THERMAL AND EXTERNAL LOAD ISOLATING IMPELLER SHROUD

Abstract
A gas turbine engine has a compressor assembly and a turbine assembly rotationally mounted on a shaft, the turbine assembly being driven by hot gases discharged from a combustion chamber disposed between the compressor and turbine assemblies, the compressor having a centrifugal impeller for pressurizing and impelling air into the combustion chamber. The engine also includes an impeller shroud covering the bladed portion of the centrifugal impeller, the impeller shroud having a support bracket having a thin and curved load-isolating profile for supporting a strut that secures the impeller shroud to a case of the engine.
Description

DESCRIPTION OF THE DRAWINGS

Reference is now made to the accompanying figures depicting aspects of the present invention, in which:



FIG. 1 is a schematic cross-sectional view of a turbofan as an example of a gas turbine engine that could incorporate embodiments of the present invention; and



FIG. 2 is a cross-sectional view of an impeller shroud in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to FIG. 1, a turbofan gas turbine engine incorporating an embodiment of the present invention is presented as an example of the application of the present invention, and includes a housing 10, a core casing 13, a low pressure spool assembly seen generally at 12 which includes a shaft 15 interconnecting a fan assembly 14, a low pressure compressor 16 and a low pressure turbine assembly 18, and a high pressure spool assembly seen generally at 20 which includes a shaft at 25 interconnecting a high pressure compressor assembly 22 and a high pressure turbine assembly 24. The core casing 13 surrounds the low and high pressure spool assemblies 12 and 20 in order to define a main fluid path (not indicated) therethrough. In the main fluid path there are provided a combustion section 26 having a combustor 28 therein. Pressurized air provided by the high pressure compressor assembly 22 through a diffuser 30 enters the combustion section 26 for combustion taking place in the combustor 28.



FIG. 2 shows, in cross section, an impeller shroud 40 in accordance with an embodiment of the present invention. The impeller shroud 40 covers, or “enshrouds”, the blades of the centrifugal impeller 50. The impeller rotates between the impeller shroud 40 and a backface 52 that extends outwardly from a hub to which the compressor is mounted. The impeller pressurizes and impels air into the combustion chamber from which hot gases are discharged to drive the turbine assembly. At a tip 54 of the impeller blades 50 is a small gap referred to as the tip clearance TC. The impeller shroud 40 has a support bracket 60 mounted to the impeller shroud 40, the support bracket 60 having a thin and curved load-isolating profile. The impeller shroud 40 also includes means for securing the support bracket 60 to a case 70 of the gas turbine engine.


In one embodiment, such as the embodiment illustrated in FIG. 2, the support bracket 60 has a hairpin shape although other thin and curved profiles could also be utilized. In this particular embodiment, as shown, the hairpin support bracket is integrally formed with the impeller shroud. Alternatively, the hairpin support bracket could be welded or fastened to the impeller shroud. In the particular embodiment shown in FIG. 2, the integrally formed hairpin-shaped bracket has a lower extension member 62 that extends axially forward from the impeller shroud and a semicircular curved portion 64 connecting the lower extension member 62 to an upper support member 66 that is adapted to support a means for securing 68 the impeller shroud to a case 70 of the engine. In this particular embodiment, the lower extension member 62 and the upper support member 66 are both substantially parallel to the shaft 25 (shown in FIG. 1) supporting the compressor and turbine assemblies.


As shown in FIG. 2, the means for securing 68 can include a strut 72 for securing the impeller shroud 40 to an inner case of a bypass duct. In addition, as shown in this particular embodiment, the means for securing 68 also comprises a spigot 74 for fastening the support bracket 60 to the strut 72.


In one embodiment, such as the one illustrated in FIG. 2, the hairpin-shaped support bracket 60 has a shoulder 69 for supporting a flange 73 of the strut 72. Similarly, the upper support member 66 can be used to support a flange 76 of a buttress member 78 that buttresses a tangential annular diffuser 80. The tangential annular diffuser 80 close proximity to the tip 54 of the impeller blades 50 (into which the impeller discharges highly compressed air) and an exit that discharges into the combustion chamber.


The thin and curved profile of the impeller shroud 40, when installed in a gas turbine engine, such as the turbofan shown in FIG. 1, isolates the impeller shroud from thermal and other external loads (transient operating conditions, loads due to the assembly fit, etc.) which can cause the tip clearance TC to vary beyond the close tolerances required for optimized engine performance. In other words, vibrations and loads due to thermal effects or installation loads are substantially attenuated by the thin, curved profile of the support bracket, resulting in only minimal forces being transferred to or from the impeller shroud. The load-isolating support bracket therefore diminishes the deflections of the impeller shroud relative to the impeller. Accordingly, the tolerance of the gap between the impeller tip and the shroud (i.e. the tip clearance TC) can be tightened, thus enhancing performance of the engine.


In other words, the foregoing also provides a method of installing an impeller shroud for controlling tip clearance between impeller blades of a centrifugal impeller and an impeller shroud. The method includes steps of providing a load-isolating support bracket on the impeller shroud, the support bracket having a thin and curved load-isolating profile. An existing gas turbine engine could be retrofitted with an improved impeller shroud to isolate the shroud from thermal and other external loads. The impeller shroud is then secured relative to the impeller blades by connecting the load-isolating support bracket to an engine case whereby thermal and other external loads are attenuated by the load-isolating support bracket.


The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. For example, the impeller baffle can be used not only for turbofans or turbojets, but also for turboprops, turboshafts or any other gas turbine engine. Still other modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.

Claims
  • 1. A gas turbine engine comprising: a compressor assembly and a turbine assembly rotationally mounted on a shaft, the turbine assembly being driven by hot gases discharged from a combustion chamber disposed between the compressor and turbine assemblies, the compressor having a centrifungal impeller for pressurizing and impelling air into the combustion chamber; andan impeller shroud covering the bladed portion of the centrifugal impeller, the impeller shroud having a support bracket having a thin and curved load-isolating profile for supporting a strut that secures the impeller shroud to a case of the engine.
  • 2. The gas turbine engine as defined in claim 1 wherein the support bracket has a hairpin shape.
  • 3. The gas turbine engine as defined in claim 2 wherein the hairpin support bracket is integrally formed with the impeller shroud.
  • 4. The gas turbine engine as defined in claim 3 wherein the integrally formed hairpin-shaped bracket has a lower extension member that extends axially from the impeller shroud and a semicircular curved portion connecting the lower extension member to an upper support member that is adapted to support means for securing the impeller shroud to the case of the engine.
  • 5. The gas turbine engine as defined in claim 4 wherein the lower extension member and the upper support member are both substantially parallel to the shaft supporting the compressor and turbine assemblies.
  • 6. The gas turbine engine as defined in claim 1 wherein the strut secures the impeller shroud to an inner case of a bypass duct.
  • 7. The gas turbine engine as defined in claim 2 wherein the hairpin-shaped support bracket is fastened to the strut with a spigot.
  • 8. An impeller shroud for use with a centrifugal impeller of a high-pressure compressor of a gas turbine engine, the impeller shroud comprising: a support bracket mounted to the impeller shroud, the support bracket having a thin and curved load-isolating profile; andmeans for securing the support bracket to a case of the gas turbine engine.
  • 9. The impeller shroud as defined in claim 8 wherein the means for securing comprises a strut connecting the impeller shroud to an inner case of a bypass duct.
  • 10. The impeller shroud as defined claim 9 wherein the means for securing comprises a spigot for fastening the support bracket to the strut.
  • 11. The impeller shroud as defined in claim 8 wherein the support bracket has a hairpin shape.
  • 12. The impeller shroud as defined in claim 11 wherein the hairpin support bracket is integrally formed with the impeller shroud.
  • 13. The impeller shroud as defined in claim 12 wherein the integrally formed hairpin-shaped bracket has a lower extension member that extends axially from the impeller shroud and a semicircular curved portion connecting the lower extension member to an upper support member that is adapted to support the means for securing the impeller shroud to the case of the engine.
  • 14. The impeller shroud as defined in claim 13 wherein the lower extension member and the upper support member are both substantially parallel to a central axis of the engine.
  • 15. A method of installing an impeller shroud for controlling tip clearance between impeller blades of a centrifugal impeller and an impeller shroud, the method comprising steps of: providing a load-isolating support bracket on the impeller shroud, the support bracket having a thin and curved load-isolating profile; andsecuring the impeller shroud relative to the impeller blades by connecting the load-isolating support bracket to an engine case whereby thermal and other external loads are attenuated by the load-isolating support bracket.
  • 16. The method as defined in claim 15 wherein the support bracket has a hairpin shape.
  • 17. The method as defined in claim 15 wherein the support bracket is connected to the engine case using a strut that is fastened to the support bracket with a spigot.