Claims
- 1. A thermal actuator for a micro-electromechanical device comprising:(a) a base element; (b) a cantilevered element including a thermo-mechanical bender portion extending from the base element and a free end tip residing in a first position, the thermo-mechanical bender portion having a base end adjacent the base element and a free end adjacent the free end tip; and (c) apparatus adapted to apply a heat pulse having a spatial thermal pattern directly to the thermo-mechanical bender portion, causing the deflection of the free end tip of the cantilevered element to a second position, and wherein said spatial thermal pattern results in a substantially greater temperature increase of the base end than the free end of the thermo-mechanical bender portion.
- 2. The thermal actuator of claim 1 wherein the thermo-mechanical bending portion has a normalized free end deflection {overscore (y)}(1)>1.0.
- 3. The thermal actuator of claim 1 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 4. The thermal actuator of claim 3 wherein the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a substantially linear function of the distance from the base element.
- 5. The thermal actuator of claim 3 wherein the temperature increase of the thermno-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a substantially quadratic function of the distance from the base element.
- 6. The thermal actuator of claim 3 wherein the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a substantially inverse-power function of the distance from the base element.
- 7. The thermal actuator of claim 1 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bending portion reduces from ΔTb to ΔTf in at least one temperature reduction step.
- 8. The thermal actuator of claim 7 wherein the thermo-mechanical bender portion has a length L and the at least one temperature reduction step occurs at a distance Ls from the base element, wherein 0.3 L≦Ls≦0.7 L.
- 9. The thermal actuator of claim 1 wherein the apparatus adapted to apply a heat pulse comprises a patterned thin film resistor layer.
- 10. The thermal actuator of claim 9 wherein the spatial thermal pattern results in part from spatially modifying the conductivity of the thin film resistor layer.
- 11. The thermal actuator of claim 1 wherein the thermo-mechanical bender portion includes a first deflector layer constructed of a first material having a high coefficient of thermal expansion and a second layer, attached to the first deflector layer, constructed of a second material having a low coefficient of thermal expansion.
- 12. The thermal actuator of claim 11 wherein the first material is electrically resistive having a first sheet resistance and the apparatus adapted to apply a heat pulse comprises a resistor pattern formed in the first deflector layer.
- 13. The thermal actuator of claim 12 wherein the spatial thermal pattern results in part from spatially modifying the first sheet resistance in a current shunt pattern.
- 14. The thermal actuator of claim 12 further comprising a conductor layer constructed of an electrically conductive material adjacent the first deflector layer wherein the spatial thermal pattern results in part from patterning the conductor layer in a current shunt pattern.
- 15. The thermal actuator of claim 11 wherein the first material is titanium aluminide.
- 16. A liquid drop emitter comprising:(a) a chamber, formed in a substrate, filled with a liquid and having a nozzle for emitting drops of the liquid; (b) a thermal actuator having a cantilevered element including a thermo-mechanical bender portion extending from a wall of the chamber and a free end tip residing in a first position proximate to the nozzle, the thermo-mechanical bender portion having a base end adjacent the base element and a free end adjacent the free end tip; and (c) apparatus adapted to apply a heat pulse having a spatial thermal pattern directly to the thermo-mechanical bender portion causing a rapid deflection of the free end tip and ejection of a liquid drop, and wherein said spatial thermal pattern results in a substantially greater temperature increase of the base end than the free end of the thermo-mechanical bending portion.
- 17. The liquid drop emitter of claim 16 wherein the thermo-mechanical bending portion has a normalized free end deflection {overscore (y)}(1)>1.0.
- 18. The liquid drop emitter of claim 16 wherein the liquid drop emitter is a drop-on-demand ink jet printhead and the liquid is an ink for printing image data.
- 19. The liquid drop emitter of claim 16 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 20. The liquid drop emitter of claim 19 wherein the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a substantially linear function of the distance from the base element.
- 21. The liquid drop emitter of claim 19 wherein the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a substantially quadratic function of the distance from the base element.
- 22. The liquid drop emitter of claim 19 wherein the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a substantially inverse-power function of the distance from the base element.
- 23. The liquid drop emitter of claim 16 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bending portion reduces from ΔTb to ΔTf in at least one temperature reduction step.
- 24. The liquid drop emitter of claim 23 wherein the thermo-mechanical bender portion has a length L and the at least one temperature reduction step occurs at a distance Ls from the base element, wherein 0.3 L≦Ls≦0.7 L.
- 25. The liquid drop emitter of claim 16 wherein the apparatus adapted to apply a heat pulse comprises a patterned thin film resistor layer.
- 26. The liquid drop emitter of claim 25 wherein the spatial thermal pattern results in part from spatially modifying the conductivity of the thin film resistor layer.
- 27. The liquid drop emitter of claim 16 wherein the thermo-mechanical bender portion includes a first deflector layer constructed of a first material having a high coefficient of thermal expansion and a second layer, attached to the first deflector layer, constructed of a second material having a low coefficient of thermal expansion.
- 28. The liquid drop emitter of claim 27 wherein the first material is electrically resistive having a first sheet resistance and the apparatus adapted to apply a heat pulse comprises a resistor pattern formed in the first deflector layer.
- 29. The liquid drop emitter of claim 28 wherein the spatial thermal pattern results in part from spatially modifying the first sheet resistance in a current shunt pattern.
- 30. The liquid drop emitter of claim 27 wherein the first material is titanium aluminide.
- 31. The liquid drop emitter of claim 28 further comprising a conductor layer constructed of an electrically conductive material adjacent the first deflector layer wherein the spatial thermal pattern results in part from patterning the conductor layer in a current shunt pattern.
- 32. A thermal actuator for a micro-electromechanical device comprising:(a) a base element; (b) a cantilevered element including a thermo-mechanical bender portion extending from the base element to a free end tip residing at a first position, the thermo-mechanical bender portion having a base end adjacent the base element and a free end adjacent the free end tip, the thermo-mechanical bender portion further including a first deflector layer constructed of a first material having a large coefficient of thermal expansion, a second deflector layer, and a barrier layer constructed of a dielectric material having low thermal conductivity wherein the barrier layer is bonded between the first deflector layer and the second deflector layer; and (c) apparatus adapted to apply a heat pulse having a spatial thermal pattern directly to the first deflector layer, causing the deflection of the free end tip of the cantilevered element to a second position, followed by restoration of the cantilevered element to the first position as heat diffuses through the barrier layer to the second deflector layer and the cantilevered element reaches a uniform temperature, and wherein said spatial thermal pattern results in a substantially greater temperature increase of the base end than the free end of the first deflector layer.
- 33. The thermal actuator of claim 32 wherein the thermo-mechanical bending portion has a normalized free end deflection {overscore (y)}(1)>1.0.
- 34. The thermal actuator of claim 32 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 35. The thermal actuator of claim 34 wherein the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a substantially linear function of the distance from the base element.
- 36. The thermal actuator of claim 34 wherein the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a substantially quadratic function of the distance from the base element.
- 37. The thermal actuator of claim 34 wherein the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a substantially inverse-power function of the distance from the base element.
- 38. The thermal actuator of claim 32 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bending portion reduces from ΔTb to ΔTf in at least one temperature reduction step.
- 39. The thermal actuator of claim 38 wherein the thermo-mechanical bender portion has a length L and the at least one temperature reduction step occurs at a distance Ls from the base element, wherein 0.3 L≦Ls≦0.7 L.
- 40. The thermal actuator of claim 32 wherein the apparatus adapted to apply a heat pulse comprises a patterned thin film resistor layer.
- 41. The thermal actuator of claim 40 wherein the spatial thermal pattern results in part from spatially modifying the conductivity of the thin film resistor layer.
- 42. The thermal actuator of claim 32 wherein the first material is electrically resistive having a first sheet resistance and the apparatus adapted to apply a heat pulse comprises a resistor pattern formed in the first deflector layer.
- 43. The thermal actuator of claim 42 wherein the spatial thermal pattern results in part from spatially modifying the first sheet resistance in a current shunt pattern.
- 44. The thermal actuator of claim 32 wherein the first material is titanium aluminide.
- 45. The thermal actuator of claim 42 further comprising a conductor layer constructed of an electrically conductive material adjacent the first deflector layer wherein the spatial thermal pattern results in part from patterning the conductor layer in a current shunt pattern.
- 46. The thermal actuator of claim 32 wherein the second deflector layer is constructed of the first material and the first deflector layer and the second deflector layer are substantially equal in thickness.
- 47. The thermal actuator of claim 32 wherein the heat pulse has a time duration of τp, the barrier layer has a heat transfer time constant of τB, and τB>2 τp.
- 48. A liquid drop emitter comprising:(a) a chamber, formed in a substrate, filled with a liquid and having a nozzle for emitting drops of the liquid; (b) a cantilevered element including a thermo-mechanical bender portion extending from a wall of the chamber to a free end tip residing at a first position proximate to the nozzle, the thermo-mechanical bender portion having a base end adjacent the base element and a free end adjacent the free end tip, the thermo-mechanical bender portion further including a first deflector layer constructed of a first material having a large coefficient of thermal expansion, a second deflector layer, and a barrier layer constructed of a dielectric material having low thermal conductivity wherein the barrier layer is bonded between the first deflector layer and the second deflector layer; and (c) apparatus adapted to apply a heat pulse having a spatial thermal pattern directly to the first deflector layer, causing a rapid deflection of the free end tip and ejection of a liquid drop, followed by restoration of the cantilevered element to the first position as heat diffuses through the barrier layer to the second deflector layer and the cantilevered element reaches a uniform temperature, and wherein said spatial thermal pattern results in a substantially greater temperature increase of the base end than the free end of the first deflector layer.
- 49. The liquid drop emitter of claim 48 wherein the thermo-mechanical bending portion has a normalized free end deflection {overscore (y)}(1)>1.0.
- 50. The liquid drop emitter of claim 48 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 51. The liquid drop emitter of claim 50 wherein the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a substantially linear function of the distance from the base element.
- 52. The liquid drop emitter of claim 50 wherein the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a substantially quadratic function of the distance from the base element.
- 53. The liquid drop emitter of claim 50 wherein the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a substantially inverse-power function of the distance from the base element.
- 54. The liquid drop emitter of claim 48 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bending portion reduces from ΔTb to ΔTf in at least one temperature reduction step.
- 55. The liquid drop emitter of claim 54 wherein the thermo-mechanical bender portion has a length L and the at least one temperature reduction step occurs at a distance Ls from the base element, wherein 0.3 L≦Ls≦0.7 L.
- 56. The liquid drop emitter of claim 48 wherein the apparatus adapted to apply a heat pulse comprises a patterned thin film resistor layer.
- 57. The liquid drop emitter of claim 56 wherein the spatial thermal pattern results in part from spatially modifying the conductivity of the thin film resistor layer.
- 58. The liquid drop emitter of claim 48 wherein the first material is electrically resistive having a first sheet resistance and the apparatus adapted to apply a heat pulse comprises a resistor pattern formed in the first deflector layer.
- 59. The liquid drop emitter of claim 58 wherein the spatial thermal pattern results in part from spatially modifying the first sheet resistance in a current shunt pattern.
- 60. The liquid drop emitter of claim 58 further comprising a conductor layer constructed of an electrically conductive material adjacent the first deflector layer wherein the spatial thermal pattern results in part from patterning the conductor layer in a current shunt pattern.
- 61. The liquid drop emitter of claim 48 wherein the first material is titanium aluminide.
- 62. The liquid drop emitter of claim 48 wherein the second deflector layer is constructed of the first material and the first deflector layer and the second deflector layer are substantially equal in thickness.
- 63. The liquid drop emitter of claim 48 wherein the heat pulse has a time duration of τp, the barrier layer has a heat transfer time constant of τB, and τB>2 τp.
- 64. The liquid drop emitter of claim 48 wherein the liquid drop emitter is a drop-on-demand ink jet printhead and the liquid is an ink for printing image data.
- 65. A thermal actuator for a micro-electromechanical device comprising:(a) a base element; (b) a cantilevered element including a thermo-mechanical bender portion extending from the base element to a free end tip residing at a first position, the thermo-mechanical bender portion having a base end adjacent the base element and a free end adjacent the free end tip, the thermo-mechanical bender portion further including the cantilevered element including a barrier layer constructed of a dielectric material having low thermal conductivity, a first deflector layer constructed of a first electrically resistive material having a large coefficient of thermal expansion, and a second deflector layer constructed of a second electrically resistive material having a large coefficient of thermal expansion wherein the barrier layer is bonded between the first and second deflector layers; (c) a first heater resistor formed in the first deflector layer and adapted to apply heat energy having a first spatial thermal pattern which results in a first deflector layer base end temperature increase, ΔT1b, in the first deflector layer at the base end that is greater than a first deflector layer free end temperature increase, ΔT1f, in the first deflector layer at the free end; (d) a second heater resistor formed in the second deflector layer and adapted to apply heat energy having a second spatial thermal pattern which results in a second deflector layer base end temperature increase, ΔT2b, in the second deflector layer at the base end that is greater than a second deflector layer free end temperature increase, ΔT2f, in the second deflector layer at the free end; (e) a first pair of electrodes connected to the first heater resistor to apply an electrical pulse to cause resistive heating of the first deflector layer, resulting in a thermal expansion of the first deflector layer relative to the second deflector layer; (f) a second pair of electrodes connected to the second heater resistor portion to apply an electrical pulse to cause resistive heating of the second deflector layer, resulting in a thermal expansion of the second deflector layer relative to the first deflector layer, wherein application of an electrical pulse to either the first pair or the second pair of electrodes causes deflection of the cantilevered element away from the first position to a second position, followed by restoration of the cantilevered element to the first position as beat diffuses through the barrier layer and the cantilevered element reaches a uniform temperature.
- 66. The thermal actuator of claim 65 wherein the first spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing monotonically from ΔT1b to ΔT1f as a function of the distance from the base element.
- 67. The thermal actuator of claim 66 wherein the thermo-mechanical bending portion has a normalized free end deflection {overscore (y)}(1)>1.0.
- 68. The thermal actuator of claim 65 wherein the second spatial thermal pattern results in the temperature increase of the second layer of the thermo-mechanical bender portion reducing monotonically from ΔT2b to ΔT2f as a function of the distance from the base element.
- 69. The thermal actuator of claim 68 wherein the thermo-mechanical bending portion has a normalized free end deflection {overscore (y)}(1)>1.0.
- 70. The thermal actuator of claim 65 wherein the first spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing from ΔT1b to ΔT1f in at least one temperature reduction step.
- 71. The thermal actuator of claim 65 wherein the second spatial thermal pattern results in the temperature increase of the second layer of the thermo-mechanical bender portion reducing from ΔT2b to ΔT2f in at least one temperature reduction step.
- 72. The thermal actuator of claim 65 wherein the first and second electrically resistive materials are the same material and the first and second deflector layers are substantially equal in thickness.
- 73. The thermal actuator of claim 65 wherein the first and second electrically resistive materials are titanium aluminide.
- 74. The thermal actuator of claim 65 wherein the first electrically resistive material has a first sheet resistance and the spatial thermal pattern results in part from spatially modifying the first sheet resistance in a current shunt pattern.
- 75. The thermal actuator of claim 65 wherein the second electrically resistive material has a second sheet resistance and the spatial thermal pattern results in part from spatially modifying the second sheet resistance in a current shunt pattern.
- 76. The thermal actuator of claim 65 further comprising a first conductor layer constructed of an electrically conductive material adjacent the first deflector layer wherein the spatial thermal pattern results in part from patterning the first conductor layer in a current shunt pattern.
- 77. The thermal actuator of claim 65 further comprising a second conductor layer constructed of an electrically conductive material adjacent the second deflector layer wherein the spatial thermal pattern results in part from patterning the second conductor layer in a current shunt pattern.
- 78. A liquid drop emitter comprising:(a) a chamber, formed in a substrate, filled with a liquid and having a nozzle for emitting drops of the liquid; (b) a thermal actuator having a cantilevered element including a thermo-mechanical bender portion extending from a wall of the chamber and a free end tip residing in a first position proximate to the nozzle, the thermo-mechanical bender portion having a base end adjacent the base element and a free end adjacent the free end tip, the thermo-mechanical bender portion further including a barrier layer constructed of a dielectric material having low thermal conductivity, a first deflector layer constructed of a first electrically resistive material having a large coefficient of thermal expansion, and a second deflector layer constructed of a second electrically resistive material having a large coefficient of thermal expansion wherein the barrier layer is bonded between the first and second deflector layers; (c) a first heater resistor formed in the first deflector layer and adapted to apply heat energy having a first spatial thermal pattern which results in a first deflector layer base end temperature increase, ΔT1b, in the first deflector layer at the base end that is greater than a first deflector layer free end temperature increase, ΔT1f, in the first deflector layer at the free end; (d) a second heater resistor formed in the second deflector layer and adapted to apply heat energy having a second spatial thermal pattern which results in a second deflector layer base end temperature increase, ΔT2b, in the second deflector layer at the base end that is greater than a second deflector layer free end temperature increase, ΔT2f, in the second deflector layer at the free end; (e) a first pair of electrodes connected to the first heater resistor to apply an electrical pulse to cause resistive heating of the first deflector layer, resulting in a thermal expansion of the first deflector layer relative to the second deflector layer; (f) a second pair of electrodes connected to the second heater resistor portion to apply an electrical pulse to cause resistive heating of the second deflector layer, resulting in a thermal expansion of the second deflector layer relative to the first deflector layer, wherein application of electrical pulses to the first and second pairs of electrodes causes rapid deflection of the cantilevered element, ejecting liquid at the nozzle, followed by restoration of the cantilevered element to the first position as heat diffuses through the barrier layer and the cantilevered element reaches a uniform temperature.
- 79. The liquid drop emitter of claim 78 wherein the liquid drop emitter is a drop-on-demand ink jet printhead and the liquid is an ink for printing image data.
- 80. The liquid drop emitter of claim 78 wherein the first spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing monotonically from ΔT1b to ΔT1f as a function of the distance from the base element.
- 81. The thermal actuator of claim 80 wherein the thermo-mechanical bending portion has a normalized free end deflection {overscore (y)}(1)>1.0.
- 82. The liquid drop emitter of claim 78 wherein the second spatial thermal pattern results in the temperature increase of the second layer of the thermo-mechanical bender portion reducing monotonically from ΔT2b to ΔT2f as a function of the distance from the base element.
- 83. The thermal actuator of claim 82 wherein the thermo-mechanical bending portion has a normalized free end deflection {overscore (y)}(1)>1.0.
- 84. The liquid drop emitter of claim 78 wherein the first spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing from ΔT1b to ΔT1f in at least one temperature reduction step.
- 85. The liquid drop emitter of claim 78 wherein the second spatial thermal pattern results in the temperature increase of the second layer of the thermo-mechanical bender portion reducing from ΔT2b to ΔT2f in at least one temperature reduction step.
- 86. The liquid drop emitter of claim 78 wherein the first and second electrically resistive materials are the same material and the first and second deflector layers are substantially equal in thickness.
- 87. The liquid drop emitter of claim 78 wherein the first and second electrically resistive materials are titanium aluminide.
- 88. The liquid drop emitter of claim 78 wherein the first electrically resistive material has a first sheet resistance and the spatial thermal pattern results in part from spatially modifying the first sheet resistance in a current shunt pattern.
- 89. The liquid drop emitter of claim 78 wherein the second electrically resistive material has a second sheet resistance and the spatial thermal pattern results in part from spatially modifying the second sheet resistance in a current shunt pattern.
- 90. The liquid drop emitter of claim 78 further comprising a first conductor layer constructed of an electrically conductive material adjacent the first deflector layer wherein the spatial thermal pattern results in part from patterning the first conductor layer in a current shunt pattern.
- 91. The liquid drop emitter of claim 78 further comprising a second conductor layer constructed of an electrically conductive material adjacent the second deflector layer wherein the spatial thermal pattern results in part from patterning the second conductor layer in a current shunt pattern.
CROSS REFERENCE TO RELATED APPLICATION
Reference is made to commonly-assigned co-pending U.S. patent applications: U.S. Ser. No. 10/154,634, entitled “Multi-layer Thermal Actuator with Optimized Heater Length and Method of Operating Same,” of Cabal, et al.; U.S. Ser. No. 10/071,120, entitled “Tri-Layer Thermal Actuator and Method of Operating,” of Furlani, et al.; U.S. Ser. No. 10/050,993 entitled “Thermal Actuator with Optimized Heater Length” of Cabal et al.; and U.S. Pat. No. 6,464,341 entitled “Dual Actuation Thermal Actuator and Method of Operating Thereof” of Furlani, et al.
US Referenced Citations (18)
Foreign Referenced Citations (1)
Number |
Date |
Country |
20330543 |
Jan 1990 |
JP |