-3 with satd. aq. NH4Cl, and filtered. The solid was collected and dried under high vacuum to afford 2-bromothiazole-4-carboxylic acid. LC-MS: m/z 206 (M−H).


Step 3: Preparation of 2-bromo-N-methoxy-N-methylthiazole-4-carboxamide

To a solution of 2-bromothiazole-4-carboxylic acid (11.4 g, 55.0 mmol) in DCM (100 mL) were added N,O-dimethylhydroxylamine (6.9 g, 71.0 mmol), HATU (27.0 g, 71.0 mmol) and DIPEA (21.2 g, 164.0 mmol). The mixture was stirred at r,t. overnight, then quenched with water (200 mL) and extracted with DCM (2×200 mL). The combined organic layers were dried over anhydrous Na2SO4, and concentrated and purified by standard methods to afford 2-bromo-N-methoxy-N-methylthiazole-4-carboxamide. LC-MS: m/z 251 (M+H)+.


Step 4: Preparation of 1-(2-bromothiazol-4-yl)ethanone

To a solution of 2-bromo-N-methoxy-N-methylthiazole-4-carboxamide (6.8 g, 27.0 mmol) in THF (60 mL) under N2 atmosphere at 0° C. was slowly added dropwise MeMgBr (9.9 mL, 29.7 mmol, 3M in THF). The mixture was slowly warmed to r,t and stirred at this temperature for 30 min. The reaction mixture was quenched with satd. aq. NH4Cl (100 mL) and extracted with EtOAc (2×100 mL). The combined organic layers were dried over anhydrous Na2SO4, and concentrated and purified by standard methods to afford 1-(2-bromothiazol-4-yl)ethanone. LC-MS: m/z 206 (M+H)+.


Step 5: Preparation of methyl 4-acetylthiazole-2-carboxylate

To a solution of 1-(2-bromothiazol-4-yl)ethanone (340 mg, 1.65 mmol) in MeOH (10 mL) were added Pd(OAc)2 (20.0 mg, 0.08 mmol), dppf (95.0 mg, 0.16 mmol) and Et3N (250 mg, 2.5 mmol). The mixture was heated at 60° C. under CO atmosphere (0.4 mPa) overnight. The resulting mixture was cooled to r.t. and filtered. The filtrate was concentrated and the residue purified by standard methods to afford methyl 4-acetylthiazole-2-carboxylate. LC-MS: m/z 186 (M+H)+.


Step 6: Preparation of methyl 4-(1,1-difluoroethyl)thiazole-2-carboxylate

To a solution of 4-acetylthiazole-2-carboxylate (200 mg, 1.07 mmol) in DCM (10 mL) at 0° C. was slowly added dropwise DAST (1.64 g, 10.2 mmol). The mixture was then warmed to r,t and stirred at r.t. overnight. The mixture was slowly quenched with satd. aq. NaHCO3 (20 mL) and extracted with DCM (2×20 mL). The combined organic layers were dried over anhydrous Na2SO4, and concentrated and purified by standard methods to give methyl 4-(1,1-difluoroethyl)thiazole-2-carboxylate. LC-MS: m/z 208 (M+H)+.


Step 7: Preparation of N2,N4-bis(4,4-difluorocyclohexyl)-6-(4-(1,1-difluoroethyl) thiazol-2-yl)-1,3,5-triazine-2,4-diamine

To a mixture of N1,N5-bis(3,3-difluoro cyclobutyl)-biguanide (60 mg, 0.22 mmol) in MeOH (5 mL) were added ethyl 4-(1,1-difluoroethyl)thiazole-2-carboxylate (50 mg, 0.26 mmol) and NaOMe (23.7 mg, 0.44 mmol). The reaction mixture was then stirred at r.t. for 48 hr, and then partitioned between EtOAc and H2O. The organic layer was separated, washed with brine, dried over anhydrous Na2SO4, concentrated and purified by standard methods to afford N2,N4-bis(4,4-difluorocyclohexyl)-6-(4-(1,1-difluoroethyl)thiazol-2-yl)-1,3,5-triazine-2,4-diamine.




embedded image



1H NMR (400 MHz, CDCl3) δ 7.75 (d, J=3.7 Hz, 1H), 5.30 (m, 2H), 4.05 (d, J=49.4 Hz, 2H), 2.30-2.01 (m, 11H), 1.94 (d, J=9.2 Hz, 4H), 1.81-1.68 (m, 3H). LC-MS: m/z 495 (M+H)+.


The procedure set forth in Example 26 was used to produce the following compounds using the appropriate starting materials.


N2,N4-bis(4,4-difluorocyclohexyl)-6-(2-(1,1-difluoroethyl)thiazol-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, DMSO-d6) δ 8.59 (d, 1H), 7.52 (m, 2H), 4.09 (m, 2H), 3.25 (m, 3H), 2.34 (m, 1H), 1.58 (m, 16H). LC-MS: m/z 494 (M+H)+.


N2,N4-bis(3,3-difluorocyclopentyl)-6-(2-(1,1-difluoroethyl)thiazol-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.44-8.36 (m, 1H), 5.54-5.24 (m, 2H), 4.67-4.53 (m, 2H), 2.63-2.60 (m, 2H), 2.31-2.02 (m, 11H), 1.82-1.75 (m, 2H). LCMS: m/z 467 (M+H)+.


N2,N4-bis(3,3-difluorocyclobutyl)-6-(2-(1,1-difluoroethyl)thiazol-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.45-8.36 (m, 1H), 5.71-5.36 (m, 2H), 4.47-4.35 (m, 2H), 3.05 (s, 4H), 3.61 (s, 4H), 2.24-2.03 (m, 3H). LCMS: m/z 439 (M+H)+.


Example 27

The compounds of this Example are prepared by general Scheme 27, set forth below.




embedded image


Step 1: Preparation of 2-bromothiazole-4-carbaldehyde

To a mixture of 2-bromo-N-methoxy-N-methyl thiazole-4-carboxamide (10 g, 0.04 mol) in THF (80 mL) at −78° C. was slowly added DIBAL-H (7.35 g, 0.052 mol). The reaction mixture was stirred at −78° C. for 2 hr, then adjusted pH to 5-6. The mixture was partitioned between EtOAc (80 mL) and H2O (60 mL). The organic layer was separated, washed with brine (40 mL), dried over anhydrous Na2SO4, concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 192 (M+H)+.


Step 2: Preparation of 2-bromo-4-(difluoromethyl)thiazole

To a mixture of 2-bromothiazole-4-carbaldehyde (0.764 g, 0.004 mol) in DCM (7 mL) at 0° C. was added dropwise DAST (3.22 g, 0.02 mol). The mixture was stirred at 25° C. for 48 hr, then quenched with satd. aq. NaHCO3 and adjusted pH to 8-10. The resulting mixture was extracted with DCM (2×40 mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na2SO4 and concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 214 (M+H)+.


Step 3: Preparation of methyl 4-(difluoromethyl)thiazole-2-carboxylate

A mixture of 2-bromo-4-(difluoromethyl)thiazole (0.6 g, 2.82 mmol), dppf (0.14 g, 0.28 mmol), Et3N (0.43 g, 4.23 mmol) and Pd(OAc)2 (0.13 g, 0.56 mmol) in MeOH (10 mL) was stirred at 60° C. under an atmosphere of CO for 16 hr. The resulting mixture was filtered, the filtrate was concentrated and the residue was partitioned between DCM (30 mL) and H2O. The organic layer was separated, washed with brine (30 mL), dried over anhydrous Na2SO4, and concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 194 (M+H)+.


Step 4: Preparation of N2,N4-bis(4,4-difluorocyclohexyl)-6-(4-(difluoromethyl) thiazol-2-yl)-1,3,5-triazine-2,4-diamine

To a suspension of N1,N5-bis(3,3-difluoro cyclobutyl)-biguanide (45 mg, 13.3 mmol) and methyl 4-(difluoromethyl)thiazole-2-carboxylate (40 mg, 20.7 mmol) in MeOH (10 mL) was added NaOMe (20 mg, 37.0 mmol). The reaction mixture was stirred at r.t. overnight, then poured into water and extracted with EtOAc. Combined organic layers were over anhydrous Na2SO4, concentrated and purified by standard methods to afford the desired product.




embedded image



1H NMR (400 MHz, CDCl3) δ 7.75 (s, 1H), 6.94-6.67 (t, 1H), 5.40-5.08 (m, 2H), 4.04-3.90 (m, 2H), 2.05-1.84 (m, 8H), 1.79-1.64 (m, 4H), 1.62-1.54 (m, 4H). LC-MS: m/z 481 (M+H)+.


The procedure set forth in Example 27 was used to produce the following compounds using the appropriate starting materials.


N2,N4-bis(3,3-difluorocyclobutyl)-6-(4-(difluoromethyl)thiazol-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 7.84 (d, J=8 Hz, 1H), 7.02-6.74 (m, 1H), 5.74-5.44 (m, 2H), 4.46-4.36 (m, 2H), 3.06 (d, J=8 Hz, 4H), 2.63-2.59 (m, 4H). LCMS: m/z 425 (M+H)+.


N2,N4-bis(3,3-difluorocyclopentyl)-6-(4-(difluoromethyl)thiazol-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 7.84 (s, 1H), 7.04-6.76 (m, 1H), 5.65-5.36 (m, 2H), 4.66-4.55 (m, 2H), 2.66-1.85 (m, 12H). LCMS: m/z 453 (M+H)+.


Example 28

The compounds of this Example are prepared by general Scheme 28, set forth below.




embedded image


Step 1: Preparation of 5-phenyl-1,3,4-oxathiazol-2-one

To a solution of benzamide (200 mg, 1.65 mmol) in toluene (2 mL) under N2 atmosphere was added carbonyl chloride thiohypochlorite (0.16 mL, 1.98 mmol). The mixture was stirred at 120° C. for 3 hr. The resulting mixture was cooled to r.t., then quenched with H2O and extracted with EtOAc (2×10 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4, concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 180 (M+H)+.


Step 2: Preparation of 3-phenyl-1,2,4-thiadiazole-5-carboxylate

A mixture of 5-phenyl-1,3,4-oxathiazol-2-one (270 mg, 1.5 mmol) and ethyl carbonocyanidate (790 mg, 6.0 mmol) in DCE (2 mL) was stirred in a sealed vial under microwave irradiation at 160° C. for 0.5 hr. The resulting mixture was concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 235 (M+H)+.


Step 3: Preparation of N2,N4-bis(4,4-difluorocyclohexyl)-6-(3-phenyl-1,2,4-thiadiazol-5-yl)-1,3,5-triazine-2,4-diamine

To a mixture of N1,N5-bis(4,4-difluoro cyclohexyl)-biguanide (90 mg, 0.27 mmol) and ethyl 3-phenyl-1,2,4-thiadiazole-5-carboxylate (75 mg, 0.32 mmol) in MeOH (2 mL) was added NaOMe (43 mg, 0.8 mmol). The reaction mixture was then stirred at r.t. overnight. The resulting mixture was poured into water and extracted with EtOAc. The combined organic layers were dried over anhydrous Na2SO4 and concentrated and purified by standard methods to afford the desired product.




embedded image



1H NMR (400 MHz, CDCl3) δ 8.40 (d, J=3.3 Hz, 2H), 7.48 (s, 3H), 5.68-5.01 (m, 2H), 4.27-3.87 (m, 2H), 2.26-1.63 (m, 8H). LC-MS: m/z 508.2 (M+H)+.


The procedure set forth in Example 28 was used to produce the following compounds using the appropriate starting materials.


N2,N4-bis(4,4-difluorocyclohexyl)-6-(3-methyl-1,2,4-thiadiazol-5-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 5.58-5.10 (m, 2H), 4.20-3.84 (m, 2H), 2.77 (s, 3H), 2.23-1.63 (m, 16H). LC-MS: m/z 446 (M+H)+.


Example 29

The compounds of this Example are prepared by general Scheme 29, set forth below.




embedded image


Step 1. Preparation of 6-chloro-N2,N4-bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine

To a solution of 2,4,6-trichloro-1,3,5-triazine (2 g, 10.9 mmol) in acetone (35 mL) were added (S)-1-cyclopropylethanamine hydrochloride (2.7 mg, 22.8 mmol), DIPEA (3.5 mg, 27 mmol) and CsF (3.3 mg, 21.8 mmol). The mixture was stirred at 50° C. overnight, and then filtered. The filtrate was concentrated and purified by standard methods to give the desired product. LC-MS: m/z 282 (M+H)+.


Step B. Preparation of N2,N4-bis((R)-1-cyclopropylethyl)-6-(4-methyl-1H-pyrazol-1-yl)-1,3,5-triazine-2,4-diamine

To an ice-cold solution of 4-methyl-1H-pyrazole (207 mg, 1.07 mmol) in dry THF (5 mL) was slowly added NaH (34 mg, 1.42 mmol) over 30 min, followed by addition of a solution of 6-chloro-N2,N4-bis((R)-1-cyclo-propylethyl)-1,3,5-triazine-2,4-diamine (200 mg, 0.71 mmol) in THF (3 mL). The reaction mixture was stirred at r.t. overnight, and then concentrated and purified by standard methods to afford N2,N4-bis((R)-1-cyclopropylethyl)-6-(4-methyl-1H-pyrazol-1-yl)-1,3,5-triazine-2,4-diamine.




embedded image



1H NMR (400 MHz, CDCl3) δ 8.17 (s, 1H), 7.56 (s, 1H), 5.50-5.12 (m, 2H), 3.56 (d, J=6.0 Hz, 2H), 2.12 (s, 3H), 1.25 (s, 6H), 0.94-0.84 (m, 2H), 0.54-0.32 (m, 6H), 0.26 (d, J=4.1 Hz, 2H). LC-MS: m/z 328 (M+H)+.


The procedure set forth in Example 29 was used to produce the following compounds using the appropriate starting materials.


Compound N2,N4-bis((R)-1-cyclopropylethyl)-6-(4-iodo-1H-pyrazol-1-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.51 (s, 1H), 7.73 (s, 1H), 5.49-5.20 (m, 2H), 3.56 (d, J=6.8 Hz, 2H), 1.26 (d, J=6.5 Hz, 6H), 0.90 (s, 2H), 0.55-0.24 (m, 8H). LC-MS: m/z 440 (M+H)+.


Compound 6-(4-Chloro-1H-pyrazol-1-yl)-N2,N4-bis(4,4-difluorocyclohexyl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.43-8.38 (m, 1H), 7.68 (d, J=9.2 Hz, 1H), 5.41-5.18 (m, 2H), 4.10-3.98 (m, 2H), 2.14-1.91 (m, 13H), 1.86-1.73 (m, 1.2H), 1.68-1.61 (m, 1.8H). LCMS: m/z 448 (M+H)+.


Compound N2,N4-bis((R)-1-cyclopropylethyl)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.53 (d, J=10.0 Hz, 1H), 6.66 (d, J=2.5 Hz, 1H), 5.63-5.23 (m, 2H), 3.63-3.45 (m, 2H), 1.27 (d, J=6.5 Hz, 6H), 0.91 (d, J=7.6 Hz, 2H), 0.58-0.26 (m, 8H). LC-MS: m/z 382 (M+H)+.


Compound 6-(3-(Trifluoromethyl)-1H-pyrazol-1-yl)-N2,N4-bis(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.55 (m, 1H), 6.70 (d, J=2.7 Hz, 1H), 5.77-5.30 (m, 2H), 5.05-4.78 (m, 2H), 1.49-1.37 (m, 6H). LC-MS: m/z 438.1 (M+H)+.


Compound N2,N4-bis((S)-1,1,1-trifluorobutan-2-yl)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.60-8.57 (m, 1H), 7.80-5.29 (m, 3H), 4.76-4.69 (m, 2H), 2.03-1.95 (m, 2H), 1.72-1.63 (m, 2H), 1.09-1.02 (m, 6H). LCMS: m/z 466 (M+H)+.


Compound N2,N4-bis(3,3-difluorocyclopentyl)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.57-8.50 (m, 1H), 6.68 (d, J=4 Hz, 1H), 5.74-5.44 (m, 2H), 4.76-4.47 (m, 2H), 2.66-2.57 (m, 2H), 2.08-2.31 (m, 8H), 1.81-1.86 (m, 2H). LCMS: m/z 454 (M+H)+.


Compound N2,N4-bis(4,4-difluorocyclohexyl)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, DMSO-d6) δ 8.86-8.50 (m, 1H), 8.13-7.76 (m, 2H), 7.00 (d, J=9.7 Hz, 1H), 4.18-3.92 (m, 2H), 2.14-1.82 (m, 12H), 1.62 (s, 4H). LC-MS: m/z 482 (M+H)+.


Compound N2,N4-bis(3,3-difluorocyclobutyl)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.56-8.50 (m, 1H), 6.69 (d, J=6 Hz, 1H), 5.85-5.52 (m, 2H), 4.37 (m, 2H), 3.05-3.12 (m, 4H), 2.50-2.67 (m, 4H). LCMS: m/z 426 (M+H)+.


Example 30

The compounds of this Example are prepared by general Scheme 30, set forth below.




embedded image


Step 1: Preparation of methyl 1-methyl-1H-pyrazole-3-carboxylate

To a solution of 1-methyl-1H-pyrazole-3-carboxylic acid (504 mg, 4 mmol) in MeOH (5 mL) was added SOCl2 (1.4 mL, 20 mmol) at 0° C. The mixture was stirred at r.t overnight then concentrated under reduced pressure. The residue was dissolved in EtOAc, washed with satd. aq. NaHCO3 and concentrated to afford methyl 1-methyl-1H-pyrazole-3-carboxylate. LC-MS: m/z 141 (M+H)+.


Step 2: Preparation of N2,N4-bis(4,4-difluorocyclohexyl)-6-(1-methyl-1H-pyrazol-3-yl)-1,3,5-triazine-2,4-diamine

To a solution of N1,N5-bis(4,4-difluoro cyclohexyl)-biguanide (120 mg, 0.36 mmol) and methyl 1-methyl-1H-pyrazole-3-carboxylate (60 mg, 0.43 mmol) in MeOH (2 mL) was added NaOMe (28 mg, 1.07 mmol). The reaction mixture was stirred at r.t. overnight, then poured into water and extracted with EtOAc. Combined organic layers were dried over anhydrous Na2SO4, and concentrated and purified by standard methods to afford N2,N4-bis(4,4-difluorocyclohexyl)-6-(1-methyl-1H-pyrazol-3-yl)-1,3,5-triazine-2,4-diamine.




embedded image



1H NMR (400 MHz, CDCl3) δ 7.40 (d, J=2.1 Hz, 1H), 6.92 (s, 1H), 5.75-4.94 (m, 2H), 4.28-3.85 (m, 5H), 2.26-1.54 (m, 16H). LC-MS: m/z 428 (M+H)+.


The procedure set forth in Example 30 was used to produce the following compounds using the appropriate starting materials.


Compound N2,N4-bis(4,4-difluorocyclohexyl)-6-(1H-pyrazol-3-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 7.57 (s, 1H), 6.89 (s, 1H), 5.55-4.84 (m, 2H), 4.15-3.80 (m, 2H), 2.05-1.56 (m, 16H). LC-MS: m/z 414 (M+H)+.


Compound N2,N4-bis(3,3-difluorocyclopentyl)-6-(2-methyl-1H-imidazol-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 7.71 (s, 1H), 5.65-5.07 (m, 2H), 4.63-4.61 (m, 2H), 2.61-2.49 (m, 3H), 2.29 (s, 3H), 2.09-1.92 (m, 9H). LC-MS: m/z 400.1 (M+H)+.


Compound N2,N4-bis(3,3-difluorocyclobutyl)-6-(2-methyl-1H-imidazol-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 7.62 (s, 1H), 6.49-6.34 (m, 2H), 4.36-4.33 (m, 2H), 3.04 (s, 3H), 2.69-2.49 (m, 8H). LC-MS: m/z 372 (M+H)+.


Compound N2,N4-bis(4,4-difluorocyclohexyl)-6-(2-methyl-1H-imidazol-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.67-7.66 (m, 1H), 6.26-5.84 (m, 1H), 5.11-4.81 (m, 1H), 3.49-3.11 (m, 7H), 2.48 (s, 2H), 2.10-1.66 (m, 12H). LC-MS: m/z 428.3 (M+H)+.


Example 31

The compounds of this Example are prepared by general Scheme 31, set forth below.




embedded image


Step 1: Preparation of 4-iodo-3-(trifluoromethyl)-1H-pyrazole

To a solution of 3-(trifluoromethyl)-1H-pyrazole (500 mg, 3.7 mmol) in 50% H2SO4 at 0° C. was added NIS (992 mg, 4.4 mmol). The suspension was stirred at 0° C. for 10 min and then at r.t. for 3 hr. The resulting mixture was quenched with water (50 mL), and then stirred overnight. The precipitate was collected by filtration and dried to afford 4-iodo-3-(trifluoromethyl)-1H-pyrazole. LC-MS: m/z 263 (M+H)+.


Step 2: Preparation of 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(trifluoromethyl)-1H-pyrazole

To a mixture of 4-iodo-3-(trifluoromethyl)-1H-pyrazole (100 mg, 0.38 mmol) and (4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (397 mg, 0.57 mmol) in DMF (3 mL) were added 1,1′-bis-(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (31 mg, 0.04 mmol) and potassium acetate (509 mg, 0.76). The reaction mixture was stirred at 90° C. for 2 hr, then quenched with water and extracted with Et2O. The combined organic layers were washed with brine, dried over anhydrous Na2SO4, and concentrated to afford 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(trifluoromethyl)-1H-pyrazole. LC-MS: m/z 263 (M+H)+.


Step 3: Preparation of N2,N4-bis(4,4-difluorocyclohexyl)-6-(3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,5-triazine-2,4-diamine

To a solution of 6-chloro-N2,N4-bis (4,4-difluorocyclohexyl)-1,3,5-triazine-2,4-diamine (145 mg, 0.38 mmol) and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(trifluoromethyl)-1H-pyrazole (100 mg, 0.38 mmol) in DME (3 mL) and H2O (1 mL) were added K2CO3 (158 mg, 1.15 mmol) and Pd(PPh3)4 (44 mg, 0.04 mmol) under N2 atmosphere. The mixture was stirred at 90° C. for 16 hr, and then filtered. The filtrate was partitioned between EtOAc and H2O. The aqueous layer was separated and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na2SO4, and concentrated and purified by standard methods to afford N2,N4-bis(4,4-difluorocyclohexyl)-6-(3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,5-triazine-2,4-diamine.




embedded image



1H NMR (400 MHz, DMSO-d6) δ 8.09-7.47 (m, 3H), 7.29-7.00 (m, 1H), 4.11-3.76 (m, 2H), 2.19-1.46 (m, 16H). LC-MS: m/z 482 (M+H)+.


The procedure set forth Example 31 was used to produce the following compounds using the appropriate starting materials.


Compound N2,N4-bis(4,4-difluorocyclohexyl)-N2-methyl-6-(3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 7.75 (s, 1H), 6.90 (s, 1H), 5.45 (d, J=7.1 Hz, 1H), 4.94-4.44 (m, 1H), 4.09-3.84 (m, 1H), 3.07 (d, J=11.0 Hz, 3H), 2.35-2.02 (m, 6H), 2.03-1.66 (m, 10H). LC-MS: m/z 496 (M+H)+.


Compound N2,N4-bis(4,4-difluorocyclohexyl)-6-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 7.57-7.37 (m, 1H), 5.18-4.88 (m, 2H), 4.01-3.79 (m, 5H), 2.21-1.46 (m, 16H). LC-MS: m/z 496 (M+H)+.


Compound N2,N4-bis((R)-1-cyclopropylethyl)-6-(5-(trifluoromethyl)pyridin-3-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, DMSO-d6) δ 9.60 (s, 1H), 9.13 (s, 1H), 8.75 (s, 1H), 7.60 (s, 1H), 7.46 (s, 1H), 3.64-3.50 (m, 2H), 1.21 (d, J=4 Hz, 6H), 0.96 (s, 2H), 0.43-0.33 (m, 6H), 0.14 (s, 2H). LCMS: m/z 393 (M+H)+.


Compound N2,N4-bis((R)-1-cyclopropylethyl)-6-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.04-8.82 (m, 1H), 8.68-8.28 (m, 2H), 3.83-3.64 (m, 1H), 3.60-3.51 (m, 1H), 1.36 (m, 6H), 0.91-0.85 (m, 2H), 0.67-0.48 (m, 4H), 0.34 (m, 4H). LCMS: m/z 393 (M+H)+.


Compound N2,N4-bis((R)-1-cyclopropylethyl)-6-(2,5-difluorophenyl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 7.76-7.55 (m, 1H), 7.08 (dd, J=7.6, 5.8 Hz, 2H), 5.43-5.02 (m, 2H), 3.55 (s, 2H), 1.27 (d, J=5.8 Hz, 6H), 0.90 (d, J=7.4 Hz, 2H), 0.55-0.37 (m, 6H), 0.30-0.23 (m, 2H). LC-MS: m/z 360 (M+H)+.


Compound N2,N4-bis((R)-1-cyclopropylethyl)-6-(3-(trifluoromethoxy)phenyl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3): δ 8.25-8.18 (m, 2H), 7.46-7.42 (m, 1H), 7.32-7.26 (m, 1H), 5.28-5.13 (m, 2H), 3.68-3.55 (m, 2H), 1.29-1.25 (m, 6H), 0.95-0.88 (m, 2H), 0.56-0.41 (m, 6H), 0.28 (s, 2H). LCMS: m/z 408 (M+H)+.


Compound 3-(4,6-bis(((R)-1-cyclopropylethyl)amino)-1,3,5-triazin-2-yl)benzonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.63-8.55 (m, 2H), 7.75 (d, J=8 Hz, 1H), 7.57-7.53 (m, 1H), 5.53-5.21 (m, 2H), 3.69-3.55 (m, 2H), 1.25 (s, 2H), 0.90-8.86 (m, 2H), 0.57-0.30 (m, 1H). LCMS: m/z 349 (M+H)+.


Example 32. Preparation of Aromatic-Aliphatic Triazine Compounds of Formula Q

The compounds of this Example are prepared by general Scheme 32, set forth below.




embedded image


Step 1: Preparation of 4-chloro-N-(6-(1,1-difluoroethyl)pyridin-3-yl)-6-(6-(trifluoro methyl)pyridin-2-yl)-1,3,5-triazin-2-amine

To a mixture of 2,4-dichloro-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine (188 mg, 0.64 mmol) and 2-(1,1-difluoroethyl)pyridin-4-amine (50 mg, 0.32 mmol) in 1, 4-dioxane (4 mL) were added tBuONa (61 mg, 0.64 mmol) and Pd(dppf)Cl2 (22 mg, 0.03 mmol) under an atmosphere of nitrogen. The reaction mixture was then stirred at 80° C. overnight, and then filtered. The filtrate was concentrated and purified by standard methods to afford the desired product.




embedded image


LC-MS: m/z 417.1 (M+H)+.


Step 2: Preparation of N2-(3,3-difluorocyclopentyl)-N4-(2-(1,1-difluoroethyl)pyridin-4-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

To a mixture of 4-chloro-N-(6-(1,1-difluoroethyl)pyridin-3-yl)-6-(6-(trifluoromethyl)pyridine-2-yl)-1,3,5-triazin-2-amine (35 mg, 0.08 mmol) and 3,3-difluorocyclopentanamine (16 mg, 0.13 mmol) in THF (2 mL) were added CsF (24 mg, 0.16 mmol) and DIPEA (0.03 mL, 0.16 mmol). The reaction mixture was then stirred at 50° C. overnight. The mixture was filtered and the filtrate was concentrated and purified by standard methods to afford the desired product.




embedded image



1H NMR (400 MHz, CDCl3) δ 8.61 (m, 1H), 8.52 (d, J=5.4 Hz, 1H), 8.43 (s, 1H), 8.08 (d, J=7.7 Hz, 1H), 8.03-7.73 (m, 2H), 7.73-7.34 (m, 1H), 6.08-5.52 (m, 1H), 4.88-4.55 (m, 1H), 2.82-2.64 (m, 1H), 2.46-2.12 (m, 4H), 2.11-1.98 (m, 3H), 1.94-1.81 (m, 1H). LC-MS: m/z 502 (M+H)+.


The procedure set forth in Example 32 was used to produce the following compounds using the appropriate starting materials.


(S)—N2-(3,3-difluorocyclopentyl)-N4-(2-(1,1-difluoroethyl)pyridin-4-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.61 (m, 1H), 8.53 (d, J=5.4 Hz, 1H), 8.46-7.94 (m, 2H), 7.91-7.32 (m, 3H), 5.77 (m, 1H), 4.70 (m, 1H), 2.79-2.60 (m, 1H), 2.50-2.11 (m, 4H), 2.04 (m, 3H), 1.87 (m, 1H). LC-MS: m/z 502 (M+H)+.


(R)—N2-(3,3-difluorocyclopentyl)-N4-(2-(1,1-difluoroethyl)pyridin-4-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.62 (m, 1H), 8.53 (d, J=5.4 Hz, 1H), 8.47-7.94 (m, 2H), 7.93-7.33 (m, 3H), 5.90-5.60 (m, 1H), 4.96-4.46 (m, 1H), 2.80-2.61 (m, 1H), 2.50-2.10 (m, 4H), 2.04 (m, 3H), 1.87 (m, 1H). LC-MS: m/z 502 (M+H)+.


N2-(4,4-difluorocyclohexyl)-N4-(2-(1,1-difluoroethyl)pyridin-4-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.69-8.43 (m, 3H), 8.07 (t, J=7.8 Hz, 1H), 8.01-7.73 (m, 2H), 7.49 (m, 1H), 5.61 (m, 1H), 4.19 (m, 1H), 2.24-2.13 (m, 4H), 2.12-1.93 (m, 5H), 1.76-1.65 (m, 2H). LC-MS: m/z 516 (M+H)+.


N2-(3,3-difluorocyclobutyl)-N4-(2-(1,1-difluoroethyl)pyridin-4-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.72-8.26 (m, 3H), 8.18-7.75 (m, 3H), 7.72-7.33 (m, 1H), 6.03 (m, 1H), 4.53 (m, 1H), 3.16 (d, J=8.2 Hz, 2H), 2.59 (m, 2H), 2.05 (m, 3H). LCMS: m/z 488 (M+H)+.


2-((4-((2-(1,1-Difluoroethyl)pyridin-4-yl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)propanenitrile



embedded image



1H NMR (400 MHz, DMSO-d6) δ 11.25-10.25 (m, 1H), 9.16-8.47 (m, 3H), 8.41-8.19 (m, 2H), 8.15-7.80 (m, 2H), 5.40-4.80 (m, 1H), 2.00 (t, J=19.0 Hz, 3H), 1.63 (d, J=7.2 Hz, 3H). LCMS: m/z 451 (M+H)+.


2-((4-((2-(1,1-Difluoroethyl)pyridin-4-yl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-2-methylpropanenitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.88-8.43 (m, 2H), 8.03 (m, 4H), 7.67 (s, 1H), 5.97 (m, 1H), 2.02 (m, 3H), 1.86 (s, 6H). LCMS: m/z 465 (M+H)+.


3-((4-((2-(1,1-Difluoroethyl)pyridin-4-yl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-2,2-dimethylpropanenitrile



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.65 (s, 1H), 8.91-8.38 (m, 4H), 8.33 (t, J=7.9 Hz, 1H), 8.21-7.51 (m, 2H), 3.80-3.60 (m, 2H), 2.00 (m, 3H), 1.40 (d, J=3.9 Hz, 6H). LCMS: m/z 479 (M+H)+.


3-((4-((2-(1,1-Difluoroethyl)pyridin-4-yl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)butanenitrile



embedded image



1H NMR (400 MHz, DMSO-d6) δ: 10.90-10.25 (m, 1H), 8.75-8.52 (m, 2H), 8.52-8.20 (m, 3H), 8.18-7.75 (m, 2H), 4.67-4.26 (m, 1H), 3.09-2.72 (m, 2H), 2.00 (m, 3H), 1.35 (t, J=5.5 Hz, 3H). LCMS: m/z 465 (M+H)+.


3-((4-((2-(1,1-Difluoroethyl)pyridin-4-yl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-3-methylbutanenitrile



embedded image



1H NMR (400 MHz, DMSO-d6) δ 8.65-8.44 (m, 2H), 8.42-7.96 (m, 3H), 7.92-7.35 (m, 2H), 6.00-5.60 (m, 1H), 3.40-3.10 (m, 2H), 2.10-1.90 (m, 3H), 1.75-1.50 (m, 6H). LCMS: m/z 479 (M+H)+.


N2-(3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.67-8.57 (m, 2H), 8.53 (d, J=1.7 Hz, 1H), 8.19-7.38 (m, 4H), 6.03-5.53 (m, 1H), 4.85-4.55 (m, 1H), 2.81-2.58 (m, 1H), 2.51-2.07 (m, 4H), 1.98-1.81 (m, 1H), 1.32-1.16 (m, 1H). LC-MS: m/z 506 (M+H)+.


(R)—N2-(3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.65-8.52 (m, 3H), 8.10-8.06 (m, 2H), 7.86-7.85 (m, 1H), 7.48-7.42 (m, 1H), 6.00-5.86 (m, 1H), 4.81-4.60 (m, 1H), 2.77-2.62 (m, 1H), 2.41-2.32 (m, 2H), 2.12-2.19 (m, 2H), 1.93-1.86 (m, 1H). LCMS: m/z 506 (M+H)+.


(S)—N2-(3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.67-8.56 (m, 2H), 8.53 (d, J=1.8 Hz, 1H), 8.20-7.82 (m, 3H), 7.77-7.40 (m, 1H), 6.09-5.51 (m, 1H), 4.92-4.46 (m, 1H), 2.80-2.59 (m, 1H), 2.46-2.29 (m, 2H), 2.29-2.08 (m, 2H), 1.97-1.85 (m, 1H). LC-MS: m/z 506 (M+H)+.


N2-(4,4-difluorocyclohexyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image


1H NMR (400 MHz, CDCl3) δ 8.57-8.62 (m, 3H), 7.85-8.17 (m, 3H), 7.37-7.72 (m, 1H), 5.45-5.82 (m, 1H), 4.10-4.26 (m, 1H), 2.17-2.19 (d, J=9.2 Hz, 4H), 1.88-2.04 (m, 2H), 1.66-1.81 (m, 2H); LC-MS: m/z 520 (M+H)+.


N2-(3,3-difluorocyclobutyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.65-8.55 (m, 2H), 8.51-8.32 (m, 1H) 8.11-8.04 (m, 1H), 7.86-7.83 (m, 1H), 7.68-7.47 (m, 1H), 6.33-6.06 (m, 1H), 4.58-4.42 (m, 1H), 3.17-3.10 (m, 2H), 2.75-2.53 (m, 2H), 2.29 (s, 1H). LCMS: m/z 492 (M+H)+.


N2-(6,6-difluorospiro[3.3]heptan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image


1H NMR (400 MHz, CDCl3) δ 8.55-8.70 (m, 3H), 7.84-8.20 (m, 3H), 7.31-7.66 (m, 1H), 5.68-6.00 (m, 1H), 4.49-4.55 (m, 1H), 2.57-2.76 (m, 6H), 1.83-2.27 (m, 2H). LC-MS: m/z 532 (M+H)+.


6-(6-(Trifluoromethyl)pyridin-2-yl)-N2-(2-(trifluoromethyl)pyridin-4-yl)-N4-(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.62-8.59 (m, 1H), 8.44 (s, 1H), 8.16-8.07 (m, 1H), 7.87 (d, J=8 Hz, 1H), 7.75-7.50 (m, 1H), 1.53-1.49 (m, 3H). LCMS: m/z 498 (M+H)+.


N2-(2,2,2-trifluoroethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.91 (s, 1H), 8.75-8.71 (m, 2H), 8.61-8.57 (m, 2H), 8.36-8.33 (m, 1H), 8.21-7.83 (m, 2H), 4.41-4.24 (m, 2H). LCMS: m/z 484 (M+H)+.


N2-((3,3-difluorocyclobutyl)methyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.70-8.41 (m, 3H), 7.96 (m, 4H), 7.52 (m, 1H), 5.95-5.58 (m, 1H), 3.67 (m, 2H), 2.77-2.13 (m, 5H). LCMS: m/z 506 (M+H)+.


N2-((2,2-difluorocyclopropyl)methyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.76-10.69 (m, 1H), 8.74-8.66 (m, 2H), 8.58-8.55 (m, 2H), 8.34-8.30 (m, 1H), 8.11 (d, J=8 Hz, 1H), 7.96-7.86 (m, 1H), 3.61-3.43 (m, 2H), 2.17-2.09 (m, 1H), 1.67-1.32 (m, 2H). LCMS: m/z 492 (M+H)+.


N2-(3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-N4-(5-(trifluoromethyl)pyridin-3-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.86 (t, J=6.0 Hz, 1H), 8.83-8.73 (m, 1H), 8.64-8.55 (m, 2H), 8.09-8.03 (m, 1H), 7.89-7.83 (m, 1H), 6.00-5.88 (m, 1H), 4.80-4.55 (m, 1H), 2.74-2.57 (m, 1H), 2.47-2.05 (m, 4H), 1.94-1.82 (m, 1H). LC-MS: m/z 506 (M+H)+.


1-(4-((4-((3,3-Difluorocyclopentyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (600 MHz, CDCl3) δ 8.67 (s, 2H), 8.29 (t, J=5.9 Hz, 1H), 8.07 (t, J=7.6 Hz, 1H), 7.91-7.79 (m, 2H), 7.05 (s, 1H), 5.97 (d, J=7.9 Hz, 1H), 5.06-4.61 (m, 1H), 2.81-2.66 (m, 1H), 2.43-1.36 (m, 1H), 2.34-2.18 (m, 2H), 2.14-2.04 (m, 1H), 1.87-1.77 (m, 3H), 1.72 (m, 2H). LC-MS: m/z 503 (M+H)+


(R)-1-(4-((4-((3,3-difluorocyclopentyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.47 (s, 1H), 8.77-8.59 (m, 2H), 8.49 (s, 1H), 8.36-8.20 (m, 2H), 8.11 (d, J=7.8 Hz, 1H), 7.55 (d, J=4.6 Hz, 1H), 4.86-4.47 (m, 1H), 2.75-2.57 (m, 1H), 2.29-2.06 (m, 4H), 1.97-1.82 (m, 1H), 1.80-1.74 (m, 2H), 1.71-1.63 (m, 2H). LC-MS: m/z 503 (M+H)+.


(S)-1-(4-((4-((3,3-difluorocyclopentyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.47 (s, 1H), 8.79-8.60 (m, 2H), 8.49 (s, 1H), 8.38-8.19 (m, 2H), 8.11 (d, J=7.7 Hz, 1H), 7.55 (d, J=4.4 Hz, 1H), 4.80-4.54 (m, 1H), 2.75-2.55 (m, 1H), 2.37-2.06 (m, 4H), 1.96-1.82 (m, 1H), 1.76-1.67 (m, 4H). LC-MS: m/z 503 (M+H)+.


1-(4-((4-((4,4-Difluorocyclohexyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.83-8.65 (m, 1H), 8.58 (m, 1H), 8.32 (d, J=5.4 Hz, 1H), 8.10 (t, J=7.8 Hz, 1H), 7.86 (d, J=7.7 Hz, 1H), 7.62 (m, 1H), 7.09 (s, 1H), 5.65 (m, 1H), 4.29 (s, 1H), 2.12 (m, 6H), 1.89-1.91 (m, 2H), 1.82-1.63 (m, 4H). LC-MS: m/z 517 (M+H)+.


1-(4-((4-((3,3-Difluorocyclobutyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.48 (brs, 1H), 8.89 (d, J=6.5 Hz, 1H), 8.78-8.56 (m, 1H), 8.42 (s, 1H), 8.37-8.24 (m, 2H), 8.10 (d, J=7.8 Hz, 1H), 7.58 (d, J=4.1 Hz, 1H), 4.45 (s, 1H), 3.13-2.97 (m, 2H), 2.71-2.56 (m, 2H), 1.83-1.59 (m, 4H). LC-MS: m/z 489 (M+H)+.


1-(4-((4-((6,6-Difluorospiro[3.3]heptan-2-yl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.70-8.53 (m, 2H), 8.31-8.28 (m, 1H), 8.10-8.06 (m, 1H), 7.85-7.83 (d, J=8 Hz, 1H), 7.66-7.52 (m, 1H), 7.20-7.07 (m, 1H), 5.94-5.66 (m, 1H), 4.67-4.63 (m, 1H), 2.75-2.55 (m, 6H), 2.25-2.10 (m, 2H), 1.89-1.83 (m, 2H), 1.74-1.71 (m, 2H). LCMS: m/z 529 (M+H).+


1-(4-((4-(((2,2-Difluorocyclopropyl)methyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.72 (m, 2H), 8.31 (d, J=5.5 Hz, 1H), 8.09 (d, J=7.8 Hz, 1H), 7.85 (d, J=7.8 Hz, 1H), 7.58 (m, 1H), 7.05 (m, 1H), 5.92 (m, 1H), 4.00 (s, 1H), 3.61 (m, 1H), 2.08 (m, 1H), 1.83 (m, 2H), 1.72 (m, 2H), 1.52 (m, 2H). LC-MS: m/z 489 (M+H)+.


1-(4-((4-((2,2,2-Trifluoroethyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.93-8.42 (m, 2H), 8.34-8.29 (m, 1H), 8.10 (t, J=7.8 Hz, 1H), 8.03-7.58 (m, 2H), 7.13 (d, J=4.2 Hz, 1H), 6.34-6.03 (m, 1H), 4.36-4.29 (m, 2H), 1.74 (s, 4H). LC-MS: m/z 481.2 (M+H)+.


1-(4-((4-((2-Hydroxy-2-methylpropyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.77-8.44 (m, 2H), 8.29 (d, J=5.5 Hz, 1H), 8.07 (t, J=7.7 Hz, 1H), 7.77 (m, 2H), 6.96 (s, 1H), 6.14 (m, 1H), 3.79-3.55 (m, 2H), 1.91-1.84 (m, 2H), 1.73-1.69 (m, 2H), 1.35 (s, 6H). LC-MS: m/z 471 (M+H)+.


(R)-1-(4-((4-(6-(trifluoromethyl)pyridin-2-yl)-6-((1,1,1-trifluoropropan-2-yl)amino)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.73 (m, 2H), 8.36 (m, 1H), 8.11 (d, J=7.3 Hz, 1H), 7.87 (d, J=7.8 Hz, 1H), 7.52 (s, 1H), 7.07 (m, 1H), 5.82 (m, 1H), 5.09 (s, 1H), 4.81 (m, 4H), 1.50 (m, J=8.5 Hz, 3H). LC-MS: m/z 495 (M+H)+.


(S)-1-(4-((4-(6-(trifluoromethyl)pyridin-2-yl)-6-((1,1,1-trifluoropropan-2-yl)amino)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.77 (d, J=9.2 Hz, 2H), 8.66 (m, J=8 Hz, 1H), 8.57 (s, 1H), 8.10 (m, 1H), 7.52 (m, 1H), 7 . . . 10 (d, J=4 Hz, 1H), 5.86 (m, 1H), 5.05 (m, 1H), 1.8 (m, 4H), 1.62 (m, 3H). LC-MS: m/z 495 (M+H)+.


4-((4-(Tert-butylamino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)picolinonitrile



embedded image



1H NMR (400 MHz, DMSO-d6) δ 8.66-8.41 (m, 3H), 8.12-8.00 (m, 1H), 7.91-7.80 (m, 1H), 7.65-7.55 (m, 1H), 5.80-5.20 (m, 1H), 1.58 (m, 9H). LCMS: m/z 415 (M+H)+.


4-((4-((3,3-Difluorocyclobutyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)picolinonitrile



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.78 (s, 1H), 8.97-8.52 (m, 4H), 8.38-8.25 (m, 1H), 8.13 (d, J=7.8 Hz, 1H), 8.01-7.80 (m, 1H), 4.56-4.24 (m, 1H), 3.17-2.95 (m, 2H), 2.80-2.60 (m, 2H). LCMS: m/z 449 (M+H)+.


4-((4-((3,3-Difluorocyclopentyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)picolinonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.07-8.66 (m, 4H), 7.86 (d, J=8.0 Hz, 2H), 7.53-7.68 (m, 1H), 5.85-6.03 (m, 1H), 4.58-4.79 (m, 1H), 2.66-2.75 (m, 1H), 1.95-2.47 (m, 1H), 1.88-1.93 (m, 1H). LC-MS: m/z 463 (M+H)+.


4-((4-((4,4-Difluorocyclohexyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)picolinonitrile



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.72-10.76 (m, 1H), 7.93-8.72 (m, 5H), 4.03-4.23 (m, 1H), 1.94-2.16 (m, 6H), 1.64-1.73 (m, 2H). LC-MS: m/z 477 (M+H)+.


4-((4-((2-Hydroxy-2-methylpropyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)picolinonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.57-8.50 (m, 2H), 8.43-8.36 (m, 1H), 8.22-8.02 (m, 2H), 7.85 (m, 1H), 7.60 (s, 1H), 6.32-6.23 (m, 1H), 3.74-3.58 (m, 2H), 1.37 (s, 6H). LCMS: m/z 431 (M+H)+.


3-((4-((3,3-Difluorocyclopentyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-5-fluorobenzonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.64-8.55 (m, 1H), 8.16-7.74 (m, 5H), 7.08-7.02 (m, 1H), 5.97-5.71 (m, 1H), 4.79-4.55 (m, 1H), 2.69-2.64 (m, 1H), 2.41-2.14 (m, 4H), 2.01 (s, 1H). LCMS: m/z 480 (M+H)+.


3-((4-((4,4-Difluorocyclohexyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-5-fluorobenzonitrile



embedded image



1H NMR (400 MHz, CDCl3): δ 8.60-8.54 (m, 1H), 8.08-8.07 (m, 1H), 7.85-7.81 (m, 4H), 7.08-7.03 (m, 1H), 5.76-5.48 (m, 1H), 4.22-4.04 (m, 1H), 2.21-2.18 (m, 4H), 2.02-1.92 (m, 2H), 1.78-1.71 (m, 2H). LCMS: m/z 494 (M+H)+.


3-((4-((3,3-Difluorocyclobutyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-5-fluorobenzonitrile



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.50 (s, 1H), 8.81-8.67 (m, 1H), 8.55 (d, J=8 Hz, 1H), 8.24-8.09 (m, 3H), 7.46-7.42 (m, 1H), 4.45-4.28 (m, 2H), 3.05-3.01 (m, 2H), 2.77 (d, J=8 Hz, 2H). LCMS: m/z 466 (M+H)+.


3-((4-((Cyclopropylmethyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-5-fluorobenzonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.59-8.49 (m, 1H), 8.01-7.97 (m, 1H), 7.83-7.74 (m, 3H), 7.56 (s, 1H), 6.99-6.96 (m, 1H), 5.83-5.62 (m, 1H), 3.43-3.30 (m, 2H), 1.07 (d, J=4 Hz, 1H), 0.57-0.52 (m, 2H), 0.29-0.24 (m, 2H). LCMS: m/z 430 (M+H)+.


3-Fluoro-5-((4-((2-hydroxy-2-methylpropyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)benzonitrile



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.44 (s, 1H), 8.61 (m, 1H), 8.24 (m, 5H), 7.43 (t, J=8.8 Hz, 1H), 4.61 (m, 1H), 3.45 (m, 2H), 1.18 (d, J=4.4 Hz, 6H). LCMS: m/z 448 (M+H)+.


1-((4-((3-Chlorophenyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-2-methylpropan-2-ol



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.11 (m 1H), 8.67-8.52 (m, 1H), 8.40-8.20 (m, 2H), 8.09 (d, J=7.8 Hz, 1H), 7.90 (s, 1H), 7.67 (d, J=7.7 Hz, 1H), 7.40-7.22 (m, 1H), 7.05 (t, J=7.2 Hz, 1H), 4.75-4.40 (m, 1H), 3.44 (m 2H), 1.17 (d, J=6.4 Hz, 6H). LCMS: m/z 439 (M+H)+.


3-((4-(Tert-butylamino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)benzonitrile



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.80-10.20 (m, 1H), 9.50-9.25 (m, 1H), 8.36-7.96 (m, 4H), 7.50-7.40 (m, 1H), 1.47 (s, 9H). LCMS: m/z 414 (M+H)+.


N2-(3,3-difluorocyclopentyl)-N4-(3,5-difluorophenyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.59 (m, 1H), 8.06 (t, J=7.8 Hz, 1H), 7.84 (d, J=7.7 Hz, 1H), 7.41 (m, 3H), 6.56 (t, J=8.8 Hz, 1H), 5.74 (m, 1H), 4.83-4.53 (m, 1H), 2.79-2.60 (m, 1H), 2.46-2.06 (m, 4H), 1.95-1.81 (m, 1H). LC-MS: m/z 473 (M+H)+.


N2-(4,4-difluorocyclohexyl)-N4-(3,5-difluorophenyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.50 (d, J=10.5 Hz, 1H), 7.98 (t, J=7.7 Hz, 1H), 7.76 (d, J=7.7 Hz, 1H), 7.25 (d, J=7.6 Hz, 2H), 6.48 (t, J=8.9 Hz, 1H), 5.67-5.34 (m, 1H), 4.14-3.96 (m, 1H), 2.13-2.11 (m, 4H), 2.00-1.74 (m, 5H). LC-MS: m/z 487.2 (M+H)+.


N2-(4,4-difluorocyclohexyl)-N4-(2-phenylpyridin-4-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.59-8.58 (m, 2H), 8.30 (s, 1H), 8.08-7.81 (m, 5H), 7.50-7.42 (m, 4H), 5.87-5.85 (m, 1H), 4.22-4.10 (m, 1H), 2.15-1.68 (m, 8H). LC-MS: m/z 528 (M+H)+.


N2-(3,3-difluorocyclopentyl)-N4-(2-phenylpyridin-4-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.61 (m, 2H), 8.31-7.69 (m, 6H), 7.69-7.40 (m, 4H), 5.87 (m, 1H), 4.72 (m, 1H), 2.69 (m, 1H), 2.34 (m, 2H), 2.14 (m, 2H), 1.86-1.80 (m, 1H). LC-MS: m/z 514 (M+H)+.


N2-(2-phenylpyridin-4-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-N4-(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.63 (m, 2H), 8.04 (m, 6H), 7.62-7.30 (m, 5H), 5.81 (d, J=9.1 Hz, 1H), 5.39 (m, 1H), 5.00 (m, 1H), 1.50 (d, J=7.0 Hz, 3H). LC-MS: m/z 506 (M+H)+.


(R)—N2-(2-phenylpyridin-4-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-N4-(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.67-8.58 (m, 2H), 8.14 (m, 2H), 8.01 (d, J=7.0 Hz, 2H), 7.88 (d, J=7.6 Hz, 1H), 7.71-7.34 (m, 5H), 5.69 (m, 1H), 5.22-4.92 (m, 1H), 1.49 (d, J=7.1 Hz, 3H). LC-MS: m/z 506 (M+H)+.


(R)-4-(4-((4-(6-(trifluoromethyl)pyridin-2-yl)-6-((1,1,1-trifluoropropan-2-yl)amino)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)benzonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.87-8.53 (m, 2H), 8.42 (s, 1H), 8.11 (d, J=8.0 Hz, 3H), 7.96-7.76 (m, 4H), 7.40 (s, 1H), 5.86-5.67 (m, 1H), 5.18-4.91 (m, 1H), 1.62-1.47 (m, 3H). LC-MS: m/z 531 (M+H)+.


(R)—N2-(2-(4-fluorophenyl)pyridin-4-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-N4-(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.61 (d, J=8.0 Hz, 2H), 8.27 (s, 1H), 8.13-7.64 (m, 5H), 7.36 (s, 1H), 7.17 (t, J=8.6 Hz, 2H), 6.83-6.64 (m, 1H), 6.16-4.96 (m, 1H), 1.50 (d, J=7.5 Hz, 3H). LC-MS: m/z 524.1 (M+H)+.


(R)—N2-(2-(4-chlorophenyl)pyridin-4-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-N4-(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.61 (t, J=6.4 Hz, 2H), 8.31-8.05 (m, 2H), 7.95 (d, J=8.5 Hz, 2H), 7.89 (d, J=7.8 Hz, 1H), 7.46 (d, J=8.4 Hz, 2H), 6.10-5.91 (m, 1H), 5.22-4.91 (m, 1H), 1.51 (t, J=7.7 Hz, 3H). LC-MS: m/z 540 (M+H)+.


N2-(3,3-difluorocyclopentyl)-N4-(1H-indol-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.76 (s, 1H), 8.82-8.55 (m, 1H), 8.16 (m, 4H), 7.68 (m, 2H), 7.02 (m, 3H), 4.98 (m, 1H), 2.68 (s, 1H), 2.23 (m, 4H), 1.97 (m, 1H). LC-MS: m/z 476 (M+H)+.


N2-(3,3-difluorocyclopentyl)-N4-(1-methyl-1H-indol-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.54 (s, 1H), 8.35 (d, J=6.8 Hz, 1H), 8.10 (s, 1H), 7.81 (d, J=7.5 Hz, 1H), 7.17 (m, 4H), 5.57 (m, 1H), 4.83 (m, 1H), 3.59 (s, 3H), 2.94-2.06 (m, 7H). LCMS: m/z 490 (M+H)+.


1-(4-((4-((4,4-difluorocyclohexyl)amino)-6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.54 (m, 2H), 8.32 (d, J=5.5 Hz, 1H), 8.02 (d, J=7.8 Hz, 1H), 7.84 (d, J=8.0 Hz, 1H), 7.59 (m, 1H), 7.20 (s, 1H), 5.71 (d, J=7.9 Hz, 1H), 4.34 (m, 1H), 2.15 (m, 9H), 1.85 (m, 2H), 1.23 (m, 1H). LC-MS: m/z 513 (M+H)+.


1-(4-((4-((3,3-Difluorocyclopentyl)amino)-6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.61 (s, 1H), 8.53 (s, 1H), 8.30 (d, J=4 Hz, 1H), 8.02-7.98 (m, 1H), 7.82 (d, J=8 Hz, 1H), 7.52-7.10 (m, 2H), 5.93-5.60 (m, 1H), 4.87-4.75 (m, 1H), 2.74-2.71 (m, 1H), 2.44 (m, 1H), 2.18-2.04 (m, 5H), 1.89-1.85 (m, 3H), 1.72 (m, 3H). LCMS: m/z 499 (M+H)+.


1-(4-((4-((3,3-Difluorocyclobutyl)amino)-6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ10.43 (m, 1H), 8.78 (d, J=4.1 Hz, 1H), 8.61 (d, J=7.8 Hz, 1H), 8.32 (d, J=5.6 Hz, 2H), 8.12 (m, 1H), 7.9 (m, 1H), 7.88 (m, 1H), 4.45 (s, 1H), 3.03 (m, 2H), 2.78 (m, 2H), 2.13 (m, 3H), 1.43 (m, 4H). LC-MS: m/z 485 (M+H)+.


(R)-1-(4-((4-(6-(1,1-difluoroethyl)pyridin-2-yl)-6-((1,1,1-trifluoropropan-2-yl)amino)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.59-8.52 (m, 1H), 8.46-8.45 (d, J=4 Hz, 1H), 8.32-8.25 (m, 1H), 8.02-7.98 (m, 1H), 7.82 (d, J=8 Hz, 1H), 7.69-7.50 (m, 1H), 7.21-7.00 (m, 1H), 5.83-5.56 (m, 1H), 5.18-5.07 (m, 1H), 2.18-2.07 (m, 3H), 1.87-1.85 (m, 2H), 1.73-1.71 (m, 2H), 1.50-1.46 (m, 3H). LCMS: m/z 491 (M+H)+.


(S)-1-(4-((4-(6-(1,1-difluoroethyl)pyridin-2-yl)-6-((1,1,1-trifluoropropan-2-yl)amino)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.59-8.52 (m, 1H), 8.46 (s, 1H), 8.33-8.32 (d, J=4 Hz, 1H) 8.03-7.99 (m, 1H), 7.92-7.84 (m, 1H), 7.52 (s, 1H), 7.26-7.22 (d, J=16 Hz, 1H), 5.85-5.59 (m, 1H), 5.18-5.09 (m, 1H), 2.18-2.09 (m, 3H), 1.88-1.85 (m, 4H), 1.51-1.48 (m, 3H). LCMS: m/z 491 (M+H)+.


1-((4-((3-Chloro-5-fluorophenyl)amino)-6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-2-methylpropan-2-ol



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.19 (s, 1H), 8.43 (m, 1H), 8.17 (m, 1H), 7.88 (m, 3H), 7.00 (d, J=7.9 Hz, 1H), 4.54 (s, 1H), 3.45 (m, 2H), 2.10 (m, 3H), 1.17 (m, J=7.0 Hz, 6H). LC-MS: m/z 453 (M+H)+.


3-((4-(6-(1,1-Difluoroethyl)pyridin-2-yl)-6-((2-hydroxy-2-methylpropyl)amino)-1,3,5-triazin-2-yl)amino)-5-fluorobenzonitrile



embedded image


1H NMR (400 MHz, CDCl3) δ8.40-8.42 (d, J=8 Hz, 1H), 7.74-7.99 (m, 5H), 7.03 (m, 1H), 6.16-6.25 (m, 1H), 3.49-3.64 (m, 2H), 2.05-2.21 (m, 3H), 1.33 (s, 6H); LC-MS: m/z 444 (M+H)+.


1-((4-(6-(1,1-Difluoroethyl)pyridin-2-yl)-6-((3-fluoro-5-(trifluoromethyl)phenyl)amino)-1,3,5-triazin-2-yl)amino)-2-methylpropan-2-ol



embedded image



1H NMR (400 MHz, CDCl3) δ 8.42 (bs, 1H), 7.57-7.96 (m, 5H), 6.99-7.03 (m, 1H), 6.16-6.28 (m, 1H), 3.54-3.62 (m, 2H), 2.00-2.21 (m, 3H), 2.07-2.22 (m, 3H), 1.28 (s, 6H). LC-MS: m/z 487 (M+H)+.


1-(4-((4-(6-Chloropyridin-2-yl)-6-((3,3-difluorocyclopentyl)amino)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.68 (s, 1H), 8.53-8.43 (m, 1H), 8.30 (d, J=4 Hz, 1H), 7.86-7.72 (m, 1H), 7.59-7.49 (m, 2H), 7.27-6.99 (m, 1H), 5.96-5.71 (m, 1H), 4.96-4.88 (m, 1H), 2.76-2.70 (m, 1H), 2.43-2.07 (m, 4H), 1.89-1.79 (m, 3H), 1.75-1.72 (m, 2H). LCMS: m/z 469 (M+H)+.


(R)-1-(4-((4-(6-chloropyridin-2-yl)-6-((1-cyclopropylethyl)amino)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.43 (s, 2H), 8.23 (d, J=8 Hz, 1H), 7.80-7.76 (m, 1H), 7.43 (d, J=8 Hz, 2H), 7.05-7.03 (m, 1H), 5.79-5.50 (m, 1H), 3.70-3.67 (m, 1H), 1.80-1.77 (m, 2H), 1.66-1.59 (m, 2H), 1.29-1.18 (m, 4H), 0.93-0.78 (m, 1H), 0.48-0.33 (m, 4H). LCMS: m/z 433 (M+H)+.


1-(4-((4-(6-Chloropyridin-2-yl)-6-((2,2,2-trifluoroethyl)amino)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.54-8.42 (m, 2H), 8.33-8.29 (m, 1H), 7.88-7.50 (m, 3H), 7.14-7.08 (m, 1H), 6.19-5.99 (m, 1H), 4.31 (s, 2H), 1.88-1.71 (m, 4H). LCMS: m/z 447 (M+H)+.


1-(4-((4-(6-Chloropyridin-2-yl)-6-((1,1,1-trifluoropropan-2-yl)amino)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.56-8.43 (m, 2H), 8.32 (d, J=4 Hz, 1H), 7.88-7.84 (m, 1H), 7.73-7.50 (m, 2H), 7.07-7.00 (m, 1H), 5.85-5.57 (m, 1H), 5.30-5.07 (m, 1H), 1.90-1.73 (m, 4H), 1.50-1.46 (m, 3H). LCMS: m/z 461 (M+H)+.


6-(6-Chloropyridin-2-yl)-N2-(3,3-difluorocyclopentyl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.61-8.53 (m, 2H), 8.41-8.33 (m, 1H), 8.13-7.78 (m, 2H), 7.68-7.27 (m, 2H), 5.95-5.61 (m, 1H), 4.79-4.60 (m, 1H), 2.74-2.65 (m, 1H), 2.44-2.29 (m, 2H), 2.25-2.09 (m, 2H), 1.92-1.83 (m, 1H). LCMS: m/z 472 (M+H)+.


6-(6-Chloropyridin-2-yl)-N2-(cyclopropylmethyl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.60-8.57 (m, 1H), 8.52-8.42 (m, 1H), 8.36-8.19 (m, 1H), 7.86-7.68 (m, 2H), 7.51 (d, J=8 Hz, 2H), 5.96-5.65 (m, 1H), 3.51-3.39 (m, 2H), 1.16 (d, J=8 Hz, 1H), 0.63-0.60 (m, 2H), 0.35-0.30 (m, 2H). LCMS: m/z 422 (M+H)+.


1-(4-((4-((3,3-Difluorocyclobutyl)amino)-6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHZz, CDCl3) δ 9.84 (s, 1H), 9.12 (s, 1H), 8.49-8.31 (m, 2H), 7.78-7.68 (m, 1H), 7.15 (s, 1H), 6.16-5.98 (m, 1H), 4.73-4.58 (m, 1H), 3.22 (d, J=8 Hz, 2H), 2.62-2.54 (m, 2H), 1.89-1.79 (m, 4H). LCMS: m/z 490 (M+H)+.


1-(4-((4-((4,4-Difluorocyclohexyl)amino)-6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 9.84 (d, J=4 Hz, 1H), 9.12 (s, 1H), 8.49 (s, 1H), 8.34-8.31 (m, 1H), 7.72-7.63 (m, 1H), 7.27-7.13 (m, 1H), 5.79-5.58 (m, 1H), 4.36-4.26 (m, 1H), 2.20-2.13 (m, 4H), 1.90-1.72 (m, 8H). LCMS: m/z 518 (M+H)+.


1-(4-((4-((6,6-Difluorospiro[3.3]heptan-2-yl)amino)-6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.53 (s, 1H), 9.84-9.75 (m, 1H), 9.39 (d, J=8 Hz, 1H), 8.80 (d, J=8 Hz, 1H), 8.41-8.21 (m, 2H), 7.83-7.56 (m, 1H), 4.57 (d, J=8 Hz, 1H), 2.71-2.57 (m, 6H), 2.27-2.22 (m, 2H), 1.81-1.67 (m, 4H). LCMS: m/z 530 (M+H)+.


(R)-1-(4-((4-((3,3-difluorocyclopentyl)amino)-6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.58 (s, 1H), 9.87-9.77 (m, 1H), 9.39 (d, J=4 Hz, 1H), 8.77 (d, J=4 Hz, 1H), 8.42-8.32 (m, 2H), 7.82-7.57 (m, 1H), 4.67 (m, 1H), 2.67-1.69 (m, 10H). LCMS: m/z 504 (M+H)+.


(S)-1-(4-((4-((3,3-difluorocyclopentyl)amino)-6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 9.85 (s, 1H), 9.12 (s, 1H), 8.61-8.44 (m, 1H), 8.33 (d, J=8 Hz, 1H), 7.52 (s, 1H), 7.00 (s, 1H), 5.97-5.75 (m, 1H), 4.94-4.75 (m, 1H), 2.75-1.73 (m, 10H). LCMS: m/z 504 (M+H)+.


(R)-1-(4-((4-(6-(trifluoromethyl)pyrazin-2-yl)-6-((1,1,1-trifluoropropan-2-yl)amino)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 9.90-9.84 (m, 1H), 9.14 (s, 1H), 8.43-8.35 (m, 2H), 7.52-7.15 (m, 2H), 5.86-5.60 (m, 1H), 5.14-4.80 (m, 1H), 1.87 (d, J=8 Hz, 2H), 1.74 (m, 2H), 1.50-1.57 (m, 3H). LCMS: m/z 496 (M+H)+.


(R)—N2-(3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyrazin-2-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.81 (m 1H), 9.14 (d, J=3.6 Hz, 1H), 8.81-8.14 (m, 2H), 8.07-7.37 (m, 2H), 6.30-5.59 (m, 1H), 4.82-4.62 (m, 1H), 2.70 (m, 1H), 2.57-2.09 (m, 4H), 2.01-1.84 (m, 1H). LC-MS: m/z 507 (M+H)+.


(S)—N2-(3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyrazin-2-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.81 (m, 1H), 9.14 (d, J=3.1 Hz, 1H), 8.74-8.08 (m, 2H), 8.06-7.29 (m, 2H), 6.22-5.58 (m, 1H), 4.85-4.50 (m, 1H), 2.70 (m, 1H), 2.52-2.09 (m, 4H), 2.01-1.82 (m, 1H). LC-MS: m/z 507 (M+H)+.


N2-(3,3-difluorocyclobutyl)-6-(6-(trifluoromethyl)pyrazin-2-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.81 (d, J=13.8 Hz, 1H), 9.14 (d, J=3.5 Hz, 1H), 8.80-8.19 (m, 2H), 7.99-7.41 (m, 2H), 6.31-5.71 (m, 1H), 4.70-4.39 (m, 1H), 3.29-3.06 (m, 2H), 2.88-2.47 (m, 2H). LC-MS: m/z 493 (M+H)+.


N2-(4,4-difluorocyclohexyl)-6-(6-(trifluoromethyl)pyrazin-2-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.80 (d, J=8.8 Hz, 1H), 9.14 (d, J=3.4 Hz, 1H), 8.62 (d, J=5.5 Hz, 1H), 8.59-8.20 (m, 1H), 5.83-5.49 (m, 1H), 4.25-4.11 (m, 1H), 2.33-1.71 (m, 6H). LC-MS: m/z 521 (M+H)+.


N2-(cyclopropylmethyl)-6-(6-(trifluoromethyl)pyrazin-2-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, DMSO-d6) 82 (s, 4H), 9.20 (s, 4H), 8.73 (s, 3H), 8.49 (t, J=6.2 Hz, 4H), 8.37 (s, 1H), 8.13 (s, 1H), 7.79 (d, J=4.4 Hz, 3H), 3.45-3.30 (m, 8H), 1.29-1.16 (m, 5H), 0.57 (m 8H), 0.39-0.30 (m, 8H). LC-MS: m/z 457 (M+H)+.


N2-(6,6-difluorospiro[3.3]heptan-2-yl)-6-(6-(trifluoromethyl)pyrazin-2-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CD3OD) δ9.84 (d, J=9.0 Hz, 1H), 9.22 (d, J=5.1 Hz, 1H), 8.93-8.35 (m, 2H), 8.14-7.72 (m, 2H), 4.77-4.35 (m, 1H), 2.67 (m, 6H), 2.43-2.15 (m, 2H). LC-MS: m/z 533 (M+H)+.


(S)—N2-(3,3-difluorocyclopentyl)-N4-(3,5-difluorophenyl)-6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.80 (m, 1H), 9.12 (d, J=3.1 Hz, 1H), 7.71-7.27 (m, 3H), 6.73-6.44 (m, 1H), 5.98-5.48 (m, 1H), 4.68 (m, 1H), 2.81-2.59 (m, 1H), 2.50-2.02 (m, 4H), 1.97-1.78 (m, 1H). LC-MS: m/z 474 (M+H)+.


(R)—N2-(3,3-difluorocyclopentyl)-N4-(3,5-difluorophenyl)-6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.80 (m, 1H), 9.12 (d, J=3.1 Hz, 1H), 7.71-7.27 (m, 3H), 6.73-6.44 (m, 1H), 5.98-5.48 (m, 1H), 4.68 (m, 1H), 2.81-2.59 (m, 1H), 2.50-2.02 (m, 4H), 1.97-1.78 (m, 1H). LC-MS: m/z 474 (M+H)+.


N2-(4,4-difluorocyclohexyl)-N4-(3,5-difluorophenyl)-6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.78 (d, J=7.6 Hz, 1H), 9.11 (s, 1H), 7.39 (m, 3H), 6.58 (t, J=8.8 Hz, 1H), 5.76-5.39 (m, 1H), 4.22-4.06 (m, 1H), 2.21 (m, 4H), 1.95 (m, 2H), 1.80-1.68 (m, 2H). LC-MS: m/z 488 (M+H)+.


1-(4-((4-((4,4-Difluorocyclohexyl)amino)-6-(6-(difluoromethyl)pyrazin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image


1H NMR (400 MHz, CDCl3) δ 9.79 (d, J=7.0 Hz, 1H), 9.12 (s, 1H), 8.54 (m, 1H), 8.32 (d, J=6.0 Hz, 1H), 7.52 (d, J=6.1 Hz, 1H), 7.14 (m, 1H), 6.85 (m, 1H), 5.68 (m, 1H), 4.30 (m, 1H), 2.18 (m, 6H), 1.85 (m, 2H), 1.73 (m, 4H). LC-MS: m/z 500 (M+H)+.


(S)-1-(4-((4-(6-(difluoromethyl)pyrazin-2-yl)-6-((1,1,1-trifluoropropan-2-yl)amino)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 9.83 (m, 1H), 9.16 (s, 1H), 8.42 (m, 2H), 7.60 (s, 1H), 7.13 (m, 1H), 6.88 (m, 1H), 5.88 (m, J=9.5 Hz, 1H), 5.16 (s, 1H), 1.89 (m, J=4.5 Hz, 2H), 1.76 (s, 2H), 1.52 (d, J=7.0 Hz, 3H). LC-MS: m/z 478 (M+H)+.


(R)-1-(4-((4-(6-(difluoromethyl)pyrazin-2-yl)-6-((1,1,1-trifluoropropan-2-yl)amino)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 9.81 (m, 1H), 9.12 (d, J=10.5 Hz, 1H), 8.34 (m, 2H), 7.54 (d, J=13.1 Hz, 1H), 7.08 (m, 1H), 6.86 (m, 1H), 5.85 (d, J=9.8 Hz, 1H), 5.14 (s, 1H), 1.92 (m, 2H), 1.71 (m, 2H), 1.51 (m, J=7.7 Hz, 3H). LC-MS: m/z 478 (M+H)+.


6-(6-Chloropyrazin-2-yl)-N2-(3,3-difluorocyclopentyl)-N4-(3,5-difluorophenyl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.51 (d, J=17.3 Hz, 1H), 8.76 (s, 1H), 7.64-7.11 (m, 3H), 6.57 (t, J=8.8 Hz, 1H), 5.95-5.50 (m, 1H), 4.86-4.50 (m, 1H), 2.85-1.80 (m, 6H). LC-MS: m/z 440 (M+H)+.


6-(6-Chloropyrazin-2-yl)-N2-(3,3-difluorocyclobutyl)-N4-(3,5-difluorophenyl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.53-9.49 (m, 1H), 8.76 (s, 1H), 7.60-7.50 (m, 1H), 7.29 (s, 1H), 7.26 (s, 1H), 6.61-6.56 (m, 1H), 6.01-5.74 (m, 1H), 4.59-4.42 (m, 1H), 3.16 (s, 2H), 3.16-2.55 (m, 2H). LCMS: m/z 426 (M+H)+.


(S)—N2-(3,3-difluorocyclopentyl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-6-(2-(trifluoromethyl)pyrimidin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.16 (t, J=6.1 Hz, 1H), 8.68-7.76 (m, 4H), 7.72-7.45 (m, 1H), 5.86 (m, 1H), 4.70 (m, 1H), 2.86-1.84 (m, 6H). LCMS: m/z 507 (M+H)+.


(R)—N2-(3,3-difluorocyclopentyl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-6-(2-(trifluoromethyl)pyrimidin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.18-9.15 (m, 1H), 8.64-8.61 (m, 1H), 8.53-8.51 (m, 1H), 8.48 (d, J=4 Hz, 1H), 8.17-7.80 (m, 1H) 7.72-7.48 (m, 1H), 6.02-5.71 (m, 1H), 4.80-4.61 (m, 1H), 2.76-2.63 (m, 4H), 1.95-1.88 (m, 1H). LCMS: m/z 507 (M+H)+.


(S)-1-(4-((4-((3,3-difluorocyclopentyl)amino)-6-(2-(trifluoromethyl)pyrimidin-4-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image


1H NMR (400 MHz, CDCl3) δ 9.15 (d, J=5.4 Hz, 1H), 7.62 (m, 2H), 8.33 (d, J=5.5 Hz, 1H), 7.57 (s, 1H), 7.00 (s, 1H), 6.00 (d, J=8.0 Hz, 1H), 4.76 (d, J=8.6 Hz, 1H), 2.71 (s, 1H), 2.32 (m, 4H), 1.83 (m, 5H). LC-MS: m/z 504 (M+H)+.


(R)-1-(4-((4-((3,3-difluorocyclopentyl)amino)-6-(2-(trifluoromethyl)pyrimidin-4-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 9.14 (d, J=5.1 Hz, 1H), 8.35 (m, 2H), 8.33 (d, J=5.5 Hz, 1H), 7.56 (s, 1H), 7.00 (s, 1H), 5.99 (d, J=8.0 Hz, 1H), 4.76 (d, J=7.1 Hz, 1H), 2.73 (m, 1H), 2.23 (m, 4H), 1.78 (m, 5H). LC-MS: m/z 504 (M+H)+.


1-(4-((4-((3,3-Difluorocyclopentyl)amino)-6-(4-(trifluoromethyl)pyrimidin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 9.27 (d, J=4.8 Hz, 1H), 8.67 (s, 1H), 8.29 (d, J=5.2 Hz, 1H), 8.06 (s, 1H), 7.81 (d, J=5.2 Hz, 1H), 6.97 (s, 1H), 6.19 (d, J=7.6 Hz, 1H), 2.85-2.69 (m, 1H), 2.53-2.05 (m, 5H), 1.92-1.68 (m, 5H). LCMS: m/z 504 (M+H)+.


(S)-1-(4-((4-((3,3-difluorocyclopentyl)amino)-6-(4-(trifluoromethyl)pyrimidin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 9.29 (d, J=4.9 Hz, 1H), 8.58 (m, 1H), 8.33 (d, J=5.5 Hz, 1H), 7.82 (t, J=14.2 Hz, 2H), 7.00 (d, J=13.0 Hz, 1H), 6.14 (d, J=8.0 Hz, 1H), 4.94 (m, 1H), 2.89-2.69 (m, 1H), 2.51 (m, 1H), 2.34-2.07 (m, 3H), 1.94-1.72 (m, 5H). LCMS: m/z 504 (M+H)+.


(R)-1-(4-((4-((3,3-difluorocyclopentyl)amino)-6-(4-(trifluoromethyl)pyrimidin-2-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 9.27 (d, J=4.9 Hz, 1H), 8.68 (s, 1H), 8.31 (d, J=5.5 Hz, 1H), 7.80 (dd, J=20.2, 12.7 Hz, 2H), 6.95 (s, 1H), 6.12 (d, J=8.1 Hz, 1H), 5.02 (s, 1H), 2.77 (m, 1H), 2.56-2.41 (m, 1H), 2.32-2.05 (m, 3H), 1.95-1.69 (m, 5H). LCMS: m/z 504 (M+H)+.


N2-(tert-butyl)-N4-(2-(1,1-difluoroethyl)pyridin-4-yl)-6-(4-(trifluoromethyl)pyrimidin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.24 (d, J=5.0 Hz, 1H), 8.50 (d, J=5.5 Hz, 1H), 8.38 (d, J=1.4 Hz, 1H), 7.97 (s, 1H), 7.80 (d, J=5.0 Hz, 1H), 7.37 (s, 1H), 6.05 (s, 1H), 2.04 (d, J=18.6 Hz, 3H), 1.55 (s, 9H). LCMS: m/z 455 (M+H)+.


N2-(2-(1,1-difluoroethyl)pyridin-4-yl)-N4-isopropyl-6-(4-(trifluoromethyl)pyrimidin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 9.26 (d, J=5.0 Hz, 1H), 8.52 (d, J=5.5 Hz, 1H), 8.41 (d, J=1.5 Hz, 1H), 7.84 (m, 2H), 7.41 (s, 1H), 5.86 (d, J=7.5 Hz, 1H), 4.32 (m, 1H), 2.04 (m, 3H), 1.36 (d, J=6.5 Hz, 6H). LCMS: m/z 441 (M+H)+.


3-((4-(Tert-butylamino)-6-(4-(trifluoromethyl)pyrimidin-2-yl)-1,3,5-triazin-2-yl)amino)-5-fluorobenzonitrile



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.80-10.20 (m, 1H), 9.50-9.25 (m, 1H), 8.36-7.96 (m, 4H), 7.50-7.40 (m, 1H), 1.47 (s, 9H). LCMS: m/z 433 (M+1)+.


1-((4-((3,5-Difluorophenyl)amino)-6-(4-(trifluoromethyl)pyrimidin-2-yl)-1,3,5-triazin-2-yl)amino)-2-methylpropan-2-ol



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.70-10.20 (m, 1H), 9.50-9.27 (m, 1H), 8.37-7.94 (m, 2H), 7.80-7.50 (m, 2H), 6.98-6.71 (m, 1H), 4.75-4.48 (m, 1H), 3.47-3.38 (m, 2H), 1.14 (s, 6H). LCMS: m/z 442 (M+H)+.


Example 33. Preparation of Aromatic-Aliphatic Triazine Compounds

The compounds of this Example are prepared by general Scheme 33, set forth below.




embedded image


Step 1: Preparation of N1-(3,5-difluorophenyl)-N3-nitrile-guanidine

To a solution of NaN(CN)2 (4.1 g, 46.5 mmol) in water (34 mL) at 80° C. was added a solution of 3,5-difluoroaniline (3 g, 23.2 mmol) in a mixed solvent of water and conc. HCl (2M, 2 mL). The reaction mixture was then stirred at 90° C. for 16 hours. The resulting mixture was cooled to r.t. and quenched by satd. aq. NaHCO3 and adjusted to pH 7-8. The mixture was filtered and the filter cake was collected and dried to afford the desired product. LC-MS: m/z 197 (M+H)+.


Step 2: Preparation of N1-(3,5-difluorophenyl)-N5-(4,4-difluorocyclohexyl)-guanidine

A mixture of N1-(3,5-difluorophenyl)-N3-nitrile-guanidine (300 mg, 1.53 mmol) and 4,4-difluorocyclohexanamine hydrochloride (262 mg, 1.53 mmol) was well mixed together and then stirred at 160° C. for 1 hr. The resulting mixture was cooled to r.t. and then triturated with a mixed solvent of EtOAc and PE. The solid was collected by filtration and dried to afford the desired product. LC-MS: m/z 332 (M+H)+.


Step 3: Preparation of 3,6-difluoro-2-hydrazinylpyridine

To an ice-cold mixture of 2,3,6-trifluoropyridine (1.0 g, 7.5 mmol) in ethanol (10 mL) was added hydrazine hydrate (0.75 g, 15.0 mmol). The reaction mixture was warmed to r.t. then heated to reflux for 2 hr. After cooling to r.t., the reaction mixture was diluted with water (10 mL) and extracted with DCM (2×20 mL). The combined organic layers were dried over anhydrous Na2SO4 and concentrated under reduced pressure to afford 3,6-difluoro-2-hydrazinylpyridine. LC-MS: m/z 146 (M+H)+.


Step 4: Preparation of 2-bromo-3,6-difluoropyridine

To a stirred solution of 3,6-difluoro-2-hydrazinylpyridine (1.1 g, 7.0 mmol) in chloroform (20 mL) at r.t. was added dropwise bromine (1.8 g, 11.2 mmol). The reaction mixture was then stirred at 60° C. for 1.5 hr. The resulting mixture was cooled to r.t., then quenched with satd. aq. NaHCO3, and extracted with dichloromethane (2×20 mL). The combined organic layers were dried over anhydrous Na2SO4, and concentrated and purified by standard methods to afford 2-bromo-3,6-difluoropyridine. LC-MS: m/z 194 (M+H)+.


Step 5: Preparation of methyl 3,6-difluoropicolinate

To a solution of 2-bromo-3,6-difluoropyridine (0.8 g, 4.1 mmol) in MeOH (10 mL) were added dppf (0.3 g, 0.56 mmol), Pd(OAc)2 (0.1 g, 0.45 mmol) and Et3N (1.6 mL, 8.2 mmol). The suspension was degassed and back-filled with CO atmosphere three times. The mixture was then stirred under CO atmosphere (60 psi) at 70° C. for 12 hr. The resulting mixture was cooled to r.t. and concentrated under reduced pressure. The residue was triturated with EtOAc (150 mL). The solid was filtered off and the filtrate was concentrated and purified by standard methods to afford methyl 3,6-difluoropicolinate. LC-MS: m/z 174 (M+H)+.


Step 6: Preparation of N2-(4,4-difluorocyclohexyl)-N4-(3,5-difluorophenyl)-6-(3,6-difluoropyridin-2-yl)-1,3,5-triazine-2,4-diamine

To a suspension of N1-(3,5-difluorophenyl)-N5-(4,4-difluorocyclohexyl)-guanidine (191 mg, 0.58 mmol) and methyl 3,6-difluoropicolinate (100 mg, 0.58 mmol) in MeOH (3 mL) was added NaOMe (94 mg, 1.73 mmol). The reaction mixture was stirred at r.t. overnight, then poured into water and extracted with EtOAc. Combined organic layers were dried over anhydrous Na2SO4, and concentrated and purified by standard methods to afford N2-(4,4-difluorocyclohexyl)-N4-(3,5-difluoro phenyl)-6-(3,6-difluoropyridin-2-yl)-1,3,5-triazine-2,4-diamine.




embedded image



1H NMR (400 MHz, CDCl3) δ 7.70 (td, J=8.8, 5.8 Hz, 1H), 7.49-7.38 (m, 1H), 7.37-7.17 (m, 2H), 7.17-7.05 (m, 1H), 6.55 (t, J=8.9 Hz, 1H), 5.67-5.37 (m, 1H), 4.13-4.02 (m, 1H), 2.18 (d, J=8.3 Hz, 4H), 2.03-1.87 (m, 2H), 1.73-1.70 (d, J=11.2 Hz, 2H). LC-MS: m/z 455 (M+H)+.


The procedure set forth in Example 33 was used to produce the following compounds using the appropriate starting materials.


Compound N2-(3,3-difluorocyclopentyl)-N4-(3,5-difluorophenyl)-6-(3,6-difluoropyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 7.77-7.62 (m, 1H), 7.47-7.27 (m, 2H), 7.24 (d, J=7.7 Hz, 1H), 7.11 (ddd, J=8.8, 3.9, 2.7 Hz, 1H), 6.55 (t, J=8.7 Hz, 1H), 5.94-5.29 (m, 1H), 4.76-4.48 (m, 1H), 2.90-1.72 (m, 6H). LC-MS: m/z 441 (M+H)+.


Compound N2-(3,3-difluorocyclobutyl)-N4-(3,5-difluorophenyl)-6-(3,6-difluoropyridin-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 7.70 (m, 1H), 7.58-7.28 (m, 2H), 7.25-7.19 (m, 1H), 7.16-7.06 (m, 1H), 6.73-6.30 (m, 1H), 6.18-5.37 (m, 1H), 4.63-4.31 (m, 1H), 3.40-2.93 (m, 2H), 2.88-2.19 (m, 2H). LC-MS: m/z 427 (M+H)+.


Example 34

The compounds of this Example are prepared by general Scheme 34, set forth below.




embedded image


Step 1: Preparation of N2-(4,4-difluorocyclohexyl)-N4-(3,5-difluorophenyl)-6-(3-fluoro-6-hydrazinylpyridin-2-yl)-1,3,5-triazine-2,4-diamine

To a solution of N2-(4,4-difluorocyclohexyl)-N4-(3,5-difluorophenyl)-6-(3,6-difluoropyridin-2-yl)-1,3,5-triazine-2,4-diamine (225 mg, 0.49 mmol) in THF (20 mL) was added hydrazine hydrate (150 mg, 3.0 mmol). The reaction mixture was then stirred at 60° C. for 2.5 hr. After cooling to r.t., the reaction mixture was diluted with DCM (20 mL) and washed with brine (2×10 mL). The organic phase was separated, dried over anhydrous Na2SO4 and concentrated under reduced pressure to give the desired product.




embedded image


LC-MS: m/z 467 (M+H)+.


Step 2: Preparation of 6-(6-amino-3-fluoropyridin-2-yl)-N2-(4,4-difluorocyclo hexyl)-N4-(3,5-difluorophenyl)-1,3,5-triazine-2,4-diamine

To a solution of N2-(4,4-difluorocyclohexyl)-N4-(3,5-difluorophenyl)-6-(3-fluoro-6-hydrazinylpyridin-2-yl)-1,3,5-triazine-2,4-diamine (46 mg, 0.1 mmol) in methanol (5.0 mL) was added Raney Ni (100 mg). The mixture was stirred at r.t. under H2 atmosphere overnight. The resulting mixture was filtered and the filtrate was concentrated and purified by standard methods to afford 6-(6-amino-3-fluoropyridin-2-yl)-N2-(4,4-difluorocyclohexyl)-N4-(3,5-difluorophenyl)-1,3,5-triazine-2,4-diamine.




embedded image



1H NMR (400 MHz, CDCl3) δ 7.52-7.50 (m, 2H), 7.45-7.39 (m, 1H), 7.02-6.97 (m, 1H), 6.63-6.54 (m, 1H), 4.60 (s, 1H), 4.26-4.05 (m, 1H), 1.73-2.21 (m, 8H). LC-MS: m/z 452 (M+H)+.


The procedure set forth in Example 34 was used to produce the following compounds using the appropriate starting materials.


Compound 6-(6-Amino-3-fluoropyridin-2-yl)-N2-(3,3-difluorocyclopentyl)-N4-(3,5-difluorophenyl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 7.50-7.36 (m, 3H), 6.96-6.95 (m, 1H), 6.59-6.53 (m, 1H), 4.89-4.51 (m, 2H), 2.66-2.60 (m, 1H), 2.35-2.11 (m, 4H), 1.92-1.58 (m, 2H). LCMS: m/z 438 (M+H)+.


Example 35. Preparation of N4,N6-bis(4,4-difluorocyclohexyl)-2-(6-(trifluoromethyl) pyrazin-2-yl) pyrimidine-4, 6-diamine



embedded image


Step A: 6-(Trifluoromethyl)pyrazine-2-carboxamide

To a solution of methyl 6-(trifluoromethyl) pyrazine-2-carboxylate (15 g, 72.8 mmol) in EtOH (20 mL) was added NH4OH (6 mL, 156 mmol). The reaction mixture was stirred at r.t. for 4 hr then concentrated under reduced pressure. The residue was triturated with H2O (10 mL) and then filtered to afford 6-(trifluoromethyl)pyrazine-2-carboxamide. LC-MS: m/z 192 (M+H)+.


Step B: 6-(Trifluoromethyl)pyrazine-2-carbonitrile

A mixture of 6-(trifluoromethyl) pyrazine-2-carboxamide (10 g, 52 mmol) in POCl3 (80 mL) was stirred at 100° C. overnight. The reaction mixture was cooled to r.t. and concentrated under reduced pressure. The residue was partitioned between DCM and ice water. The organic layer was separated, washed with brine, dried over anhydrous Na2SO4, concentrated, and purified by standard methods to afford 6-(trifluoromethyl)pyrazine-2-carbonitrile. LC-MS: m/z 174 (M+H)+.


Step C: 6-(Trifluoromethyl)pyrazine-2-carboximidamide hydrochloride

To a solution of 6-(trifluoromethyl) pyrazine-2-carbonitrile (3.4 g, 15 mmol) in MeOH (5 mL) was added a solution of sodium metal (35 mg, 1.5 mmol) in MeOH. The reaction mixture was stirred at r.t. for 12 hr, followed by addition of NH4Cl (1.5 g, 30 mmol). The mixture was stirred at 70° C. for 3 hr, then cooled to r.t. and concentrated under reduced pressure. The residue was diluted with EtOH (10 mL) and stirred at reflux for 0.5 hr. The resulting mixture was cooled to r.t. and filtered. The filtrate was concentrated under reduced pressure to afford 6-(trifluoromethyl) pyrazine-2-carboximidamide hydrochloride. LC-MS: m/z 191 (M+H)+.


Step D: 2-(6-(trifluoromethyl)pyrazin-2-yl)pyrimidine-4,6(1H,5H)-dione

To a mixture of 6-(trifluoromethyl) pyrazine-2-carboximidamide hydrochloride (1.6 g, 7.0 mmol) in diethyl malonate (3.2 g, 21.2 mmol) was added potassium carbonate (3.0 g, 21.2 mmol). The reaction mixture was stirred at 120° C. for 8 hr. The resulting mixture was cooled to r.t. and triturated with petroleum ether. The solid was collected by filtration, washed with petroleum ether then treated with MeOH to form a suspension. The suspension was filtered and the filtrate was concentrated under reduced pressure to afford 2-(6-(trifluoromethyl)pyrazin-2-yl)pyrimidine-4,6-(1H,5H)-dione. LC-MS: m/z 259 (M+H)+.


Step E: 4, 6-Dichloro-2-(6-(trifluoromethyl) pyrazin-2-yl)pyrimidine

A mixture of 2-(6-(trifluoromethyl) pyrazin-2-yl) pyrimidine-4, 6(1H, 5H)-dione (1.4 g, 5.4 mmol) in POCl3 (10 mL) was stirred at 100° C. overnight then cooled to r.t. and concentrated under reduced pressure. The residue was purified by column chromatography (PE/EA=20/1 to 10/1) to afford 4, 6-dichloro-2-(6-(trifluoromethyl) pyrazin-2-yl)pyrimidine. LC-MS: m/z 295 (M+H)+.


Step F: N4, N6-bis (4,4-difluorocyclohexyl)-2-(6-(trifluoromethyl) pyrazin-2-yl) pyrimidine-4, 6-diamine

To a mixture of 4, 6-dichloro-2-(6-(trifluoromethyl) pyrazin-2-yl)pyrimidine (100 mg, 0.34 mmol), CsF (103 mg, 0.68 mmol) and 4,4-difluorocyclohexanamine hydrochloride (116 mg, 0.68 mmol) in DMSO (1 mL) was added DIPEA (220 mg, 0.17 mmol). The reaction mixture was stirred at 80° C. for 4 hr under nitrogen, and then stirred at 150° C. for 6 hr under microwave irradiation. The resulting mixture was cooled to r.t., quenched with water, and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by standard methods to afford N4,N6-bis (4,4-difluorocyclohexyl)-2-(6-(trifluoromethyl) pyrazin-2-yl) pyrimidine-4, 6-diamine.




embedded image



1H NMR (400 MHz, CDCl3) δ 9.73 (s, 1H), 9.00 (s, 1H), 5.31 (s, 1H), 4.95 (m, 2H), 3.76 (m, 2H), 2.20-2.09 (m, 8H), 1.98-1.85 (m, 4H), 1.72-1.63 (m, 4H). LC-MS: m/z 493 (M+H)+.


Example 36. Preparation of Aromatic-Aliphatic Triazine Compounds

The compounds of this Example are prepared by general Scheme 36, set forth below.




embedded image


Step 1: Preparation of 1-(4-bromopyridin-2-yl)cyclopropanecarbonitrile

To a solution of 4-bromo-2-fluoropyridine (30 g, 170.47 mmol) and cyclopropane carbonitrile (22.9 g, 340.94 mmol) in THF (400 mL) below −10° C. was slowly added dropwise LiHMDS (1.2 mmol/L, 284 mL). The reaction mixture was then stirred at r.t. for 12 hr. The resulting mixture was cooled to 0° C., then quenched with brine (200 mL). The mixture was concentrated under reduced pressure. The residue was extracted with EtOAc (3×200 mL). The combined layers were dried over anhydrous Na2SO4 and concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 223 (M+H)+.


Step 2: Preparation of 1-(4-(diphenylmethyleneamino)pyridin-2-yl)cyclopro panecarbonitrile

To a solution of 1-(4-bromopyridin-2-yl)cyclopropanecarbonitrile (30 g, 134.48 mmol) and diphenyl methanimine (29.3 g, 161.38 mmol) in dioxane (150 mL) were added t-BuONa (19.4 g, 201.73 mmol), Binap (5.0 g, 8.1 mmol) and Pd2(dba)3 (2.5 g, 2.69 mmol). The mixture was heated to 100° C. for 1 hr under N2 atmosphere, then cooled and filtered. The filtrate was concentrated to give the desired product. LC-MS: m/z 324 (M+H)+.


Step 3: Preparation of 1-(4-aminopyridin-2-yl)cyclopropanecarbonitrile

A mixture of 1-(4-(diphenylmethyleneamino)pyridin-2-yl)cyclopropanecarbonitrile (42.1 g crude, 130 mmol) and THF/aq. HCl (2N) (200 mL, V:V=2:1) was stirred at r.t. for 1 hr and concentrated under reduced pressure. The aqueous layer was extracted with PE (3×100 mL), then adjusted to pH 8-9 with satd. aq. Na2CO3, and extracted with EtOAc (3×100 mL). The combined organic layers were dried over anhydrous Na2SO4, and concentrated and purified by standard methods to afford the desired product. 1HNMR (CDCl3) δ 8.04-8.05 (d, J=4 Hz, 1H), 6.95-6.96 (d, J=4 Hz), 6.37-6.39 (m, 1H), 4.23 (br, 2H), 1.17-1.80 (m, 2H), 1.61-1.63 (m, 2H). LC-MS: m/z 160 (M+H)+.


Step 4: Preparation of 1-(4-(4,6-dichloro-1,3,5-triazin-2-ylamino)pyridin-2-yl) cyclopropane carbonitrile

To a solution of 1-(4-aminopyridin-2-yl) cyclopropanecarbonitrile (2.5 g, 15.7 mmol), 2,4,6-trichloro-1,3,5-triazine (3.5 g, 18.8 mmol) in THF (40 mL) was added NaHCO3 (2.64 g, 31.4 mmol). The reaction mixture was stirred at r.t. overnight then filtered. The filtrate was concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 307 (M+H)+.


Step 5: Preparation of 1-(4-(4-chloro-6-(3,3-difluorocyclopentylamino)-1,3,5-triazin-2-yl amino) pyridin-2-yl)cyclopropanecarbonitrile

To a solution of 1-(4-(4,6-dichloro-1,3,5-triazin-2-ylamino)pyridin-2-yl)cyclopropanecarbonitrile (0.75 g, 2.44 mmol) and 3,3-difluorocyclopentanamine hydrochloride (0.39 g, 2.44 mmol) in THF (10 mL) at 0° C. was slowly added dropwise DIPEA (0.63 g, 4.88 mmol). The reaction mixture was stirred at r.t. for 8 hr, and then concentrated under reduced pressure. The residue was partitioned between EtOAc (20 mL) and HCl solution (10% wt, 3 mL). The aqueous layer was separated and extracted with EtOAc (2×5 mL). The combined organic layers were dried over anhydrous Na2SO4 and concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 392 (M+H)+.


Step 6: Preparation of 1-(4-(4-(3,3-difluorocyclopentylamino)-6-(3-(trifluoro methyl)-1H-pyrazol-1-yl)-1,3,5-triazin-2-ylamino)pyridin-2-yl)cyclopropanecarbonitrile

To a solution of 1-(4-(4-chloro-6-(3,3-difluorocyclopentylamino)-1,3,5-triazin-2-ylamino) pyridin-2-yl)cyclopropanecarbonitrile (0.6 g, 1.53 mmol) in DMF (600 mL) were added 3-(trifluoromethyl)-1H-pyrazole (0.2 g, 1.53 mmol) and K2CO3 (0.42 g, 3.06 mmol). The mixture was stirred at 35° C. overnight then concentrated under reduced pressure. The residue was dissolved in EtOAc (20 mL) then washed in sequence with aq. 10% LiCl solution (2×5 mL), 5% HCl solution (2×5 mL), and satd. aq. NaHCO3 (2×5 mL). The organic layer was separated, dried over anhydrous Na2SO4, and concentrated and purified by standard methods to afford the desired product. 1H NMR (400 MHz, CDCl3) δ 8.81-8.21 (m, 3H), 7.75-7.43 (m, 1H), 7.17-6.88 (m, 1H), 6.74 (d, J=2.7 Hz, 1H), 6.05-5.76 (m, 1H), 5.12-4.41 (m, 1H), 2.86-2.61 (m, 1H), 2.57-2.00 (m, 4H), 1.97-1.78 (m, 3H), 1.76-1.68 (m, 2H). LC-MS: m/z 492 (M+H)+.


The procedure set forth in Example 36 was used to produce the following compounds using the appropriate starting materials.


Compound (S)-1-(4-(4-(3,3-Difluorocyclopentylamino)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-1,3,5-triazin-2-ylamino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.51-8.64 (m, 2H), 8.30-8.32 (m, 1H), 7.70-7.87 (m, 1H), 7.96-7.14 (m, 1H), 6.66-6.75 (m, 1H), 5.86-6.07 (m, 1H), 4.64-4.93 (m, 1H), 2.44-2.76 (m, 1H), 2.04-2.30 (m, 4H), 1.72-1.94 (m, 5H). LC-MS: m/z 492 (M+H)+.


Compound (R)-1-(4-(4-(3,3-Difluorocyclopentylamino)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-1,3,5-triazin-2-ylamino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.59 (m, 2H), 8.32 (d, J=5.5 Hz, 1H), 7.52 (s, 1H), 6.95 (m, 1H), 6.74 (d, J=2.7 Hz, 1H), 5.91 (m, 1H), 4.83 (m, 1H), 2.69 (m, 1H), 2.31 (m, 4H), 1.76 (m, 5H). LC-MS: m/z 492 (M+H)+.


Compound 1-(4-((4-((4,4-Difluorocyclohexyl)amino)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.80-8.11 (m, 3H), 7.63 (m, 1H), 7.17-6.97 (m, 1H), 6.76 (t, J=3.4 Hz, 1H), 5.75 (m, 1H), 4.21 (m, 1H), 2.14 (m, 6H), 1.93-1.83 (m, 2H), 1.77-1.61 (m, 4H). LCMS: m/z 506 (M+H)+.


Compound 1-(4-((4-((3,3-Difluorocyclobutyl)amino)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ: 8.78-8.50 (M, 2H), 8.32 (m, 1H), 7.86-7.56 (m, 1H), 7.13-6.98 (M, 1H), 6.74 (t, J=3.9 Hz, 1H), 6.18 (d, J=6.9 Hz, 1H), 4.85-4.42 (M, 1H), 3.28-3.05 (m, 2H), 2.83-2.47 (m, 2H), 1.91-1.85 (m, 2H), 1.76-1.69 (m, 2H). LCMS: m/z 478 (M+H)+.


Compound 1-(4-((4-(3-(Trifluoromethyl)-1H-pyrazol-1-yl)-6-((1,1,1-trifluoropropan-2-yl)amino)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.84-8.27 (m, 3H), 7.71 (m, 1H), 7.11 (m, 1H), 6.76 (d, J=2.6 Hz, 1H), 5.91 (d, J=9.6 Hz, 1H), 5.03 (s, 1H), 1.87 (m, 2H), 1.76-1.72 (m, 2H), 1.49 (t, J=8.4 Hz, 3H). LCMS: m/z 484 (M+H)+.


Compound (R)-1-(4-((4-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-6-((1,1,1-trifluoropropan-2-yl)amino)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.65 (s, 1H), 8.48 (d, J=1.7 Hz, 1H), 8.35 (d, J=5.5 Hz, 1H), 7.59 (m, 1H), 7.14 (m, 1H), 6.76 (d, J=2.7 Hz, 1H), 5.75 (m, 1H), 5.02 (s, 1H), 1.93-1.76 (m, 2H), 1.69 (m, 2H), 1.49 (t, J=8.7 Hz, 3H). LCMS: m/z 484 (M+H)+.


Compound (S)-1-(4-((4-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-6-((1,1,1-trifluoropropan-2-yl)amino)-1,3,5-triazin-2-yl)amino)pyridin-2-yl)cyclopropanecarbonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.67 (s, 1H), 8.50 (d, J=1.4 Hz, 1H), 8.38 (m, 1H), 7.64 (m, 1H), 7.07 (s, 1H), 6.77 (d, J=2.6 Hz, 1H), 5.82 (m, 1H), 5.34-4.85 (m, 1H), 1.97-1.85 (m, 2H), 1.77 (m, 2H), 1.57-1.44 (m, 3H). LCMS: m/z 484 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.52 (m, 3H), 8.01-7.37 (m, 2H), 6.76 (t, J=3.7 Hz, 1H), 5.92 (m, 1H), 4.79-4.53 (m, 1H), 2.67 (m, 1H), 2.47-2.09 (m, 4H), 1.93-1.86 (m, 1H). LCMS: m/z 495 (M+H)+.


Compound (S)—N2-(3,3-difluorocyclopentyl)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.64-8.55 (m, 2H), 8.48-8.11 (m, 1H), 7.75-7.41 (m, 2H), 6.77-6.75 (m, 1H), 5.97-5.73 (m, 1H), 4.71-4.61 (m, 1H), 2.74-2.61 (m, 1H), 2.42-2.36 (m, 2H), 2.30-2.16 (m, 2H), 1.93-1.86 (m, 1H). LCMS: m/z 495 (M+H)+.


Compound N2-(3,3-difluorocyclobutyl)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CD3OD) δ 8.69-8.62 (m, 1H), 8.51-7.67 (m, 3H), 6.84-6.834 (m, 1H), 4.51-4.29 (m, 1H), 3.09-3.02 (m, 2H), 2.68-2.64 (m, 2H). LCMS: m/z 481 (M+H)+.


Compound N2-(cyclopropylmethyl)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.87-8.36 (m, 3H), 8.27-7.44 (m, 2H), 7.01-6.54 (m, 1H), 6.17-5.80 (m, 1H), 3.43 (m, 2H), 1.35-1.01 (m, 1H), 0.75-0.56 (m, 2H), 0.43-0.24 (m, 2H). LC-MS: m/z 445 (M+H)+.


Compound 6-(3-(Trifluoromethyl)-1H-pyrazol-1-yl)-N2-(2-(trifluoromethyl)pyridin-4-yl)-N4-(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.69-8.08 (m, 3H), 7.68 (m, 2H), 6.77 (d, J=2.7 Hz, 1H), 5.86 (m, 1H), 4.93 (m, 1H), 1.52 (dd, J=7.1 Hz, 3H). LC-MS: m/z 487 (M+H)+.


Compound (R)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-N2-(2-(trifluoromethyl)pyridin-4-yl)-N4-(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.74-8.48 (m, 2H), 8.46-7.74 (m, 2H), 7.72-7.34 (m, 1H), 6.77 (d, J=2.7 Hz, 1H), 6.08-5.53 (m, 1H), 5.11-4.77 (m, 1H), 1.52 (m, 3H). LC-MS: m/z 487 (M+H)+.


Compound (S)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-N2-(2-(trifluoromethyl)pyridin-4-yl)-N4-(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.65-8.61 (m, 1H), 8.56 (d, J=4 Hz, 1H), 8.37 (m, 1H), 8.08-7.81 (m, 1H), 7.70-7.44 (m, 1H), 6.76-6.68 (m, 1H), 5.97-5.78 (m, 1H), 5.05-4.82 (m, 1H), 1.53-1.49 (m, 3H). LCMS: m/z 487 (M+H)+.


Compound 3-((4-((3,3-Difluorocyclobutyl)amino)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)amino)-5-fluorobenzonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.61-8.54 (m, 1H), 7.86-7.78 (m, 1H), 7.69 (s, 1H) 7.60 (d, J=8 Hz, 1H), 7.13-7.08 (m, 1H), 6.76-6.74 (m, 1H), 6.01-5.94 (m, 1H), 4.58-4.42 (m, 1H), 3.20-3.10 (m, 2H), 2.80-2.54 (m, 2H). LCMS: m/z 455 (M+H)+.


Compound 3-Fluoro-5-((4-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-6-((1,1,1-trifluoropropan-2-yl)amino)-1,3,5-triazin-2-yl)amino)benzonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.60-8.53 (m, 1H), 7.99-7.62 (m, 3H), 7.14-7.09 (m, 1H), 6.76 (d, J=4 Hz, 1H), 5.90-5.82 (m, 1H), 5.04-4.98 (m, 1H), 4.87-4.81 (m, 3H). LCMS: m/z 461 (M+H)+.


Compound 3-((4-((3,3-Difluorocyclopentyl)amino)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)amino)-5-fluorobenzonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.63-8.55 (m, 1H), 7.83-7.66 (m, 3H), 7.12-7.08 (m, 1H), 6.77-6.75 (m, 1H), 6.68 (d, J=4 Hz, 1H), 6.21-5.79 (m, 1H), 5.56-4.69 (m, 1H), 2.74-2.50 (m, 1H), 2.40-2.15 (m, 4H), 1.94-1.89 (m, 1H). LCMS: m/z 469 (M+H)+.


Compound 4-((4-((3,3-Difluorocyclopentyl)amino)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)amino)picolinonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.74-8.31 (m, 4H), 7.83-7.51 (m, 1H), 6.76-6.67 (m, 1H), 6.24-6.19 (m, 1H), 4.70-4.55 (m, 1H), 2.78-2.62 (m, 1H), 2.45-2.13 (m, 4H), 1.98-1.91 (m, 1H). LCMS: m/z 452 (M+H)+.


Compound (S)-4-((4-((3,3-difluorocyclopentyl)amino)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)amino)picolinonitrile



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.89 (s, 1H), 8.90 (d, J=8 Hz, 1H), 8.70-8.66 (m, 1H), 8.58-8.42 (m, 2H), 8.00-7.95 (m, 1H), 7.09 (s, 1H), 4.65-4.43 (m, 1H), 2.69-2.57 (m, 1H), 2.36-2.08 (m, 4H), 1.91-1.80 (m, 1H). LCMS: m/z 452 (M+H)+.


Compound 4-((4-((3,3-Difluorocyclobutyl)amino)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)amino)picolinonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 10.12 (s, 1H), 8.28-7.58 (m, 4H), 7.09-7.14 (m, 1H), 6.25 (s, 1H), 3.61-3.48 (m, 1H), 2.29-1.88 (m, 4H). LCMS: m/z 438 (M+H)+.


Compound (R)-4-((4-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-6-((1,1,1-trifluoropropan-2-yl)amino)-1,3,5-triazin-2-yl)amino)picolinonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.64 (d, J=8 Hz, 1H), 8.61-8.57 (m, 1H), 8.45-8.32 (m, 1H), 8.14-7.84 (m, 1H), 7.78-7.48 (m, 1H), 6.78-6.68 (m, 1H), 6.05-5.96 (m, 1H), 5.26-4.70 (m, 1H), 1.57-1.51 (m, 3H). LCMS: m/z 444 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-(3,5-difluorophenyl)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.65-8.51 (m, 1H), 7.65-7.40 (m, 1H), 7.23 (m, 2H), 6.78-6.69 (m, 1H), 6.64-6.50 (m, 1H), 5.95-5.70 (m, 1H), 4.74-4.51 (m, 1H), 2.78-2.58 (m, 1H), 2.44-2.06 (m, 4H), 1.87 (d, J=3.8 Hz, 1H). LC-MS: m/z 462 (M+H)+.


Compound N2-(3,3-difluorocyclobutyl)-N4-(3,5-difluorophenyl)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.73-8.40 (m, 1H), 7.61 (m, 1H), 7.22 (m, 2H), 6.73 (dd, J=6.7, 2.7 Hz, 1H), 6.61-6.43 (m, 1H), 6.00 (m, 1H), 4.44 (m, 1H), 3.29-3.02 (m, 2H), 2.85-2.38 (m, 2H). LC-MS: m/z 448 (M+H)+.


Compound N2-(3,5-difluorophenyl)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-N4-(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.62-8.51 (m, 1H), 7.78-7.35 (m, 1H), 7.25-7.12 (m, 2H), 6.74 (d, J=2.0 Hz, 1H), 6.65-6.52 (m, 1H), 5.85-5.62 (m, 1H), 5.06-4.80 (m, 1H), 1.48 (m, 3H). LC-MS: m/z 454 (M+H)+.


Compound 1-((4-((3,5-Difluorophenyl)amino)-6-(3-(trifluoromethyl)-1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)amino)-2-methylpropan-2-ol



embedded image



1H NMR (400 MHz, CDCl3) δ 8.53 (d, J=4 Hz, 1H), 7.70-7.53 (m, 1H), 7.23-7.19 (m, 2H), 6.71-6.67 (m, 1H), 6.57-6.51 (m, 1H), 6.28-6.08 (m, 1H), 3.73-3.56 (m, 2H), 2.46-1.49 (m, 6H), 1.24 (m, 1H). LCMS: m/z 430 (M+H)+


Example 37. Preparation of Aromatic-Aliphatic Triazine Compounds of Formula Ic

The compounds of this Example are prepared by general Scheme 37, set forth below.




embedded image


Step 1: Preparation of 4,6-dichloro-N-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazin-2-amine

To a solution of 2-(trifluoromethyl)pyridin-4-amine (3 g, 18.7 mmol) and 2,4,6-trichloro-1,3,5-triazine (3.6 g, 19.5 mmol) in THF (40 mL) was added NaHCO3 (3.1 g, 37.5 mmol). The reaction mixture was stirred at r.t. for 16 hr and filtered. The filtrate was concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 310 (M+H)+.


Step 2: Preparation of 6-chloro-N2-(3,3-difluorocyclobutyl)-N4-(2-(trifluoro methyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine

To a solution of 4,6-dichloro-N-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazin-2-amine (4 g, 12.9 mmol) and 3,3-difluorocyclobutanamine hydrochloride (1.9 g, 13.5 mmol) in THF (40 mL) was added DIPEA (4.8 g, 37.2 mmol). The reaction mixture was stirred at r.t. for 15 hr then concentrated under reduced pressure. The residue was partitioned between EtOAc (200 mL) and aq. HCl (10% wt, 50 mL). The aqueous layer was separated and extracted with EtOAc (2×100 mL). The combined organic layers were dried over anhydrous Na2SO4, concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 381 (M+H)+.


Step 3: Preparation of 4-(3,3-difluorocyclobutylamino)-6-(2-(trifluoromethyl) pyridin-4-ylamino)-1,3,5-triazine-2-carbonitrile

To a solution of 6-chloro-N2-(3,3-difluorocyclobutyl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-1,3,5-triazine-2,4-diamine (2.2 g, 5.77 mmol) in MeCN (30 mL) and DMSO (10 mL) at r.t. was added NaCN (2.9 g, 60 mmol). The reaction mixture was stirred at 60° C. overnight then partitioned between EtOAc (50 mL) and H2O (20 mL). The organic layer was separated, washed with brine, dried over anhydrous Na2SO4, concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 372 (M+H)+.


Step 4: Preparation of 4-(3,3-difluorocyclobutylamino)-6-(2-(trifluoromethyl) pyridin-4-ylamino)-1,3,5-triazine-2-carbothioamide

To a solution of 4-(3,3-difluorocyclobutylamino)-6-(2-(trifluoromethyl)pyridin-4-ylamino)-1,3,5-triazine-2-carbonitrile (0.7 g, 1.88 mmol) in DMF (15 mL) were added NaHS (0.5 g, 9.0 mmol) and MgCl2 (0.85 g, 9.0 mmol). The reaction mixture was stirred at r.t. for 0.5 hr then partitioned between EtOAc (30 mL) and H2O (10 mL). The organic layer was separated, washed with brine, dried over anhydrous Na2SO4, and concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 406 (M+H)+.


Step 5: Preparation of 2-(4-(3,3-difluorocyclobutylamino)-6-(2-(trifluoromethyl) pyridin-4-ylamino)-1, 3, 5-triazin-2-yl)-4-(trifluoromethyl)-4,5-dihydrothiazol-4-ol

A mixture of 4-(3,3-difluorocyclobutylamino)-6-(2-(trifluoromethyl)pyridin-4-ylamino)-1,3,5-triazine-2-carbothioamide (350 mg, 0.86 mmol) and 3-bromo-1,1,1-trifluoropropan-2-one (180 mg, 0.95 mmol) in MeCN (10 mL) was stirred at 60° C. for 2 hr then partitioned between EtOAc (20 mL) and H2O (10 mL). The organic layer was separated, washed with brine, dried over anhydrous Na2SO4, and concentrated and purified by standard methods to afford the desired product.



1H NMR (400 MHz, DMSO-d6) δ 10.94-10.86 (m, 1H), 9.08 (d, J=6.0 Hz, 1H), 8.69-8.48 (m, 2H), 7.86-7.78 (m, 2H), 4.30-4.21 (m, 1H), 3.76-3.71 (m, 1H), 3.53-3.41 (m, 1H), 3.11-2.93 (m, 2H), 2.87-2.66 (m, 2H). LC-MS: m/z 516 (M+H)+.


Step 6: Preparation of N2-(3,3-difluorocyclobutyl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-6-(4-(trifluoromethyl)thiazol-2-yl)-1,3,5-triazine-2,4-diamine

To a solution of 2-(4-(3,3-difluorocyclobutylamino)-6-(2-(trifluoromethyl)pyridin-4-ylamino)-1,3,5-triazin-2-yl)-4-(trifluoromethyl)-4,5-dihydrothiazol-4-ol (250 mg, 0.48 mmol) and TEA (0.4 mL, 2.4 mmol) in DCM (20 mL) at 0° C. was added dropwise a solution of triphosgene (290 mg, 0.96 mmol) in DCM (5 mL). The reaction mixture was stirred at 0° C. for 0.5 hr, and then partitioned between DCM (20 mL) and H2O (10 mL). The organic layer was separated, washed with brine, dried over anhydrous Na2SO4, and concentrated and purified by standard methods to afford the desired product. 1H NMR (400 MHz, DMSO-d6) δ 11 . . . 05-10.94 (m, 1H), 9.10 (d, J=6.1 Hz, 1H), 8.82 (s, 1H), 8.70 (s, 1H), 8.64 (t, J=5.4 Hz, 1H), 7.83 (d, J=5.4 Hz, 1H), 4.52-4.22 (m, 1H), 3.18-2.99 (m, 2H), 2.82 (dt, J=32.2, 14.2 Hz, 2H). LC-MS: m/z 498 (M+H)+.


The procedure set forth above in Example 37 used to produce the following compounds using the appropriate starting materials.


Compound N2-(cyclopropylmethyl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-6-(4-(trifluoromethyl)thiazol-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 8.61 (t, J=5.7 Hz, 1H), 8.52-8.15 (m, 1H), 7.99 (s, 1H), 7.77-7.41 (m, 2H), 6.09-5.70 (m, 1H), 3.50-3.34 (m, 2H), 1.20-1.11 (m, 1H), 0.67-0.57 (m, 2H), 0.40-0.28 (m, 2H). LC-MS: m/z 462 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-(2-(trifluoromethyl)pyridin-4-yl)-6-(4-(trifluoromethyl)thiazol-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, DMSO-d6) δ 10.88 (s, 1H), 8.83 (d, J=6.9 Hz, 1H), 8.75 (s, 1H), 8.62 (s, 1H), 8.57 (d, J=5.5 Hz, 1H), 7.79 (d, J=5.5 Hz, 1H), 4.61-4.32 (m, 1H), 2.59-2.51 (m, 1H), 2.41-1.99 (m, 4H), 1.95-1.74 (m, 1H). LC-MS: m/z 512 (M+H)+.


Compound N2-(3,3-difluorocyclopentyl)-N4-(3,5-difluorophenyl)-6-(4-(trifluoromethyl)thiazol-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 7.97 (s, 1H), 7.45-7.26 (m, 4H), 7.25-7.23 (m, 1H), 6.60-6.56 (m, 1H), 5.92-5.34 (m, 1H), 4.68-4.57 (m, 1H), 2.70-2.64 (m, 1H), 2.37-2.16 (m, 4H), 1.87 (s, 1H). LCMS: m/z 479 (M+H)+.


Compound N2-(3,3-difluorocyclobutyl)-N4-(3,5-difluorophenyl)-6-(4-(trifluoromethyl)thiazol-2-yl)-1,3,5-triazine-2,4-diamine



embedded image



1H NMR (400 MHz, CDCl3) δ 7.97 (d, J=4 Hz, 1H), 7.60-7.47 (m, 1H), 7.26 (m, 1H), 7.26-7.22 (m, 1H), 6.61-6.53 (m, 1H), 6.00-5.74 (m, 1H), 4.52-4.41 (m, 1H), 3.15 (s, 2H), 2.70-2.57 (m, 2H). LCMS: m/z 465 (M+H)+.


Compound 3-((4-((3,3-Difluorocyclobutyl)amino)-6-(4-(trifluoromethyl)thiazol-2-yl)-1,3,5-triazin-2-yl)amino)-5-fluorobenzonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.01 (s, 1H), 7.87-7.797 (m, 2H), 7.66 (d, J=8 Hz, 1H), 7.14-7.10 (m, 1H), 5.99-5.75 (m, 1H), 4.72-4.58 (m, 1H), 2.79-2.65 (m, 1H), 2.40-2.18 (m, 3H). LCMS: m/z 472 (M+H)+.


Compound 3-((4-((3,3-Difluorocyclopentyl)amino)-6-(4-(trifluoromethyl)thiazol-2-yl)-1,3,5-triazin-2-yl)amino)-5-fluorobenzonitrile



embedded image



1H NMR (400 MHz, CDCl3) δ 8.00 (s, 1H), 7.28-7.02 (m, 3H), 6.61 (s, 1H), 6.01-5.76 (m, 1H), 4.51-4.44 (m, 1H), 3.18 (s, 1H), 2.63 (m, 2H), 1.60-1.50 (m, 1H), 1.27-1.10 (m, 2H). LCMS: m/z 486 (M+H)+.


Example 38. Preparation of Dialiphatic Pyrimidine Compounds of Formula S

The compounds of this Example are prepared by general Scheme 32, set forth below.




embedded image


Step 1: Preparation of methyl 6-chloropicolinimidate

To a solution of 6-chloropicolinonitrile (3 g, 22 mmol) in MeOH (25 mL) was added a freshly prepared solution of sodium metal (55 mg, 2.4 mol) in MeOH (5 mL). The reaction mixture was stirred at r.t. for 16 hr, and then concentrated under reduced pressure to afford the desired product. LC-MS: m/z 171 (M+H)+.


Step 2: Preparation of 6-chloropicolinimidamide

A mixture of ammonium chloride (2.18 g, 40 mmol) and methyl 6-chloropicolinimidate (3.5 g, 20 mmol) in MeOH (30 mL) was a stirred at 70° C. for 3 hr, then cooled to r.t. and concentrated under reduced pressure. The residue was diluted with EtOH (40 mL) and stirred at reflux for 0.5 hr. The resulting mixture was cooled and filtered. The filtrate was concentrated under reduced pressure to give the desired product. LC-MS: m/z 156 (M+H)+.


Step 3: Preparation of 2-(6-chloropyridin-2-yl)pyrimidine-4,6-diol

To a solution of sodium metal (0.9 g, 40 mmol) in MeOH (10 mL) was added 6-chloropicolinimid-amide (2 g, 13 mmol) and dimethyl malonate (1.7 g, 13 mmol). The reaction mixture was stirred at 85° C. overnight, and then concentrated under reduced pressure. The residue was triturated with EtOAc (30 mL) and filtered. The solid was collected and dried under high vacuum to give the desired product. LC-MS: m/z 224 (M+H)+.


Step 4: Preparation of 4,6-dichloro-2-(6-chloropyridin-2-yl)pyrimidine

A mixture of 2-(6-chloropyridin-2-yl)pyrimidine-4,6-diol (2 g, 9 mmol) in POCl3 (20 mL) was stirred at 90° C. overnight then concentrated under reduced pressure. The residue was slowly poured into satd. aq. NaHCO3 at 0° C. The resulting mixture was extracted with EtOAc (2×30 mL). Combined organic layers were washed with water (30 mL) and brine (30 mL), dried over anhydrous Na2SO4 and concentrated under reduced pressure. The residue was purified by standard methods to give the desired product. LC-MS: m/z 260 (M+H)+.


Step 5: Preparation of (R)-6-chloro-2-(6-chloropyridin-2-yl)-N-(1,1,1-trifluoro propan-2-yl)pyrimidin-4-amine

A mixture of 4,6-dichloro-2-(6-chloropyridin-2-yl) pyrimidine (200 mg, 0.77 mmol), 1,1,1-trifluoropropan-2-amine hydrochloride (255 mg, 1.7 mmol), CsF (258 mg, 1.7 mmol), and DIPEA (497 mg, 3.85 mmol) in DMSO (3 mL) was stirred at 100° C. overnight. The resulting mixture was quenched with H2O (30 mL) and extracted with EtOAc (2×30 mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by standard methods to give the desired product. 1H NMR (400 MHz, DMSO-d6) δ 8.37 (m, 2H), 8.04 (m, 1H), 7.68 (d, J=8 Hz, 1H), 6.89 (m, 1H), 5.02 (m, 1H), 1.38 (d, J=8 Hz, 3H). LC-MS: m/z 337 (M+H)+.


Step 6: Preparation of (R)-2-(6-chloropyridin-2-yl)-N4-(4,4-difluorocyclohexyl)-N6-(1,1,1-trifluoropropan-2-yl)pyrimidine-4,6-diamine

A mixture of (R)-6-chloro-2-(6-chloropyridin-2-yl)-N-(1,1,1-trifluoropropan-2-yl)pyrimidin-4-amine (100 mg, 0.3 mmol), 4,4-difluorocyclohexanamine hydrochloride (114 mg, 0.66 mmol), CsF (100 mg, 0.66 mmol), and DIPEA (194 mg, 1.5 mmol) in DMSO (3 mL) was stirred at 100° C. overnight. The resulting mixture was quenched with H2O (30 mL) and extracted with EtOAc (2×30 mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na2SO4, concentrated, and purified by standard methods to give the desired product.




embedded image



1H NMR (400 MHz, DMSO-d6) δ 8.25 (d, J=8 Hz, 1H), 8.15 (s, 1H), 7.96 (m, 1H), 7.56 (d, J=8 Hz, 1H), 7.31 (m, 1H), 7.06 (d, J=8 Hz, 1H), 5.62 (m, 1H), 5.30-4.84 (m, 1H), 2.33 (m, 1H), 2.14-1.90 (m, 5H), 1.65 (m, 2H), 1.32 (d, J=8 Hz, 3H). LCMS: m/z 436 (M+H)+


Example 8. Enzymatic and Cell Assays

In Vitro Assays for IDH1m (R132H or R132C) Inhibitors


The following describes the experimental procedures that can be used to obtain data on columns 2 and 4 of Table 4 and column 2 of Table 5.


In the primary reaction, the reduction of α-KG acid to 2-HG is accompanied by a concomitant oxidation of NADPH to NADP. The amount of NADPH remaining at the end of the reaction time is measured in a secondary diaphorase/resazurin reaction in which the NADPH is consumed in a 1:1 molar ratio with the conversion of resazurin to the highly fluorescent resorufin. Uninhibited reactions exhibit a low fluorescence at the end of the assay, while reactions in which the consumption of NADPH by R132H IDH1 has been inhibited by a small molecule show a high fluorescence.


The primary reaction is performed in a volume of 50 μL 1× Buffer (150 mM NaCl, 20 mM Tris 7.5, 10 mM MgCl2, 0.05% (w/v) bovine serum albumin), contained 0.25 ug/mL (2.7 nM) IDH1 wt/IDH1 R132H heterodimer, 0.3 mM alpha-ketoglutarate, 4 μM NADPH, and either 300 μM NADP (saturated) or 30 μM NADP (without saturation), and 1 uL of 50× compound in DMSO. The mixture of compound, enzyme, and cofactor is pre-incubated at room temperature for 1 hr prior to the addition of alpha-ketoglutarate. To perform the secondary reaction, 10 uL of 1× buffer containing 36 μg/ml diaphorase and 30 mM resazurin is added to the primary reaction and incubated for a further 5 minutes at 25° C. Florescence is read on a Spectramax platereader at Ex 544 Em 590. Compounds or compound dilutions are prepared in 100% DMSO concentration and diluted 1:50 into the final reaction. IDH1 wt/IDH1 R132C is assayed under similar conditions except that 1× Buffer is 50 mM K2HP04, pH 6.5; 10 mM MgCl2; 10% glycerol; 0.03% (w/v) bovine serum albumin and final concentrations are 0.4 ug/mL (4.3 nM) IDH1 wt/IDH1 R132C heterodimer, 0.02 mM alpha-ketoglutarate, 4 uM NADPH, and either 300 μM NADP (saturated) or 30 μM NADP (without saturation). IC50s are determined.


IDH1 or IDH2 wildtype (wt) and mutant heterodimers are expressed and purified by methods known in the art. For example, IDH1wt/R132m heterodimer is expressed and purified as follows. Co-expression of IDH1wt-his and IDH1R132C-flag is carried out in sf9 insect cells. Cells (25 g) are resuspended in 250 ml of 50 mM Tirs, 500 mM NaCl, pH7.4, at 4° C. with stirring. Cells are disrupted with 4 passes through an M-Y110 Micro fluidizer (Microfluidics) set to 500 psi, and then centrifuged at 22,000 rcf for 20 min at 4° C. The supernatant is harvested and loaded at 15 cm/h on a Histrap FF 5*1 ml column (GE) which is equilibrated with 50 mM Tirs, 500 mM NaCl, pH7.4. Host cell contaminants are removed by washing the column with equilibration buffer followed by equilibration buffer containing 20 mM imidazole and 60 mM imidazole to baseline. IDH1wt-his homodimer and IDH1wt-his/IDH1R132C-flag are eluted by equilibration buffer containing 250 mM imidazole. Fractions eluted by 250 mM imidazole are pooled together and loaded at 15 cm/h onto a column pre-packed with 10 ml ANTI-FLAG® M2 Affinity Gel (Sigma), the column is equilibrated with 50 mM Tris, 500 mM NaCl, pH7.4. After washing with equilibration buffer, IDH1wt-his/IDH1R132C-flag heterodimer is eluted by equilibration buffer containing flag peptide (0.2 mg/ml). Aliquots of IDH1wt-his/IDH1R132C-flag are flash frozen in liquid N2 and stored at −80° C. Same conditions are used for the purification of IDH1wt-his/IDH1R132H-flag.


In Vitro Assays for IDH1m (R132H or R132C) Inhibitors


The following describes the experimental procedures that can be used to obtain data on columns 3 and 6 of Table 4.


A test compound is prepared as 10 mM stock in DMSO and diluted to 50× final concentration in DMSO, for a 50 μl reaction mixture. IDH enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutaric acid is measured using a NADPH depletion assay. In the assay the remaining cofactor is measured at the end of the reaction with the addition of a catalytic excess of diaphorase and resazurin, to generate a fluorescent signal in proportion to the amount of NADPH remaining. IDH1-R132 homodimer enzyme is diluted to 0.125 μg/ml in 40 μl of Assay Buffer (150 mM NaCl, 20 mM Tris-Cl pH 7.5, 10 mM MgCl2, 0.05% BSA, 2 mM b-mercaptoethanol); 1 μl of test compound dilution in DMSO is added and the mixture is incubated for 60 minutes at room temperature. The reaction is started with the addition of 10 μl of Substrate Mix (20 μl NADPH, 5 mM alpha-ketoglutarate, in Assay Buffer) and the mixture is incubated for 90 minutes at room temperature. The reaction is terminated with the addition of 25 μl of Detection Buffer (36 μg/ml diaphorase, 30 mM resazurin, in 1× Assay Buffer), and is incubated for 1 minute before reading on a SpectraMax platereader at Ex544/Em590.


Compounds are assayed for their activity against IDH1 R132C following the same assay as above with the following modifications: Assay Buffer is (50 mM potassium phosphate, pH 6.5; 40 mM sodium carbonate, 5 mM MgCl2, 10% glycerol, 2 mM b-mercaptoethanol, and 0.03% BSA). The concentration of NADPH and alpha-ketoglutarate in the Substrate Buffer is 20 μM and 1 mM, respectively.


In Vitro Assays for IDH1m (R132H or R132C) Inhibitors


The following describes the experimental procedures that can be used to obtain data on columns 3 and 5 of Table 5.


A test compound is prepared as 10 mM stock in DMSO and diluted to 50× final concentration in DMSO, for a 50 μl reaction mixture. IDH enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutaric acid is measured using a NADPH depletion assay. In the assay the remaining cofactor is measured at the end of the reaction with the addition of a catalytic excess of diaphorase and resazurin, to generate a fluorescent signal in proportion to the amount of NADPH remaining. IDH1-R132H homodimer enzyme is diluted to 0.125 μg/ml in 40 μl of Assay Buffer (150 mM NaCl, 20 mM Tris-Cl pH 7.5, 10 mM MgCl2, 0.05% BSA, 2 mM b-mercaptoethanol) containing 5 μM NADPH and 37.5 μM NADP; 1 μl of test compound dilution in DMSO is added and the mixture is incubated for 60 minutes at room temperature. The reaction is started with the addition of 10 μl of Substrate Mix (20 μl NADPH, 5 mM alpha-ketoglutarate, in Assay Buffer) and the mixture is incubated for 60 minutes at room temperature. The reaction is terminated with the addition of 25 μl of Detection Buffer (36 μg/ml diaphorase, 30 mM resazurin, in 1× Assay Buffer), and is incubated for 1 minute before reading on a SpectraMax platereader at Ex544/Em590.


Compounds are assayed for their activity against IDH1 R132C following the same assay as above with the following modifications: IDH1-R132C homodimer enzyme is diluted to 0.1875 μg/ml in 40 μl of Assay Buffer (50 mM potassium phosphate, pH 6.5; 40 mM sodium carbonate, 5 mM MgCl2, 10% glycerol, 2 mM b-mercaptoethanol, and 0.03% BSA) containing 5 uM NADPH and 28.75 uM NADP. The concentration of alpha-ketoglutarate in the Substrate Buffer is 1 mM.


In Vitro Assays for IDH2m R140Q Inhibitors


The following describes the experimental procedures used to obtain data on column 7 of Table 4.


Compounds are assayed for IDH2 R140Q inhibitory activity through a cofactor depletion assay. Compounds are preincubated with enzyme, then the reaction is started by the addition of NADPH and α-KG, and allowed to proceed for 60 minutes under conditions previously demonstrated to be linear with respect for time for consumption of both cofactor and substrate. The reaction is terminated by the addition of a second enzyme, diaphorase, and a corresponding substrate, resazurin. Diaphorase reduces resazurin to the highly fluorescent resorufin with the concomitant oxidation of NADPH to NADP, both halting the IDH2 reaction by depleting the available cofactor pool and facilitating quantitation of the amount of cofactor remaining after a specific time period through quantitative production of an easily detected fluorophore.


Specifically, into each of 12 wells of a 384-well plate, 1 μl of 100× compound dilution series is placed, followed by the addition of 40 μl of buffer (50 mM potassium phosphate (K2HPO4), pH 7.5; 150 mM NaCl; 10 mM MgCl2, 10% glycerol, 0.05% bovine serum albumin, 2 mM beta-mercaptoethanol) containing 0.25 μg/ml IDH2 R140Q protein. The test compound is then incubated for one hour at room temperature with the enzyme; before starting the IDH2 reaction with the addition of 10 μl of substrate mix containing 4 μM NADPH and 1.6 mM α-KG in the buffer described above. After a further 16 hours of incubation at room temperature, the reaction is halted and the remaining NADPH measured through conversion of resazurin to resorufin by the addition of 25 μl Stop Mix (36 μg/ml diaphorase enzyme and 60 μM resazurin; in buffer). After one minute of incubation the plate is read on a plate reader at Ex544/Em590.


For determination of the inhibitory potency of compounds against IDH2 R140Q in an assay format similar to the above, a similar procedure is performed, except that the final testing concentration is 0.25 μg/ml IDH2 R140Q protein, 4 μM NADPH and 1.6 mM α-KG.


For determination of the inhibitory potency of compounds against IDH2 R140Q in a high throughput screening format, a similar procedure is performed, except that 0.25 μg/ml IDH2 R140Q protein is utilized in the preincubation step, and the reaction is started with the addition of 4 μM NADPH and 8 μM α-KG.


In Vitro Assays for IDH2m R140Q Inhibitors


The following describes the experimental procedures used to obtain data on column 6 of Table 5.


Compounds are assayed for IDH2 R140Q inhibitory activity through a cofactor depletion assay. Compounds are preincubated with enzyme and cofactor, then the reaction is started by the addition of α-KG, and allowed to proceed for 60 minutes under conditions previously demonstrated to be linear. The reaction is terminated by the addition of a second enzyme, diaphorase, and a corresponding substrate, resazurin. Diaphorase reduces resazurin to the highly fluorescent resorufin with the concomitant oxidation of NADPH to NADP, both halting the IDH2 reaction by depleting the available cofactor pool and facilitating quantitation of the amount of cofactor remaining after a specific time period through quantitative production of an easily detected fluorophore.


Specifically, into each of 12 wells of a 384-well plate, 1 μl of 50× compound dilution series is placed, followed by the addition of 40 μl of buffer (50 mM potassium phosphate (K2HPO4), pH 7.5; 150 mM NaCl; 10 mM MgCl2, 10% glycerol, 0.05% bovine serum albumin, 2 mM beta-mercaptoethanol) containing 0.39 μg/ml IDH2 R140Q protein, 5 uM NADPH and 750 uM NADP. The test compound is then incubated for 16 hrs at room temperature with the enzyme and cofactors before starting the IDH2 reaction with the addition of 10 μl of substrate mix containing 8 mM α-KG (final concentration 1.6 mM) in the buffer described above. After a further 1 hour of incubation at room temperature, the reaction is halted and the remaining NADPH measured through conversion of resazurin to resorufin by the addition of 25 μl Stop Mix (36 μg/ml diaphorase enzyme and 60 μM resazurin; in buffer). After one minute of incubation the plate is read on a plate reader at Ex544/Em590.


Cellular Assays for IDH1m (R132H or R132C) Inhibitors.


The following describes the experimental procedures that can be used to obtain data on column 5 of Table 4.


Cells (HT1080 or U87MG) are grown in T125 flasks in DMEM containing 10% FBS, 1× penicillin/streptomycin and 500 ug/mL G418 (present in U87MG cells only). They are harvested by trypsin and seeded into 96 well white bottom plates at a density of 5000 cell/well in 100 ul/well in DMEM with 10% FBS. No cells are placed in columns 1 and 12. Cells are incubated overnight at 37° C. in 5% CO2. The next day test compounds are made up at 2× the final concentration and 100 ul are added to each cell well. The final concentration of DMSO is 0.2% and the DMSO control wells are plated in row G. The plates are then placed in the incubator for 48 hours. At 48 hours, 100 ul of media is removed from each well and analyzed by LC-MS for 2-HG concentrations. The cell plate is placed back in the incubator for another 24 hours. At 72 hours post compound addition, 10 mL/plate of Promega Cell Titer Glo reagent is thawed and mixed. The cell plate is removed from the incubator and allowed to equilibrate to room temperature. Then 100 ul of Promega Cell Titer Glo reagent is added to each well of media. The cell plate is then placed on an orbital shaker for 10 minutes and then allowed to sit at room temperature for 20 minutes. The plate is then read for luminescence with an integration time of 500 ms.


U87MG pLVX-IDH2 R140Q-Neo and HT1080 Cell Based Assays


The following describes the experimental procedures that are used to obtain data on column 8 of Table 4.


U87MG pLVX-IDH2 R140Q-neo cells are maintained in DMEM containing 10% FBS, 1× penicillin/streptomycin and 500 μg/uL G418. HT1080 cells are maintained in RPMI containing 10% FBS, 1× penicillin/streptomycin. Cells are seeded at a density of 5,000 (U87MG R140Q) or 2,500 (HT1080) cells/well into 96-well microtiter plates and incubated overnight at 37° C. and 5% CO2. The next day compounds are prepared in 100% DMSO and then diluted in media for a final concentration of 0.2% DMSO. Media is removed from the cell plates and 200 μL of the compound dilutions are added to each well. After 48 hours of incubation with compound at 37° C., 100 μL of media are removed from each well and analyzed by LC-MS for 2-HG concentrations as described in Dang, L. et al. Nature, 2009, 462, 739-744. The cell plates are then allowed to incubate another 24 hours. At 72 hours post compound addition, Promega Cell Titer Glo reagent is added to each well and the plates are read for luminescence to determine any compound effects on growth inhibition (GI50).


Cellular Assay for IDH1m R132H Inhibitors.


The following describes the experimental procedures that can be used to obtain data in column 4 of Table 5.


Neurosphere cells (TS603) are grown at 37 C in 5% CO2 in Stem Cell Technologies NeuroCult™ NS-A media supplemented with 1% Primocin, 1% Normocin, 0.0002% Heparin, 20 ng/mL EGF and 10 ng/mL bFGF. Cells are harvested, pelleted and resuspended in Accumax for cell dissociation and counting. Cells are counted and then resuspended in NeuroCult media with 2× heparin, EGF and bFGF at 4 million cells/10 mL media. 100 μl of cell solution are plated in each well of a 96 well with the exception of columns 1 and 12. Columns 1 and 12 contain 200 μL PBS. Compound dose responses are set up at a 2× concentration in Neurocult media without heparin, EGF and bFGF. The final concentration of DMSO is 0.25%. DMSO only control wells are plated in row H. The plates are then placed in the incubator for 48 hours. At 48 hours, 100 μl of media is removed from each well and analyzed by LC-MS for 2-HG concentrations. The cell plate is placed back in the incubator for another 24 hours. At 72 hours post compound addition, 10 mL/plate of Promega Cell Titer Glo reagent is thawed and mixed. The cell plate is removed from the incubator and allowed to equilibrate to room temperature. Then 100 μl of Promega Cell Titer Glo reagent is added to each well of media. The cell plate is then placed on an orbital shaker for 10 minutes and then allowed to sit at room temperature for 20 minutes. The plate is then read for luminescence with an integration time of 500 ms.


The data for various compounds of one aspect of the invention in the R132H enzymatic assay, R132C enzymatic assay, R140Q enzymatic assay, R132C cell-based assay, and R140Q cell-based assay as described above or similar thereto are presented below in Tables 2 and 3. For each assay, values indicated as “A” represent an IC50 of less than 50 nM; values indicated as “B” represent an IC50 of between 50 nM and 100 nM; values indicated as “C” represent an IC50 of greater than 100 nM and less than 1 μM; values indicated as “D” represent an IC50 of greater than or equal to 1 μM; values indicated as “no fit” are inactive and blank values represent that the compound was either inactive or not tested in that particular assay.









TABLE 4







Inhibitory Activities of Representative Compounds of formula I















IDH1









wt/R132H



NADPH/





NADP

IDH1 wt/R132C



IC50
IDH1
NADPH/

IDH1
IDH2


Compound
not
R132H
NADP
HT1080
R132C
R140Q
U87MG


No.
saturated
IC50
IC50
IC50
IC50
IC50
IC50

















1

D


D
A
A


2

A

A
A
A
A


3

C


B


4

B

B
B
A


5

D


No Fit


6

D


C


7

C


D
A


8

No Fit


D
B


9

B


C
A


10

D


D
B


11

C

B
B
A


12

D


D
B


13

A

A
B


14

D


D
D


15

D


D


16

D


D
A


17

B

A
B


18

A

B
B


19

B

B
B


20
A
B


B
A


21

D


D
A


22

B


C
A


23

B


B


24

D


D


25

D


D


26

C


D
A


27

B


C


28
A
B

B
B


29

C


D


30

B


C
B


31

A

A
A
A


32

D


D


33

A

A
B


34

A

A
B


35

D


D


36
A
A


B


37

B


D


38

B


C


39

A

B
B


40

B


B


41

B


D


42

B


C


43

C


D


44

C


D


45

A


B


46

D


D


47

D


No Fit


48

D


No Fit


49

D


D


50
A
A


B


51

D


D


52
B

A


53
C

B


54
D

D


55
C

B


56
B

A


57
D

D


58
A

A


59
A


60
A


61
D


62
B


63
B


64
B


65
No Fit


66
D


67
D


69






C


70






B


71






B


72





D
B


73





A
B


74





A
B


75





B
A


76

B

B
B
A


77

D


C


78

No Fit


D
B


79

D


D
B


80

C

B
B
A


81

D


D
B


82

D


D
A


83

D


D


84

D


D


85

B


C
B


86
B
D


D


87

B


D


88

D


D


89

D


D


90
C

B


91
D

D


92
D

D


93
D


94
D


95
D


96
D


100
A


A

A


101
A

A
A

A
A


102
A


A

A
A


103
A


A

A
A


104
A


A

A
A


105
A

A
A

A
A


106
A


C

A
A


107
A


C

A
A


108
A


B

A
A


109
A




A
A


110
A

A
B

A
A


111
A


A

A
A


112
A


C

A
A


113
A

A
A

A
A


114
A


A

A
A


115
A

A
C

A
A


116
A


C

A
A


117
A

A
D

A
A


118
A


A

A
A


119
A


B

A
A


120
A




A
A


121
A

A
A

A
A


122
A


B

A
A


123
A

A
C

A
A


124
A

A


A
A


125
A

A


A
A


126
A

A


A
A


127
A

A
B

A
A


128
A

A
A

A
A


129
A




A
A


130
A

A
A

A
A


131
A

A


A
A


132
A


C

A
A


133
A


C

A
A


134
A

A
A

A
A


135
A


136
A

A
A

A
A


137
A


B

A
A


138
A


A

A
A


139
A




A
A


140
A


C

A
A


141
A


A

A
A


142
A

A
A

A
A


143
A


B

A
A


144
A


A

A
A


145
A

A
C

A
A


146
A

A


A
A


147
A

A
C

A
A


148
A




A
A


149
A

A
B

A
A


150
A




A
A


151
A

A
B

A
A


152
A

A


A
A


153
A


B

A
A


154
A


C

A
A


155
A


B

A
A


156
A


A

A
A


157
A


A

B
B


158
A


C

A
A


159
A


C

A
A


160
A


A

A
A


161
A


A

A
A


162
A

A


A
A


163
A


C

A
A


164
A

A


A
A


165
A


C

A
A


166
A


C


167
A

A


A
A


168
A


A

A
A


169
A


A

A
A


170
A

A


A
A


171
A


C

A
A


172
A


B

A
A


173
A


B

A
A


174
A


B

A
A


175
A


C

A
A


176
A

A
C

A
A


177
A


B

A
A


178
A

A
C

A
A


179
A


C

A
A


180
A


A

B
C


181
A

A
C

A
A


182
A

A


A
A


183
A


B

A
A


184
A




A
A


185
A


B

A
A


186
A


C

A
A


187
A

A


A
A


188
A


A


189
A

A
C

A
A


190
A


C

A
A


191
A

A
C

A
A


192
A

A
C

A
A


193
A

A


A
A


194
A


B

B
B


195
A


C

A
A


196
A


B

B
C


197
A


C

A
A


198
A




A
A


199
A

A


A
A


200
A


D

A
A


201
A


B

A
A


202
A


C

A
A


203
A

A
A

A
A


204
A




A
A


205
A


B

A
A


206
A


207
A


C

A
A


208
A


209
A


C

A
A


210
A


C

A
A


211
A


C

A
A


212
A


B

A
A


213
A

A


A
A


214
A

A


A
A


215
A


C

A
A


216
A


C

A
A


217
A


C

A
A


218
A


C

A
A


219
A


220
A


C

B
B


221
A


D

A
A


222
A

B


C
C


223
A

B


A
A


224
A

A
C

A
A


225
A


226
A

B


A
A


227
A

B


C
C


228
A




A
A


229
A

B
C

A
A


230
A




A
A


231
A

B
D

A
A


232
A


D

A
A


233
A


234
A


235
A


C

A
A


236
A


D

A
A


237
A

A
C

A
A


238
A


C


239
A


C


240
A


241
A

C


242
B

B


243
B


C


244
B

C
D

A
A


245
B

C


A
A


246
B

B


B
B


247
B

B


A
A


248
B

C


C
A


249
B


C

A
C


250
B

C


C
A


251
B


C

A
C


252
B

C


A
A


253
B

C


A
A


254
B


255
C

C
C


256
C

B


A
A


257
C

C


A
A


258
C


D


A


259
C




A
A


260
C

B
D

A
A


261
C

B


A
A


262
C

C


263
C

C
C


264
C


C


265
C

C


266
C

C
D


267
C

C


A
A


268
C

A
C

B
B


269
C


270
C

C


C
C


271
C

C


272
C

C
C

C
C


273
C

C
D


274
C

C


275
C


276
C

C


277
C




B
B


278
C




D
D


279
C

C


C
C


280
C

D
D


281
C


282
C


283
C




C
C


284
C


285
C




D
D


286
C


287
C


D

C
C


288
C




C
C


289
C

D


A
A


290
C


291
C


292
C


D


293
C

C


B
B


294
C


295
C


296
C

D


297
C

C


298
C

D


A
A


299
C


300
C


301
C

D


302
C

C


C
C


303
D


304
D


305
D


306
D


307
D


308
D




C
C


309
D


310
D


311
D

D


312
D


313
D


314
D


315
D


316
D


317
D


318
D


319
D


320
D


321
D

D


322
D


323
D


324
D


325
D

D


A
A


326
D




D
D


327
D


328
D


329
D


330
D


331
D


332
D


333
D


334


335


336


337


338


339





A
A


340





A
A


341





A
A


342





A
A


343





A
A


344





B
B


345





C
C


346





A
A


347





A
A


348





A
A


349





A
A


350



B

A
A


351





A
A


352





A
A


353





A
A


354





A
A


355





A
A


356





A
A


357





A
A


358





A
A


359





A
A


360





A
A


361





A
A


362





A


363





B
B


364





A
A


365





A
A


366





A
A


367





A
A


368





A
A


369





A
A


370





A
A


371





A
A


372





A
A


373





A
A


374





A
A


375





A
A


376





A
A


377



C

A
A


378



B

A
A


379





A
A


380





A
A


381



C

A
A


382



C

A
A


383





A
A


384



C

A
A


385



C

A
A


386



A

A
A


387





A
A


388



B

A
A


389



C

A
A


390



C

A
A


391



C

A
A


392



B

A
A


393



C

A
A


394



C

A
A


395





A
A


396





B
B


397





A
A


398





A
A


399



A

A
A


400





A
A


401



C

A
A


402



A

A
A


403



A

A
A


404



A

A
A


405



B

A
A


406



A

A
A


407



C

A
A


408



A

A
A


409



A

A
A


410



A

A
A


411



C

B
B


412



C


B


413



C


A


414
A
C

C
C


415

C


C


416
A
C


D


417

C


D


418
B


419

D




C


420

C

C


B


421
C
















TABLE 5







Inhibitory Activities of Representative Compounds of formula I













IDH1



IDH2



wt/R132H
IDH1

IDH
R140Q



NADPH/
R132H

R132C
16 hr


Com-
NADP
NADPH/

NADPH/
NADPH/


pound
IC50
NADP
Neurosphere
NADP
NADP


No.
saturated
IC50
IC50
IC50
IC50





100

A
A




101
A
A
A
A


102

A
A


103

A
A


104

A


105

A
A


106

A
A
A


107

A
A


108

A
A


109


A


110

B
A

A


111

A
A


112

A
A


113

A
A

A


114


A


115

A
A


116
A
A
A


117




A


118

A
A


119

A
A


120

A
A


121

B
A


122

A
A


123

A
A


124

A
A


125


A


126

B
A


127

A
A

A


128

A
A


129


A


130

A


131

B
A


132

A
A


133

B
A
C


134

A
A


135


A


136

A
A


137

A
A
C


138

A
A


139


A


140

A
A


141

A
A


142

A
A


143

A
A


144

A
A


145

A
A


146

A
A


147

B
A


148


A


149

A
A


150


A


151

A
A


152

A
A


153

A


154

A
A


155

A
A


156

A
A


157

A
A


158

B
A
C


159

A
A


160

B
A
C


161

A
A
B


162

A
A


163

B
A


164

B
A


165

B
A


166


A


167

A
A

A


168

A
A
B


169

A
A


170

C
A


171

B
A


172

A
A


173

A
A


174

A
A
B


175

B
A


176

C
A


177

B
A


178

B
A

A


179

A
A


180

A
A


181

A
A


182

C
A


183

C
A


184


A


185

A
A


186

C
A


187

C
A


188


A


189

C
A
C


190

C
A
D


191

C
A


192

C
A


193

B
A

A


194

C
A


195

B
A


196

A
A


197

C
A


198


A


199

C
A


200

B
A


201

B
A


202

C
A


203

A
A

A


204


A


205

C
A


206


A


207

B
A


208


A


209

C
A


210

B
A


211

C
A


212

C
A


213

B
A


214

C
A


215

B
A


216

C
A


217

B
A


218


A


219


A


220

B
A


221

C
A


222

C
A


223

C
A


224

C
A


225


A


226

C
A


227

C
A


228


A


229

C
A


230


A


231

C
A


232

C
A


233


234

C


C


235


A


236

C


237

C
A


238

C
A


239

C
A


240


241

C


B


242

C


243

D
A


244


A

B


245


A

A


246

C


A


247

C
A


248




A


249

D
B


250

C
A

B


251

C
A


252

D
B


253

C
A


254


B


255

C


C


256

D
A


257

C


258


259


260


261

D
B


262

D


C


263

C


C


264

C
B


265

D


C


266

D
A

C


267

D


B


268

D
A

B


269


270

D


271

C


C


272

D


273

D


D


274

D


C


275

D


276

D


277


278


279

D


280

D


C


281


282


283

D


284


285


286


287

D


288


289

D


B


290


291


292


293

D
D


294


295


296

D


297

D


298

D


B


299


300


301

D


302

D


303


304


305


C


306


307


308

D
C


309

D


310


311

D


312


313


314


315

D


316


317

D


318


D


319

D


320


321

D


322


323


324


325




B


326


327


328

D


329


330


331


332

D


333

D


334


335
A

A


336
A

A


337
A

A


338
B

A


339
A

A


340
C

B


341
C

A


342
C

A


343
C


344
B

A


345
A

A


346
A

A


347
A

A


348
A

A


349
A

A


350
A
A
A
B


351
A

A


352
A

A


353
A

A


354
B

A


355
A

A


356
A

A


357
B

A


358
A

A


359
A

A


360
A

A


361
B

A


362
B


363
A

A


364
B

A


365
B

A


366
A

A


367
A

A


368
A
A
A


369
A

A


370
A

A


371
A

A


372
A

A


373
A

A


374
B

A


375
C

A


376
D


377
A

A


378
A

A


379
B

A


380
C

A


381
A

A


382
B
C
A


383
C

A


384
A

A


385
B

A


386
A

A


387
C

A


388
A

A


389
A
B
A
C


390
B

A


391
A
B
A
C


392
A

A


393
A
B
A
C


394
A

A


395
A

A


396
D


397
C


398
C


399
A

A


400
A
C
A
C


401
A
A
A
C


402
B

A


403
A

A


404
A

A


405
B

A


406
A

A


407
C

A


408
A

A


409
A

A


410
A
A
A
A


411
C

A


412
C

A


413
A
A


414

B

C
A


415


416




C


417

C


418




A


419

C


421

C









Having thus described several aspects of several embodiments, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description and drawings are by way of example only.

Claims
  • 1. A compound having Formula (B) or pharmaceutically acceptable salt or hydrate thereof, wherein:
  • 2. The compound of claim 1 or pharmaceutically acceptable salt or hydrate thereof, wherein R4 and R5 are optionally taken together to form an optionally substituted carbocyclyl.
  • 3. A compound having Formula (C) or pharmaceutically acceptable salt or hydrate thereof, wherein:
  • 4. The compound of claim 3 or pharmaceutically acceptable salt or hydrate thereof, wherein: R9c is halo, —OH, CN, —NH2, —O—C1-C4 alkyl, —NH(C1-C4 alkyl), —N(C1-C4 alkyl)2, —C1-C4 alkyl, —C1-C4 haloalkyl, and —(C1-C6 alkylene)-O—(C1-C6 alkyl);R1 and R4 are each hydrogen;R3 and R6 are each independently selected from C1-C4 alkyl, C1-C4 haloalkyl, —O—C1-C4 alkyl, and CN; andR2 and R5 are each —(C1-C6 alkyl), wherein:the alkyl moiety present in R2 and R5 is optionally substituted with one or more —OH, —O(C1-C4 alkyl), —CO2H, or halo; and any terminal methyl moiety present in R2 and R5 is optionally replaced with —CH2OH, CF3, —CH2F, —CH2Cl, C(O)CH3, C(O)CF3, CN, or CO2H.
  • 5. The compound of claim 3 or pharmaceutically acceptable salt or hydrate thereof, wherein R1 and R4 are each independently selected from C1-C4 alkyl and C1-C4 haloalkyl, and R2 and R5 are each —(C1-C6 alkyl).
  • 6. The compound of claim 1 or pharmaceutically acceptable salt or hydrate thereof, wherein R3 and R6 are both hydrogen, R1 and R4 are each independently selected from C1-C4 alkyl and C1-C4 haloalkyl, and R2 and R5 are each —(C1-C6 alkyl).
  • 7. A pharmaceutical composition comprising a compound of claim 1 or pharmaceutically acceptable salt or hydrate thereof, and a pharmaceutically acceptable carrier.
  • 8. The pharmaceutical composition of claim 7, further comprising a second therapeutic agent useful in the treatment of cancer.
  • 9. The compound of claim 1 or a pharmaceutically acceptable salt thereof selected from:
Priority Claims (2)
Number Date Country Kind
PCT/CN2013/079200 Jul 2013 WO international
PCT/CN2014/081957 Jul 2014 WO international
CLAIM OF PRIORITY

This application is a divisional of U.S. Ser. No. 14/328,885, filed Jul. 11, 2014, which claims priority from International Application Serial No. PCT/CN2013/079200, filed Jul. 11, 2013, and International Application Serial No. PCT/CN2014/081957, filed Jul. 10, 2014, each of which is incorporated herein by reference in its entirety.

US Referenced Citations (77)
Number Name Date Kind
2390529 Friedheim Dec 1945 A
3755322 Winter et al. Aug 1973 A
3867383 Winter Feb 1975 A
4084053 Desai et al. Apr 1978 A
4157893 Dehnert et al. Jun 1979 A
5021421 Hino et al. Jun 1991 A
5489591 Kobayashi et al. Feb 1996 A
5807876 Armistead et al. Sep 1998 A
5834485 Dyke et al. Nov 1998 A
5965559 Faull et al. Oct 1999 A
5965569 Garcia et al. Oct 1999 A
5984882 Rosenschein et al. Nov 1999 A
6262113 Widdowson et al. Jul 2001 B1
6274620 Labrecque et al. Aug 2001 B1
6313127 Waterson et al. Nov 2001 B1
6399358 Williams et al. Jun 2002 B1
6576235 Williams et al. Jun 2003 B1
6723730 Bakthavatchalam et al. Apr 2004 B2
6783965 Sherman et al. Aug 2004 B1
6979675 Tidmarsh Dec 2005 B2
7173025 Stocker et al. Feb 2007 B1
7858782 Tao et al. Dec 2010 B2
8133900 Hood et al. Mar 2012 B2
8465673 Yasuda et al. Jun 2013 B2
9474779 Lemieux et al. Oct 2016 B2
9579324 Konteatis Feb 2017 B2
20020049310 Tateishi et al. Apr 2002 A1
20020188027 Robinson et al. Dec 2002 A1
20030095958 Bhisetti et al. May 2003 A1
20030109527 Jin et al. Jun 2003 A1
20030207882 Stocker et al. Nov 2003 A1
20030213405 Harada et al. Nov 2003 A1
20040067234 Einat et al. Apr 2004 A1
20040248221 Stockwell Dec 2004 A1
20050261268 Amost et al. Nov 2005 A1
20060084645 Pal et al. Apr 2006 A1
20060281122 Bryant et al. Dec 2006 A1
20070244088 Brickmann et al. Oct 2007 A1
20080132490 Bergman et al. Jun 2008 A1
20080300208 Einat et al. Dec 2008 A1
20090093526 Miller et al. Apr 2009 A1
20090163508 Kori et al. Jun 2009 A1
20090163545 Goldfarb Jun 2009 A1
20090281089 Gunzner et al. Nov 2009 A1
20100129350 Zacharie et al. May 2010 A1
20100144722 Alexander et al. Jun 2010 A1
20100273808 Armitage et al. Oct 2010 A1
20100331307 Salituro et al. Dec 2010 A1
20110073007 Yasuda et al. Mar 2011 A1
20110086088 Berry Apr 2011 A1
20110183954 Almeida et al. Jul 2011 A1
20110288065 Fujihara et al. Nov 2011 A1
20120121515 Dang et al. May 2012 A1
20120129865 Wang et al. May 2012 A1
20120164143 Teeling et al. Jun 2012 A1
20120202818 Tao et al. Aug 2012 A1
20120238576 Tao et al. Sep 2012 A1
20120277233 Tao et al. Nov 2012 A1
20130035329 Saunders et al. Feb 2013 A1
20130109643 Riggins et al. May 2013 A1
20130183281 Su et al. Jul 2013 A1
20130184222 Popovici-Muller et al. Jul 2013 A1
20130190249 Lemieux et al. Jul 2013 A1
20130190287 Cianchetta et al. Jul 2013 A1
20130197106 Fantin et al. Aug 2013 A1
20140187435 Dang et al. Jul 2014 A1
20140206673 Cao et al. Jul 2014 A1
20140213580 Cao et al. Jul 2014 A1
20150018328 Konteatis et al. Jan 2015 A1
20150031627 Lemieux et al. Jan 2015 A1
20150044716 Balss et al. Feb 2015 A1
20150087600 Popovici-Muller et al. Mar 2015 A1
20150240286 Dang et al. Aug 2015 A1
20150299115 Popovici-Muller et al. Oct 2015 A1
20150315182 Lee et al. Nov 2015 A1
20160264621 Popovici-Muller et al. Sep 2016 A1
20170015703 Popovici-Muller et al. Jan 2017 A1
Foreign Referenced Citations (113)
Number Date Country
101575408 Nov 2009 CN
102573485 Jul 2012 CN
102659765 Sep 2012 CN
103097340 May 2013 CN
2263878 Jul 1973 DE
3314663 Oct 1983 DE
3512630 Oct 1986 DE
0022958 Jan 1981 EP
0384228 Aug 1990 EP
0385237 Sep 1990 EP
0945446 Sep 1999 EP
1391487 Feb 2004 EP
2735127 Dec 1996 FR
1033266 Jun 1966 GB
H04099768 Mar 1992 JP
H05140126 Jun 1993 JP
H09291034 Nov 1997 JP
H11158073 Jun 1999 JP
2004107220 Apr 2004 JP
2005264016 Sep 2005 JP
2009237115 Oct 2009 JP
2010079130 Apr 2010 JP
2010181540 Aug 2010 JP
4753336 Aug 2011 JP
4753363 Aug 2011 JP
2013519858 May 2013 JP
201028381 Aug 2010 TW
1996030343 Oct 1996 WO
9728128 Aug 1997 WO
9728129 Aug 1997 WO
1997044322 Nov 1997 WO
9932463 Jul 1999 WO
00002864 Jan 2000 WO
2001016097 Mar 2001 WO
2001019788 Mar 2001 WO
2001019798 Mar 2001 WO
0147897 Jul 2001 WO
2001064642 Sep 2001 WO
2001064643 Sep 2001 WO
2002100822 Dec 2002 WO
2002102313 Dec 2002 WO
030016289 Feb 2003 WO
2003078426 Sep 2003 WO
2004009562 Jan 2004 WO
2004046120 Jun 2004 WO
2004050033 Jun 2004 WO
2004073619 Sep 2004 WO
2004074438 Sep 2004 WO
2004089470 Oct 2004 WO
2005035507 Apr 2005 WO
2005060956 Jul 2005 WO
2005065691 Jul 2005 WO
2005103015 Nov 2005 WO
2005120474 Dec 2005 WO
2006034341 Mar 2006 WO
2006038594 Apr 2006 WO
2006070198 Jul 2006 WO
2006079791 Aug 2006 WO
2006110761 Oct 2006 WO
2007003934 Jan 2007 WO
2007023186 Mar 2007 WO
2007095812 Aug 2007 WO
2008036835 Mar 2008 WO
2008050168 May 2008 WO
2008052190 May 2008 WO
2008070661 Jun 2008 WO
2008073670 Jun 2008 WO
2008076883 Jun 2008 WO
2008131547 Nov 2008 WO
2008154026 Dec 2008 WO
2009013126 Jan 2009 WO
2009015254 Jan 2009 WO
2009016410 Feb 2009 WO
2009118567 Oct 2009 WO
2009126863 Oct 2009 WO
2009150248 Dec 2009 WO
2009150462 Dec 2009 WO
2010007756 Jan 2010 WO
2010028099 Mar 2010 WO
2010105243 Sep 2010 WO
2010129569 Nov 2010 WO
2010130638 Nov 2010 WO
2010144338 Dec 2010 WO
2010144359 Dec 2010 WO
2010144394 Dec 2010 WO
2010144404 Dec 2010 WO
2010144522 Dec 2010 WO
201105210 Jan 2011 WO
2011002817 Jan 2011 WO
2011027249 Mar 2011 WO
2011032169 Mar 2011 WO
2011047432 Apr 2011 WO
2011050210 Apr 2011 WO
2011072174 Jun 2011 WO
2012006506 Jan 2012 WO
2012009678 Jan 2012 WO
2012074999 Jun 2012 WO
2012092442 Jul 2012 WO
2012151452 Nov 2012 WO
2012160034 Nov 2012 WO
2012171337 Dec 2012 WO
2012171506 Dec 2012 WO
2012173682 Dec 2012 WO
2013004332 Jan 2013 WO
2013007708 Jan 2013 WO
2013016206 Jan 2013 WO
2013102431 Jul 2013 WO
2013107291 Jul 2013 WO
2013107405 Jul 2013 WO
2013133367 Sep 2013 WO
2014015422 Jan 2014 WO
2015003360 Jan 2015 WO
2015006592 Jan 2015 WO
Non-Patent Literature Citations (189)
Entry
Moffatt J.S, Journal of the Chemical Society (1950) 1603-6.
PubChem Compound-pccompound-1-200 of 487,Create Date 2008-2012,Search Date Aug. 29, 2017.
Mikhailichenko et al. “Synthesis and structure of new 1,2,3-triazolyl substituted 1,3,5-triazines,” European Journal of Chemistry, 2012, vol. 3, No. 1, p. 1-9.
Drew et al. “Solvent extraction and lanthanide cornplexation studies with new terdentate ligands containing two 1,3,5-triazine moieties,” Dalton Transactions, 2004, vol. 2, p. 244-251.
Mikhailichenko et al. “Syn-triazines. 7. Hydrolysis and cyclization of 1,3,5-triazine series mononitriles,” Chemistry of Heterocyclic Compounds, 2006, vol. 42, No. 5, p. 642-647.
Enholm et al. “Hydrogen-bonded arrays coupled by cross metathesis,” Synlett, 2008, vol. 2, p. 203-206.
Database CA [Online] Chemical Abstracts Service Columbio, Ohio, US; Krimmer et al. “Reaction of beta-mercapto alpha-amino acids with nitriles,” Chemiker-Zeitung, vol. 111, No. 12, p. 357-61, XP002764690, retrieved from STN database accesssion No. 1988:529623, CODEN:CMKZAT; ISSN 0009-2894.1987.
Database CA [Online] Chemical Abstracts Service Columbio, Ohio, US; Baibulova et al. “Synthesis from pyridylguanamines,” Izvestiya Akademii Nauk Kazakhsko SSR, Seriya Khimicheskaya, vol. 5, p. 40-42, XP002764691, retrieved from STN database accesssion No. 1990:406282, CODEN:IKAKAK; ISSN 0002-3205, 1989.
Database CA [Online] Chemical Abstracts Service Columbio, Ohio, US; Ambartsumyan et al. “Synthesis and transformations of chloropyrazolylazines” Hayastani Kimiakan Handes, 2011, vol. 64, No. 4, p. 544-550, XP002764692, retrieved from STN database accesssion No. 2012:876343, CODEN:KZARF3; ISSN 01561-4190,2011.
Extended European Search Report for PCT/CN2014081957 dated Dec. 9, 2016.
Bhushan et al. “Reversed-phase liquid chromatographic resolution of diasteromers of protein and non-protein amino acids prepared with newly synthesized chiral derivatizing reagents based on cyanuric chloride,” Amino Acids, 2011, vol. 40, p. 403-409.
Braun et al. “Triazine-based polymers: 4. MALDI-MS of triazine-based polymers,” Polymer, 1996, vol. 37, No. 5, p. 777-783.
Chen et al. “Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for delivery,” J. Am. Chem. Soc., 2004, vol. 126, No. 32 p. 10044-10048.
Davis et al. “Biochemical, cellular, and biophysical characterization of a potent inhibitor of mutant isocitrate dehydrogenase IDH1,” The Journal of Biological Chemistry, 2014, vol. 289, No. 20, p. 13717-13725.
Duanmu et al. “Dendron-functionalzed and superparamagnetic nanoparticles with switchable solubility in organic and aqueous madie: matriced for homogenous catalysis and potential MIR contrast agents,” Chem. Mater., 2006, vol. 18, No. 25, p. 5973-5981.
European Search Report for EP 12800001.5 dated Oct. 10, 2014.
Gewald et al. “Discovery of triazines as potent, selective, and orally active PDE4 inhibitors,” Bioorganic & Medicinal Chemistry Letters, 2013, vol. 23, p. 4308-4314.
International Search Report and Written Opinion for PCT/CN2014/081957 dated Sep. 30, 2014.
International Search Report and Written Opinion for PCT/US2014/049469 dated Jan. 22, 2015.
International Search Report for PCT/CN2013/079184 dated Jan. 12, 2015.
International Search Report for PCT/CN2013/079200 dated Jan. 12, 2015.
Irikura et al. “New s-triazine derivatives as depressants for reticuloendothelial hyperfunction induced by bacterial endotoxin,” Journal of Medicinal Chemistry, 2000, vol. 31, p. 1081-1089.
Kaila et al. “A convenient one-pot synthesis of trisubstituted 1,3,5-triazines through intermediary amidinothioureas,” Tetrahedron Letters, 2010, vol. 51, p. 1486-1489.
Kusakabe et al. Chemical Abstracts, 2010, vol. 152, No. 191956, abstract for WO2010007756.
Lee et al. “Combinatorial solid-phase synthesis of 6-aryl-1,3,4-triazines via suzuki coupling,” Aust. J. Chem., 2011, vol. 64, p. 540-544.
Liu et al. “Inhibition of cancer-associated mutant isocitrate dehydrogenases: synthesis, structure-activty relationship, and seletive antitumor activty,” Journal of Medicinal Chemistry, 2014, vol. 57, p. 8307-8318.
Madsen-Duggan et al. “Lead optimization of 5,6-diarylpyridines as CB1 receptor inverse agonists,” Bioorganic and Medicinal Chemistry Letters, 2007, vol. 17, p. 2031-2035.
Moreno et al. “Identification of diamine linkers with differing reactivity and their application in the synthesis of melamine dendrimers,” Tetrahedron Letters, 2008, vol. 49, p. 1152-1154.
Moreno et al. “Molecular recognition in dendrimers based on melamine,” Polymer Preprints, 2005, vol. 46, p. 1127.
Paronikyan et al. “Synthesis and biological activity of 3-piperazinylpyrano [3,4-C] pyridines,” Armyanskii Khimicheskii Zhurnal, 1990, vol. 43, No. 8, p. 518-523.
Sharn et al. “Spatially addressed synthesis of amino- and amino-oxy-substituted 1,3,5-triazine arrays on polymeric membranes,” Journal of Combinatorial Chemistry, 2000, vol. 2, No. 4, p. 361-369.
STN file CA, Registry No. 380466-24-0 entered STN on Jan. 4, 2002, Chemical Abstracts Index Name, “Benzenesulfonamide, N-methy-N-phenyl-3-[[4-(2-pyridinyl)-1-piperazinyl]carbonyl]”.
STN file CA, Registry No. 736168-79-9 entered STN on Aug. 31, 2004 Chemical Abstracts Index Name, “Benzenesulfonamide, 3,4-difluoro-N-[3-334-(phenylmethyl-1-piperazinyl]carbonyl]phenyl”.
Takagi et al. “Synthesis of poly(triazinylstyrene) containing nitrogen-based ligant and function as metal ion adsorbent oxidation catalyst,” Reactive & Functional Polymers, 2006, vol. 31, p. 1718-1724.
The radiation fact sheet published by the National Cancer Institute, http://www.cancer.gov/about-cancer/treatment/types/radiation-therapy/radiation-fact-sheet, reviewed Jun. 30, 2010.
Van Schaftingen et al. “L-2-hydroglutaric aciduria, a disorder of metabolite repair,” J. Inhert. Metab. Dis., 2009, vol. 32, p. 135-142.
Zheng et al. “Synthesis and antitumor evaluation of a novel series of triaminotriazine derivatives,” Bioorganic & Medicinal Chemistry, 2007, vol. 15, p. 1815-1827.
Krell et al. “IDH mutations in tumorigenesis and their potential role as novel therapeutic targets,” Future Oncol., 2013, vol. 9, No. 12, p. 1923-1935.
Reitman et al. “Article Navigation Isocitrate Dehydrogenase 1 and 2 Mutations in Cancer: Alterations at a Crossroads of Cellular Metabolism,” J Natl Cancer Inst, 2010, vol. 102, No. 13, p. 932-941.
Cairns et al. “Oncogenic Isocitrate Dehydrogenase Mutations: Mechanisms, Models, and Clinical Opportunities,” Cancer Discov, 2013, vol. 3, No. 7, p. 730-741.
Cecil Textbook of Medicine, edited by Bennet and Plum, 20th edition, vol. 1, p. 1004-101 O, 1996.
Freshney et al., Culture of Animal Cells, A Manual of Basic Technique, Alan R. Liss, Inc., 1983, New York, p. 4.
Dermer et al. “Another Anniversary for the War on Cancer,” Nature Biotechnology, 1994, vol. 12, p. 320.
Golub et al. “Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring,” Science, 1999, vol. 186, p. 531-537.
Kim et al. “Ser95, Asn97, Thr78 are important for the catalytic function of prcine NADP-dependent isocitrate dehydrogenase,” Protein Science, 2005, vol. 14, p. 140-147.
Koshelev et al. “Synthesis of 1,3,7-N-substituted 2,4-diamino-1,3,5-triazines containing pyridyl groups,” Russian Journal of Organic Chemistry, 1995, vol. 31, No. 2, p. 260-263.
Kranendijk et al. “IDH2 mutations in patients with D-2-hydroxyglutaric aciduria,” Science, 2010, vol. 330, p. 336.
May et al. “How many species are there on earth,” Science, 1988, vol. 241, p. 1441.
Parsons et al. “An integrated genomic analysis of human glioblastoma multiforme,” Science, 2008, nol. 321, p. 1807-1812.
Pollard et al. “Cancer. Puzzling patterns of predisposition,” Science, 2009, vol. 324, p. 192-194.
Popovici-Muller et al. “Discovery of the first potent inhibitors of mutant IDH1 that lower tumor2-HG in vivo,” ACS Medicinal Chemsitry Letters, 2012, vol. 3, No. 10, p. 850-855.
Pubchem CID 4078245 [online]; Sep. 13, 2005 [retrieved on Feb. 4, 2012]; retrieved from http://pubchem.ncbi.nim.nih.gov/; 2d-structure.
Pubchem CID 4854170 [online]; Sep. 17, 2005 [retrieved on Feb. 4, 2012]; retrieved from http://pubchem.ncbi.nim.nih.gov/; 2d-structure.
Raynaud et al. “Absence of R140Q mutation of isocitrate dehydrogenase 2 in gliomas and breast cancers,” Oncology Letters, 2010, vol. 1, No. 5, p. 883-884.
Reitman et al. “Isocitrate dehydrogenase 1 and 2 mutations in cancer: Alterations at a crossroads of cellular metabolism,” Journal of the National Cancer Institute, 2010, vol. 102, No. 13, p. 932-941.
Rohle et al. “An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells,” Science, 2013, vol. 340, No. 6132, p. 626-630.
Shih et al. “The role of muations in epigenetic regulators in myeloid malignancies,” Nature Reviews Cancer, 2012, vol. 12, No. 9, p. 599-612.
Sirkanyan et al. “Synthesis of new derivatives of piperazine-substituted pyrano[3,4-C]pyridines,” Hayastani Kimiakan Handes, 2009, vol. 62, No. 3-4, p. 378-385, English abstract only.
Sonoda et al. “Analysis of IDH1 and IDH2 mutations in Japanese glioma pateints,” Cancer Science, vol. 100, No. 10, p. 1996-1998.
STN file CA, Registry No. 1023411-33-8, entered STN on May 29, 2008, Chemical Abstracts Index Name “Benzenesulfonamide, 3-[[4-(1,3-benzodioxol-5-ylmethyl)-1-piperazinyl]carbonyl]-N-(4-butylpheny1)-4-methyl-”.
STN file CA, Registry No. 1090629-29-0, entered STN on Dec. 8, 2008, Chemical Abstracts Index Name “Benzenesulfonamide, 3-[[4-[(2,5-dimethoxyphenyl}methyl]-1-piperazinyl]carbonyl]-N-(4-methoxyphenyl)-4-methyl-”.
STN file CA, Registry No. 134538-28-6, entered STN on Jun. 28, 1991, Chemical Abstracts Index Name “1H-Pyrano[3,4-c]pyridine-5-carbonitrile, 3,4-dihydro-3,3-dimethyl-6-[4-(1-oxobutyll)-1-piperazinyl]-8-phenyl-” disclosed in Paronikyan et al. Armyanskii Khimicheskii Zhurnal, 1990, vol. 43, No. 8.
STN file CA, Registry No. 134538-29-7, entered STN on Jun. 28, 1991, Chemical Abstracts Index Name “1H-Pyrano[3,4-c]pyridine-5-carbonitrile, 3,4-dihydro-3,3-dimethyl-6-[4-(2-methyl-1-oxopropyl)-1-piperazinyl]-8-phenyl-” disclosed in Paronikyan et al. Armyanskii Khimicheskii Zhurnal, 1990, vol. 43, No. 8.
STN file CA, Registry No. 134538-30-0, entered STN on Jun. 28, 1991, Chemical Abstracts Index Name “1H-Pyrano[3,4-c]pyridine-5-carbonitrile, 6-(4-benzoyl-1-piperazinyl)- 3,4-dihydro-3,3-dimethyl-8-phenyl-” disclosed in Paronikyan et al. Armyanskii Khimicheskii Zhurnal, 1990, vol. 43, No. 8.
STN file CA, Registry No. 134538-31-1, entered STN on Jun. 28, 1991, Chemical Abstracts Index Name “1H-Pyrano[3,4-c]pyridine-5-carbonitrile, 6-[4-(2-furanylcarbonyl)-1-piperazinyl]- 3,4-dihydro-3,3-dimethyl-8-phenyl-” disclosed in Paronikyan et al. Armyanskii Khimicheskii Zhurnal, 1990, vol. 43, No. 8.
STN file CA, Registry No. 713505-78-3, entered STN on Jul. 21, 2004, Chemical Abstracts Index Name “1-Piperazinecarboxylic acid, 4-[4-methyl-3-[(phenylamino)sulfonyl]benzoyl]-, ethyl ester”.
STN file CA, Registry No. 847757-57-7, entered STN on Apr. 1, 2005, Chemical Abstracts Index Name “Benzenesulfonamide, 3[[4-(1,3-benzodioxol-5-ylmethyl)-1-piperazinyl]carbonyl]-N-(4-ethoxyphenyl)-N,4-dimethyl-” or “Piperazine, 1-(1,3-benzodioxol-5-ylmehtly)-4-[5-[[(4-ethoxyphenyl)methylamino]sulfonyl]-2-methylbenzoyl]-”.
STN Registry, L23 Answer 2 of 3 (CAS No. 1032450-21-7) Database: ASINEX Ltd. Entered STN: Jul. 3, 2008.
STN Registry, L23 Answer 1 of 3 (CAS No. 1038821-72-5) Database: ChemDB (University of California Irvine), Entered STN: Aug. 5, 2008.
Struys et al. “Investigatiosn by mass isotopomer analysis of the formation of D-2-hydroxyglutarate by cultured lymphoblasts from two patients with D-2-hydroxyglutaric aciduria,” FEBS Letters, 2004, vol. 557, p. 115-120.
Struys et al. “Mutations in the D-2-hydroxyglutarate dehydrogenase gene case D-2-hydroxyglutaric aciduria,” American Journal of Human Genetics, 2005, vol. 76, p. 358-360.
Supplementary European Search Report for EP 10751525 dated Dec. 14, 2012.
Supplementary European Search Report for EP 10825707.2 dated Jun. 28, 2013.
Supplementary European Search Report for EP 10794668 dated Oct. 18, 2012.
Thompson. “Metabolic enzymes as oncogenes or tumor suppressors,” The New England Journal of Medicine, 2009, vol. 360, No. 8, p. 813-815.
Wang et al. “Facile synthesis of 2,4-diamino-6-alkyl or 6-aryl-pyrimidine derivatives,” Journal of Heterocyclic Chemistry, 2010, vol. 47, p. 1056-1061.
Wang et al. “A novel ligand N,N′-di-(2-pyridyl)-2,4-diamino-6-phenyl-1,3,5-triazine (dpdapt) and its complexes: [Cu (dpdapt)Cl2] and [Cu(dpdapt)(NO3)(H2O)]×NO3×H2O,” Polyhedron, 2006, vol. 25, No. 1, p. 195-202.
Ward et al. “The common feature of leukemia-associated IDH1 and IDH2 mutations as a neomorphic enzyme activity aonverting alpha-ketoglutarate,” Cancer Cell, 2010, vol. 17, No. 3, p. 225-234.
Watanabe et al. “IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas,” American Journal of Pathology, 2009, vol. 174, No. 4, p. 1149-1153.
Written Opinion for PCT/US2010/027253 dated Aug. 19, 2010.
Written Opinion for PCT/CN2013/000009 dated Apr. 18, 2013.
Written Opinion for PCT/US2010/53623 dated Jan. 18, 2011.
Written Opinion for PCT/US2011/067752 dated Mar. 5, 2012.
Yan et al. “IDH1 and IDH2 mutations in gliomas,” The New England Journal of Medicine, 2009, vol. 360, No. 8, p. 765-73.
Zhao et al. “Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activty and induce HIF-1alpha,” Science, 2009, vol. 324, No. 5924, p. 261-265.
Aghili et al. “Hydroxyglutaric acidurea and malignant brain tumor: A case report and literature review,” Journal of Neurooncology, 2008, vol. 91, p. 233-236.
Ansell et al. “The interactions of artificial coenzymes with alcohol dehydrogenase and other NAD(P)(H) dependent enzymes,” Journal of Molecular Catalysis B: Enzymatic, 1999, vol. 6, No. 1-2, p. 111-123.
Balss. “Analysis of the IDH1 codon 132 mutation in brain tumors,” Acta Neuropathol, 2008, vol. 116, p. 597-602.
Bleeker et al. “IDH1 mutations at residue R132 (IDH1 (R132)) occur frequently in high-grade 18-22 gliomas but not in other solid tumors,” Hum Muta1., 2009, vol. 30, No. 1, p. 7-11.
Benner et al. “Evolution, language and analogy in functional genomics,” Trends in Genetics, 2001, vol. 17, p. 414-418.
Chan et al. “Multi-domain hydrogen-bond forming metal chelates: X-ray crystal structures of dicyclopalladated 2,3-bis [6-(2-amino-4-phenylamino-1,3,5-triazinyl)]pyrazine (H2L) [Pd2Br2L] and 2,6-bis[6-(2-amino-4-phenylamino-1,3,5-triazinylium)]-pyridine diclhloride,” Chemical Communications, 1996, vol. 1, p. 81-83.
Chapman et al. “Substituted aminopyrimidine protein kinase B (PknB) inhibitors show activty against Mycobacterium tuberculosis,” Bioorganic & Medicinal Chemistry Letters, 2012, vol. 22, p. 3349-3353.
Cocco et al. “Synthesis of trifluoromethylated pyridinecarbonitriles,” Journal of Heterocyclic Chemistry, 1995, vol. 32, p. 543-545.
Dang et al. “Cancer-associated IDH1 mutations produce 2-hydroxyglutarate,” Nature, 2009, vol. 462, No. 7274, p. 739-744.
Dang et al. “IDH mutations in glioma and acute myeloid leukemia,” Trends in Molecular Medicine, 2010, vol. 16, No. 9, p. 387-397.
Dohner et al. “Impact of genetic features on treatment decisions in AML,” American Society of Hematology, 2011, p. 36-42.
European Search Report and Written Opinion for EP 10825706 dated Mar. 20, 2013.
European Seach Report for EP 10751525.6 dated Dec. 14, 2012.
European Seach Report for EP 12799802.9 dated Oct. 8, 2014.
European Seach Report for EP 11763425.3 dated Sep. 23, 2013.
Hartmann et al. “Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: A study of 1010 diffuse gliomas,” Acta Neuropathologica, 2009, vol. 118, p. 469-474.
Holmes et al. “750 MHz 1H NMR spectrospocy characterisation of the complex metabolic pattern of urine from patients with inborn errors of metabolism: 2-hydroxyglutaric aciduria and maple syrup urine disease,” Journal of Pharmaceutical and Biomedical Analysis, 1997, vol. 15, p. 1647-1659.
International Preliminary Report on Patentability for PCT/US2010/059778 dated Jun. 12, 2012.
International Preliminary Report on Patentability for PCT/CN2012/000841 dated Dec. 17, 2013.
International Preliminary Report on Patentability for PCT/CN2012/077096 dated Dec. 17, 2013.
International Preliminary Report on Patentability for PCT/US2010/027253 dated Sep. 13, 2011.
International Preliminary Report on Patentability for PCT/US2010/053623 dated Apr. 24, 2012.
International Preliminary Report on Patentability for PCT/US2010/053624 dated Apr. 7, 2012.
International Preliminary Report on Patentability for PCT/US2011/030692 dated Oct. 2, 2011.
International Preliminary Report on Patentability for PCT/US2011/067752 dated Apr. 18, 2013.
International Preliminary Report on Patentability for PCT/CN2013/070755 dated Apr. 25, 2013.
International Search Report and Written Opinion for PCT/CN2013/080105 dated Jul. 11, 2014.
International Search Report and Written Opinion for PCT/CN2013/081170 dated Apr. 30, 2014.
International Preliminary Report on Patentability for PCT/US2010/040486 dated Jan. 12, 2012.
International Search Report and Written Opinion for PCT/CN2014/081958 dated Sep. 29, 2014.
International Search Report and Written Opinion for PCT/US2014/046202 dated Sep. 30, 2014.
International Search Report for PCT/US2011/030692 dated Jun. 27, 2011.
International Search Report for PCT/CN2012/000841 dated Sep. 27, 2012.
International Search Report for PCT/CN2012/077096 dated Oct. 4, 2012.
International Search Report for PCT/CN2013/000009 dated Apr. 18, 2013.
International Search Report for PCT/CN2013/000068 dated Apr. 25, 2013.
International Search Report for PCT/US2010/040486 dated Sep. 1, 2010.
International Search Report for PCT/US2010/027253 dated Aug. 19, 2010.
International Search Report for PCT/CN2014/082869 dated Sep. 30, 2014.
International Search Report for PCT/US2014/046204 dated Oct. 1, 2014.
International Search Report for PCT/US2010/059778 dated Mar. 17, 2011.
International Search Report for PCT/US2010/53623 dated Jan. 18, 2011.
International Search Report for PCT/US2010/053624 dated Apr. 7, 2011.
International Search Report for PCT/US2011/067752 dated Feb. 22, 2012.
International Search Report for PCT/US2011/044254 dated May 10, 2011.
International Search Report for PCT/US2013/064601 dated Feb. 24, 2014.
Jennings et al. “Expression and mutagenesis of mammalian cytosolic NADP+-specific isocitrate dehydrogenase,” Biochemistry, 1997, vol. 36, p. 13743-47.
Kelarev et al. “Synthesis and properties of sym-trizaines. 10 Synthesis of 1,4-diamino-sym-triazines containing a sterically hindered phenol substituent,” Chemistry of Heterocyclic Compounds, 1992, vol. 28, No. 10, p. 1189-1193.
Kim et al. “Identification and functional characterization of a novel, tissue-specific NAD+-dependent isocitrate dehydrogenase b subunit isoform,” JBC, 1999, vol. 274, No. 52, p. 36866-36875.
STN Tokyo, Registry No. 920921-09-1 Entered STN on Feb. 14, 2007, Chemical Abstracts Index Name “2H-1, 5-Benzodioxepin-7-sulfonamide, 3,4-dihydro-N [4 [[4-(2pyridinyl)-1-piperazinyl]carbonyl]phenyl]-”.
STN Tokyo, Registry No. 920924-42-1, Entered STN on Feb. 14, 2007, Chemical Abstracts Index Name “1,4-Benzodioxin-6-sulfonamide, 2,3-dihydro-N-[4 [[4-(2-pyridinylmethyl)-1-piperazinyl]carbonyl]phenyl]-”.
Stn Tokyo, Registry No. 941220-77-5, Entered Stn on Jul. 4, 2007, Chemical Abstracts Index Name “2H-1, 5- 3enzodioxepin-7-sulfonamide, 3,4-dihydro-N-[4- [(4-methyl-l-piperazinyl)carbonyl]phenyl]-”.
Struys, Ea. et al. “Measurement of Urinary D- and L-2-Hydroxyglutarate Enantiomers by Stable-Isotope-Dilution LiquidChromatography-Tandem Mass Spectrometry after Derivatization with Diacetyi-L-Tartaric Anhydride.” Clinical chemistry (2004)501391-1395.
Yrjola et al., “Discovery of novel cannabinoid receptor ligands by a virtual screening approach: Further development of 2,4,6-trisubstituted 1,3,5-triazines as CB2 agonists,” European Journal of Pharmaceutical Sciences (2013) vol. 48, pp. 9-20.
CAS RN 21834-29-7 (entered STN Nov. 16, 1984).
CAS RN 50377-40-7 (Entered STN: Nov 16, 1984).
CAS RN 942045-38-7 (entered into STN Jul. 10, 2007).
Database Registry [Online] Chemical Abstracts Service, Columbus, Ohio, US; Aug. 6, 2002, accession No. 442648-48-8.
Docoslis et al., “Characterization of the Distribution, Polymorphism, and Stability of Nimodipine in Its Solid Dispersions in Polyethylene Glycol by Micro-Raman Spectroscopy and Powder X-Ray Diffraction”. The AAPS Journal 2007; 9 (3) Article 43, E361-E370.
Genetics Home Reference. “L2HGDH.” accessed at <http://ghr.nlm.nih.gov/gene/L2HGDH> on Sep. 4, 2015.
Ho et al., “Triazine and pyrimidine based ROCK inhibitors with efficacy in spontaneous hypertensive rat model.” Bioorganic & Medicinal Chemistry Letters (2009) vol. 19, pp. 6027-6031.
Huang et al., “N4-phenyl modifications of N2-(2-hydroxyl)ethyl-6-(pyrrolidin-1-yl)-1,3,5-triazine-2,4-diamines enhance glucocerebrosidase inhibition by small molecules with potential as chemical chaperones for Gaucher disease,” Bioorganic & Medicinal Chemistry Letters (2007) vol. 12, pp. 5783-5789.
Ito et al. “A medium-term rat liver bioassay for rapid in vivo detection of carcinogenic potential of chemicals,” Cancer , Sci., 2003, 94(1):3-8.
Jana et al., “Synthesis and Antibacterial Activity of Some Novel 4-Benzyl-piperazinyl-s-triazine Derivatives.” Asian Journal of Chemistry (2013) vol. 25, No. 1, pp. 186-190.
Kumar et al., “4-Anilinoquinoline triazines: A novel class of hybrid antimalarial agents” European Journal of Medicinal chemistry (2011) vol. 46, pp. 676-690.
<Umar et al., “Synthesis and bioevaluation of hybrid 4-aminoquinoline triazines as a new class of antimalarial agents,” Bioorganic & Medicinal chemistry Letters (2008) vol. 18, pp. 6530-6533.
Lou. “IDH1: function follows form.” SciBX, 2009, 1-2.
Lutker et al, “Crystal Polymorphism in a Carbamazepine Derivative: Oxcarbazepine”. NIH Public Access. J Pharm Sci. Feb. 2010; 99(2): 794-803. doi: 10.1002/jps21873.
Maison, “Multicomponent synthesis of novel amino acid-nucleobase chimeras: a versatile approach to PNA-monomers,” Bioorganic Medicinal Chemistry (2000) vol. 8, pp. 1343-1360.
Mcrobbie et al. “MRI from Picture to Proton,” Cambridge University Press, 2007, pp. 307-308.
Pitts et al., “Rapid Synthesis of Triazine Inhibitors of Inosine Monophosphate Dehydrogenase,” Bioorganic & Medicinal Chemistry Letters (2002) vol. 12, pp. 2137-2140.
Rao et al., “Polymorphism in Drugs and its Significance in Therapeutics”. Journal of Scientific Industrial Research vol. 46 Oct. 1987 pp. 450-455.
Registry (STN) [online], Aug. 23, 2006 [Retrieved on Jan. 29, 2016] CAS Registration No. 903862-76-0.
Registry (STN) [online], Aug. 23, 2006 [Retrieved on Jan. 29, 2016] CAS Registration No. 903869-26-1.
Registry (STN) [online], Apr. 13, 2007 [Retrieved on Jan. 29, 2016] CAS Registration No. 929819-92-1.
Registry (STN) [online], Apr. 13, 2007 [Retrieved on Jan. 29, 2016] CAS Registration No. 929971-43-7.
Registry (STN) [online], Jul. 3, 2008, CAS Registration No. 1032461-94-1.
Registry (STN) [online], Jul. 3, 2008, CAS Registration No. 1032470-22-6.
Registry (STN) [online], Jul. 4, 2008, CAS Registration No. 1032747-65-1.
Registry (STN) [online], Apr. 19, 2009 [Retrieved on Jan. 29, 2016] CAS Registration No. 1136498-70-8.
Registry (STN) [online], Aug. 27, 2009 [Retrieved on Jan. 29, 2016] CAS Registration No. 1176756-98-1.
Registry (STN) [online], Apr. 16, 2010, CAS Registration No. 1219379-97-1.
Shahin et al., “Elaborate ligand-based modeling and subsequent synthetic exploration unveil new nanomora Ca2+/Calmodulin-dependent protein kinase II inhibitory leads” Bioorganic & Medicinal Chemistry (2012) vol. 20, pp. 377-400.
Sosnovik et al. “Emerging concepts in molecular MRI.” Curr. Op. Biotech., 2007, 18, 4-10.
STN Accession No. 2007:612528.
STN File CA, Registry No. 228575-14-2, entered STN on Jul 22, 1999, Chemical Abstracts Index Name “4,6-Pyrminidinediamine, N4-cyclohexyl-N6, 2-diphenyl-”.
STN registry database compound 228575-15-3 (entered STN Jul. 22, 1999).
STN Tokyo, Registry No. 1001833-18-6, Entered STN on Feb. 6, 2008, Chemical Abstracts Index Name “1,4-Benzodioxin-6-sulfonamide, 2,3-dihydro-N-[4-[(4 methyl-I-piperazinyl)carbonyl]phenyl]-”.
Stn Tokyo, Registry No. 1030142-35-8, Entered Stn on Jun. 24, 2008, Chemical Abstracts Index Name “1,4- Benzodioxin-6-sulfonamide, 2,3-dihydro N [4 [[4 [(5 methyl-3-isoxazolyl)methyl]-l-piperazinyl]carbonyl]phenyl]-”.
STN Tokyo, Registry No. 1031531-78-8, Entered Stn on Jun. 29, 2008 Chemical Abstracts Index Name “1,4-Benzodioxin-6-sulfonamide, N-4[4-[(4-acetyl-1-piperazinyl)carbonyl]phenyl]-2,3-dihydro-”.
STN Tokyo, Registry No. 1057928-35-4, Entered STN on Oct. 7, 2008, Chemical Abstracts Index Name “1,4-Benzodioxin-6-sulfonamide, 2,3-dihydro-N-[4-[[4-(2-pyridinyl)-l-piperazinyl]carbonyl]phenyl]-”.
STN Tokyo, Registry No. 1240875-00-6, entered STN on Sep. 14, 2010, Chemical Abstracts Index Name “1,4-Benzodioxin-6-sulfonamide, 2,3-dihydro-N-[4-[[4-(2-thiazolyl)-1-piperazinyl]carbonyl]phenyl]-”.
STN Tokyo, Registry No. 748791-86-8, Entered STN on Sep. 21, 2004, Chemical Abstracts Index Name “1,4-Benzodioxin-6-sulfonamide, N-[4-[[4-(2-furanylcarbonyl)-1-piperazinyl]carbonyl]phenyl]-2,3-dihydro-”.
STN Tokyo, Registry No. 878469-24-0, Entered STN on Mar. 29, 2006, Chemical Abstracts Index Name “1,4-Benzodioxin-6-sulfonamide, 2,3-dihydro-N-[4-[[4-(2-pyrimidinyl)-1-piperazinyl]carbonyl]phenyl]-”.
STN Tokyo, Registry No. 878474-39-6, Entered STN on Mar. 29, 2006, Chemical Abstracts Index Name “1,4-Benzodioxin-6-sulfonamide, 2,3-dihydro N [4[(4-phenyl-1-piperazinyl)carbonyl]phenyl]-”.
STN Tokyo, Registry No. 878590-33-1, Entered STN on Mar. 30, 2006, Chemical Abstracts Index Name “1,4-Benzodioxin-6-sulfonamide, 2,3-dihydro-N-[4-{{4-(tetrahydro-2-furanyl)methyl]-1-piperazinyl]carbonyl]phenyl]-”.
STN Tokyo, Registry No. 878943-66-9 Entered STN on Apr. 2, 2006, Chemical Abstracts Index Name “1,4-Benzodioxin-6-sulfonamide, 3,4-dihydro-N-[[4-(2-pyrimidinyl)-1-piperazinyl)carbonyl]phenyl]-”.
STN Tokyo, Registry No. 878956-06-0, Entered STN on Apr. 2, 2006, Chemical Abstracts Index Name “1,4-Benzodioxin-6-sulfonamide, N-[4-[[4-(cyclopropylcarbonyl)-1-piperazinyl]carbonyl]phenyl]-2,3-dihydro-”.
STN Tokyo, Registry No. 920679-46-5, Entered STN on Feb. 13, 2007, Chemical Abstracts Index Name “1,4-Benzodioxin-6-sulfonamide, 2,3-dihydro-N-[4-[[4-(4 pyridinyl)-1-piperazinyl]carbonyl]phenyl]-”.
STN Tokyo, Registry No. 920822-52-2, Entered STN on Feb. 14, 2007, Chemical Abstracts Index Name “1,4-Benzodioxin-6-sulfonamide, N-[4-[[4-(4-fluoropheyl)-1-piperazinyl]carbonyl]phenyl]-2,3dihydro-”.
STN Tokyo, Registry No. 920824-56-2, Entered STN on Feb. 14, 2007, Chemical Abstracts Index Name “1,4-Benzodioxin-6-sulfonamide, 2,3-dihydro-N-[4-[[4-(3-thienylmethyl)-1-piperazinyl]carbonyl]phenyl]-”.
STN Tokyo, Registry No. 920847-34-3, Entered STN on Feb. 14, 2007, Chemical Abstracts Index Name “1,4-Benzodioxin-6-sulfonamide, 2,3-dihydro-N-[4-[[4-(2 methylphenyl)-1-piperazinyl]carbonyl]phenyl]-”.
STN Tokyo, Registry No. 920875-39-4, Entered STN on Feb. 14, 2007, Chemical Abstracts Index Name “1,4-Benzodioxin-6-sulfonamide, 2,3-dihydro-N-[4-[[4-(2-hydroxyphenyl)-1-piperazinyl]carbonyl]phenyl]-”.
STN Tokyo, Registry No. 920902-88-1, Entered STN on Feb. 14, 2007, Chemical Abstracts Index Name “1,4-Benzodioxin-6-sulfonamide, 2,3-dihydro-N-[4-[[4- (2-thienylmethyl)-l-piperazinyl]carbonyl]phenyl]-”.
Related Publications (1)
Number Date Country
20160220572 A1 Aug 2016 US
Divisions (1)
Number Date Country
Parent 14328885 Jul 2014 US
Child 15093345 US