THERMAL BREAK WOOD COLUMNS, BUTTRESSES AND HEADERS WITH RIGID INSULATION

Information

  • Patent Application
  • 20200385976
  • Publication Number
    20200385976
  • Date Filed
    June 09, 2020
    4 years ago
  • Date Published
    December 10, 2020
    3 years ago
Abstract
A thermal break wood and rigid insulation wall support column, buttress or header is comprised of spaced apart multiple parallel and right angled wood panels. The right angled wood panels are secured together by box joints. Non-metallic angled mechanical fasteners hold the lumber panels together in a truss angled arrangement maintaining the panels spaced relationship. A thermal break section of rigid foam insulation is injected between the lumber panels and around the mechanical fasteners.
Description

The present invention relates to wood framing systems for tall commercial and tenant buildings that may go upwards to and over twenty-five stories that are all made from wood without steel or concrete. More specifically, the present invention is concerned with vertical wall column, buttress and header framing systems and component designs with built-in thermal breaks. These systems and designs deal with and solve the load problems with tall buildings, while yet being all made with wood, and with no use of steel or concrete.


Standard residential and small commercial construction today uses either 2×4 or 2×6 solid lumber generally spaced 16″ on center. Where energy conservation is a concern, most builders frame an exterior wall with 2×6's. Up to 30 percent of the exterior wall (studs, top and bottom plates, cripple studs, window/door jams and headers) is solid wood framing. Thermal bridges are points in the wall that allow heat and cold conduction to occur. Heat and cold follow the path of least resistance—through thermals bridges of solid wood across a temperature differential wherein the heat or cold is not interrupted by thermal insulation. The more volume of solid wood in a wall also reduces available insulation space, and further, the thermal efficiency of the wall suffers and the R value (resistance to conductive heat flow) decreases. These problems were solved by Applicant's previous two issued U.S. Pat. Nos. 9,677,264 and 9,783,985 for thermal break wood studs (Tstuds®), both incorporated by reference here.


Commercial building structures in excess of five stories, and up to twenty-five stories, require phenomenally more vertical support and bending resistance beyond the capacity of Applicant's patented thermal break wood stud with rigid insulation with non-metal fasteners and wall framing system. Also, commercial building structures materials are beyond the capacity of convention lumber (2×2, 2×4, 2×6, 2×12, 4×4, 6×6 12×12, etc.). Traditionally these structures are made with steel and concrete floors, walls, ceilings and vertical support columns and headers. While structures made with these materials are adequate for vertical support and bending resistance, they are extremely expensive to build and do not adequately deal with heat and air conditioning losses to the environment through exterior walls. Steel and concrete structural materials deplete natural resources, are harsh on the environment in their manufacture and also pose significant problems when it is time to demolish and recycle these structural materials.


SUMMARY OF THE INVENTION

A thermal break wood and rigid insulation wall support column, buttress or header is comprised of spaced apart multiple parallel and right angled wood panels. The right angled wood panels are secured together by box joints. Non-metallic angled mechanical fasteners hold the lumber panels together in a truss angled arrangement maintaining the panels spaced relationship. A thermal break section of rigid foam insulation is injected between the lumber panels and around the mechanical fasteners.


A principal object and advantage of the present invention is that there is percentage increase in exterior wall construction energy efficiency.


Another principal object and advantage of the present invention is that the present invention would save considerable expense in not using concrete and steel which could cost twice as much.


Another principal object and advantage of the present invention is that using wood columns, which are a natural and renewable sourced material, would eliminate the manufacture, reclamation and recycling of waste or demolished steel and concrete.


Another principal object and advantage of the present invention is that the invention has a smaller carbon footprint than standard commercial building construction simply by use of less materials and labor costs.


Another principal object and advantage of the present invention is that there is more insulation in the column cavities with less solid wood to increase thermal efficiency (R value) as compared to R values of concrete, steel and conventional wood as noted below:














TABLE 1





Average R Value


Polyiso




for Concrete
Thickness
R Value
foam
Wood
Steel







Concrete 60 pounds
1″
0.52
6.67
1.25
0.0031


density per cubic foot


Concrete 70 pounds
1″
0.42
6.67
1.25
0.0031


density per cubic foot


Concrete 80 pounds
1″
0.33
6.67
1.25
0.0031


density per cubic foot


Concrete 90 pounds
1″
0.26
6.67
1.25
0.0031


density per cubic foot


Concrete 100 pounds
1″
0.21
6.67
1.25
0.0031


density per cubic foot


Concrete 120 pounds
1″
0.13
6.67
1.25
0.0031


density per cubic foot


Concrete 150 pounds
1″
0.07
6.67
1.25
0.0031


density per cubic foot





The more weight of a concrete column is able to hold, the higher the density






Another principal object and advantage of the present invention is that the windows and doors have a thermal break all around the window and door openings thus improving the thermal effectiveness of the window and door jams.


Another principal object and advantage of the present invention is that there could be a reduction in the needed and required sizing for HVAC, furnaces and air conditioning equipment.


Another principal object and advantage of the present invention is that the column designs and framing systems requires less labor time (carpenters only) to rough-in a building simply because the vertical strength of the columns will support commercial buildings with only wood up to and beyond twenty-five stories without the need of cement and steel workers.


Another principal object and advantage of the present invention is that all these objects and advantages are accomplished without losing any integrity in building performance or structural qualities.


Another principal object and advantage of the present invention is that there will be a reduction on the future utility grid and a reduction on the future carbon footprint required to produce the electricity and gas to heat and cool a commercial building built to according to this invention.


Another principal object and advantage of the present invention is the fire rating of the thermal break wood columns is significant by having a Class A fire rating versus typical construction 2× wood members of having a Class C fire rating, thus potentially saving lives, allowing fire personnel to enter a burning structure more often and allowing additional time for occupants to vacate a burning structure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top front perspective view of a double U-shaped thermal break wood support column with mechanical fasteners;



FIG. 1A is a top plan assembly view of the double U-shaped thermal break wood support column with mechanical fasteners showing placement of the closed cell foam of FIG. 1;



FIG. 1B is a top plan view with outer dimensions of the double U-shaped thermal break wood support column with mechanical fasteners showing placement of the closed cell foam of FIG. 1;



FIG. 1C is a top plan assembly view with outer dimensions of the triple U-shaped thermal break wood support column with mechanical fasteners showing placement of the closed cell foam;



FIG. 1D is a top plan assembly view with outer dimensions of the quad U-shaped thermal break wood support column with mechanical fasteners showing placement of the closed cell foam;



FIG. 2 is a front elevational view of the double U-shaped thermal break wood support column with mechanical fasteners of FIG. 1;



FIG. 3 is a top side perspective view of the double U-shaped thermal break wood support column with mechanical fasteners of FIG. 1;



FIG. 4 is a top perspective view of the double U-shaped thermal break wood support column with mechanical fasteners of FIG. 1 looking down into its interior;



FIGS. 5A, 5B and 5C are a front perspective views of the box joint structures that connect the 90° wood panels;



FIG. 6 is a broken away side elevational view of the longitudinal angularity of the mechanical fasteners;



FIG. 7 is a end elevational view of the width angularity of the mechanical fasteners;



FIG. 8 is a top perspective view of the a quad 90° or L-shaped thermal break wood support column with mechanical fasteners (used as a corner column) looking down into its inerior;



FIG. 8A is a top plan dimensional assembly view of a double 90° L-shaped thermal break wood support column with mechanical fasteners showing placement of the closed cell foam;



FIG. 8B is a top plan dimensional assembly view with outer dimensions of a triple 90° L-shaped thermal break wood support column with mechanical fasteners showing placement of the closed cell foam;



FIG. 8C is a top plan dimensional assembly of a quad 90° L-shaped thermal break wood support column with mechanical fasteners showing placement of the closed cell foam;



FIG. 8D is a top plan dimensional assembly view a six 90° L-shaped thermal break wood support column with mechanical fasteners showing placement of the closed cell foam;



FIG. 8E is a top plan dimensional assembly view a five 90° L-shaped thermal break wood support column with mechanical fasteners showing placement of the closed cell foam;



FIG. 9 is top plan view of a double 90° L-shaped thermal break wood support column with mechanical fasteners showing placement as a corner with adjoining thermal break wood studs of Applicant's previous two issued U.S. Pat. Nos. 9,677,264 and 9,783,985;



FIG. 10 is partial front elevational view of a double 90° L-shaped thermal break wood support column with mechanical fasteners showing placement as a corner with adjoining thermal break wood stud of Applicant's previous two issued U.S. Pat. Nos. 9,677,264 and 9,783,985 shown in the interior background;



FIG. 11 is an enlarged partial front elevational view of a double 90° L-shaped thermal break wood support column with mechanical fasteners showing placement as a corner with adjoining thermal break wood stud of Applicant's previous two issued U.S. Pat. Nos. 9,677,264 and 9,783,985 shown in the interior background;



FIG. 12 is a top perspective view of the a quad 90° L-shaped thermal break wood support column with mechanical fasteners looking down into its interior;



FIG. 13 is another top perspective view of the a quad 90° L-shaped thermal break wood support column with mechanical fasteners looking down into its interior;



FIG. 14 is another top perspective view of the a quad 90° L-shaped thermal break wood support column with mechanical fasteners looking down into its interior;



FIG. 15 is a side elevational view of the a quad 90° L-shaped thermal break wood support column with mechanical fasteners;



FIG. 16 is a front elevational view of the a quad 90° L-shaped thermal break wood support column with mechanical fasteners;



FIG. 17 is another side elevational view of the a quad 90° L-shaped thermal break wood support column with mechanical fasteners;



FIG. 18 is a top perspective view of the a triple square or box-shaped thermal break wood support column with mechanical fasteners;



FIG. 18A is a top plan dimensional assembly view of a double square-shaped thermal break wood support column with mechanical fasteners showing placement of the closed cell foam;



FIG. 18B is a top plan dimensional assembly view of a triple square-shaped thermal break wood support column with mechanical fasteners showing placement of the closed cell foam;



FIG. 18C is a top plan dimensional assembly view of a quad square-shaped thermal break wood support column with mechanical fasteners showing placement of the closed cell foam;



FIG. 19 is a top perspective view of a quad square-shaped thermal break wood support column with mechanical fasteners;



FIG. 20 is an enlarge top plan view looking down into the interior of the quad square-shaped thermal break wood support column with mechanical fasteners;



FIG. 21 is another enlarged top plan view looking down into the interior of the triple square-shaped thermal break wood support column with mechanical fasteners;



FIG. 22 is another enlarged top plan view looking down into the interior of the triple square-shaped thermal break wood support column with mechanical fasteners;



FIG. 23 is another enlarged top plan view looking down into the interior of the triple square-shaped thermal break wood support column with mechanical fasteners;



FIG. 24 is a front elevational view of the a quad parallel-shaped thermal break wood support column with mechanical fasteners;



FIG. 25 is a side perspective view of the quad parallel-shaped thermal break wood support column with mechanical fasteners of FIG. 24;



FIG. 25A is a top plan dimensional assembly view with outer dimensions of a triple parallel-shaped thermal break wood support column with mechanical fasteners showing placement of the closed cell foam;



FIG. 25B is a top plan dimensional assembly view with outer dimensions of a quad parallel-shaped thermal break wood support column with mechanical fasteners showing placement of the closed cell foam;



FIG. 25C is a top plan dimensional assembly view with outer dimensions of a five parallel-shaped thermal break wood support column with mechanical fasteners showing placement of the closed cell foam;



FIG. 25D is a top plan dimensional assembly view with outer dimensions a six parallel-shaped thermal break wood support column with mechanical fasteners showing placement of the closed cell foam;



FIG. 26 is an end perspective view of a quad parallel-shaped thermal break wood support column with mechanical fasteners;



FIG. 27 are end perspective view of a triple parallel-shaped thermal break wood support column with mechanical fasteners;



FIG. 28 is a side perspective view of a triple parallel-shaped thermal break wood support column with mechanical fasteners;



FIG. 29 is a front perspective view of square-shaped, U-shaped and L-shaped thermal break wood support columns with mechanical fasteners;



FIG. 30 is a front perspective views of the square-shaped, U-shaped and L-shaped thermal break wood support columns with mechanical fasteners with the quad parallel shaped thermal break wood support column or header being placed on top of the columns of FIG. 29;



FIG. 31 is a front perspective views of the square-shaped, U-shaped and L-shaped thermal break wood support columns with mechanical fasteners with the quad parallel-shaped thermal break wood support column or header placed on top of the columns of FIG. 29;



FIG. 32 is a front perspective views of the shaped thermal break wood support columns with mechanical fasteners with a LVL top plate or bottom plate and the quad parallel shaped thermal break wood support column or header placed on top of the columns of FIG. 2; and



FIG. 33 is a front elevation illustration of a twenty plus story commercial build construction out of the thermal break wood support columns of the invention herein with thermal break wood studs of Applicant's previous two issued U.S. Pat. Nos. 9,677,264 and 9,783,985.





DETAILED SPECIFICATION

Referring to FIGS. 1-7, the double U-shaped design of the thermal break wood support column (or header) 10 with mechanical fasteners 40 of the invention may be seen and is generally used as an exterior or interior wall support buttress, header or column 10. The double U design (double half box) 10 comprises an inner U section 12 that has two side panels 14 and 16 and a rear panel 18. The panels are held together by an overlapping tab and cut out (box joint) 28 that are fastened together suitably with glue 30 illustrated in FIGS. 5A. 5B and 5C. The double U design 10 also comprises an outer U section 32 that has two side panels 34 and 36 and a rear panel 38. The panels 14, 16, 18, 34, 36 and 38 are held together by an overlapping tab and cut out (box joint) 28 arrangement that are secured together suitably with glue 30 illustrated in FIGS. 5A. 5B and 5C. Suitable wood glues 30 might be polymethylene polyphenyl isocyanate or penta-NA diethylenetriamine pentaacetate obtainable from Ashland of Columbus, Ohio sold under the trademark ISOSET™ or a two part acrylic-based emulsion polymer isocyanate so under the trademark ADVANTAGE EP-950 ATM by Franklin International of 2020 Bruck Street, Columbus, Ohio 43207 USA.


One can size and place tabs and cut outs 28 so support column 10 has only one way to be put together as all square reference surfaces are built-in. Thus, this two dimensional all edge-face assembly is fool proof and easy to form and assemble.


Wood is defined as any wood or lumber product and any wood derivative composite product. Whereby the definition of “wood derivative” is defined as a “New product that results from modifying an existing product, and which has different properties than those of the product it is derived from.” Lumber, timber, wood, or wood derivative, includes any and all structural composite lumber products, such as laminated strand lumber (LSL). This would also include structural composite lumber (SCL), which includes laminated veneer lumber (LVL), parallel strand lumber (PSL), laminated strand lumber (LSL), oriented strand lumber (OSL) and cross-laminated lumber (CTL). Nanocellulose materials, such as cellulose nanocrystals (CNC), would be included in this group. These composite lumbers are of a family of engineered wood products created by layering dried and graded wood veneers, strands or flakes with moisture resistant adhesive into blocks of material known as billets, which are subsequently re-sawn into specified sizes. In SCL billets, the grain of each layer of veneer or flakes runs primarily in the same direction. The resulting products out-perform conventional lumber when either face or edge-loaded. SCL is a solid, highly predictable, and uniform engineered wood product that is sawn to consistent sizes and is virtually free from warping and splitting.


Mechanical fasters 40 are suitably hard wood dowels 40 approximately 11/16-1½ ″ in diameter to match holes H through the panels 14, 16, 18, 34, 36 and 38. The dowels 40 are run through an abrader device to create a helical outer grooved or fluted outer surface 44 which aids in retaining glue 30 on the outer surface 44 of dowels 40. Panels 14, 16, 18, 34, 36 and 38 suitably have angled holes H drilled through them as shown in FIGS. 6 and 7. The holes H in the longitudinal direction have an angles that range from 20°-50° (preferably 38°) and 0°-10° (preferably 8°) in the width direction. Next, wood glue 30 is suitably then coated on the inside surfaces of the angled holes H. The dowels 40 are then pounded into and through holes H after which sawing, sanding or grinding will make the dowels 40 flush with the outer wood panels 34, 36 and 38. Mechanical fasteners 40 may also be made of heat resistant plastic. The important consideration is that the dowel 40 must have a high modulus of elasticity. When using parallel panels 14, 16, 18, 34, 36 and 38, two of the mechanical fasteners or dowels 40 are used per foot of column 20. When using 90° angled panels, discussed below, four staggered and angled mechanical fasteners 40 are used per foot of column 10.


Next the assembled wood column 10 is coated with a liquid wood protection system that is warranted for fire (class A), mould, rot, and insect infestation, including termites. The wood protection system can be applied to the wood column 10 in the following manners: spray booth, flood coater, dip tank, sprayer, brush, roller or pressure treatment. Such a wood protection system is sold under the trademark NEXGEN ADVANCED™ by NexGen ECOatings, Inc. of Vancouver, BC, Canada


This double U wall wood column design 10 may be built, as shown to be a double U design 10, to be a triple 46, quad 48, five 50 or six 52 wall U Shape design, illustratively shown in FIGS. 1B, 1C and 1D. These designs are structurally desirable from 10′ to as high as 40′ tall with little to no deflection. This design will easily hold 25,000 lbs. Additional larger sizes should be anticipated.


The final foam section 36 may be of expanded polyurethane, polystyrene or polyisocyanurate. The foam 36 is injected into the open spaces around the mechanical fasteners 40 and between the wood panel sections 34, 36 and 38. The foam 36 may suitably made by mixing an isocyanate, such as methylene diphenyl diisocyanate (MDI) with a polyol blend, or other suitable rigid foam sheet or there equivalent. Such foams are sold under the trademark AUTOFROTH® sold by BASF Corporation of 100 Park Avenue Florham Park, N.J. 07932 USA and under the trademark PROTECH™ by Carpenter Co. of 5016 Monument Ave. Richmond, Va. 23230 USA In fact, it is to be anticipated that rigid foams of yet even high R values are on the market now with more being created that are and will be suitable for use with the present invention. Polyurethane insulation has the highest thermal resistance (R-values) at a given thickness and lowest thermal conductivity.


The following Table 2 shows R values and vertical compression strength (Fc) of the double U-shaped (double half box) 10, triple U-shaped design (triple half box) 46 and the quad U-shaped (quad half box) 48 wherein the loads are supported on the ends of the pieces:









TABLE 2







Compression Parallel to Grain Fc and Average R Value





















Double


Triple


Quad




Type of

Depth
Half
Ultimate

Half
Ultimate

Half
Ultimate


Wood

in
Box
Load in
Average
Box
Load in
Average
Box
Load in
Average


Member
PSI
inches
Tmax*
Pounds*
R Value
Tmax*
Pounds*
R Value
Tmax*
Pounds*
R Value





















SPF
1,150
1.5
40
69,000
30
84
144,900
40
144
248,400
50


HemFir
1,450
1.5
40
87,000
30
84
182,700
40
144
313,200
50


DougFir
1,400
1.5
40
84,000
30
84
176,400
40
144
302,400
50


SYP #2
1,300
1.5
40
78,000
30
84
163,800
40
144
280,800
50


MSR2100
1,825
1.5
40
109,500
30
84
229,950
40
144
394,200
50


LSL
2,600
2
40
208,000
30
84
436,800
40
144
748,800
50


LVL
3,571
2
40
285,680
30
84
599,928
40
144
1,028,448
50





*Total lineal inches of wood fiber


**Based on known paralell to grain axial loading based on Fc


(SPF = spruce, pine fur; HemFir = hemlock fir; DougFir = Douglas fir; SYP #2 = southern yellow pine #2; MSR 2100 = machine stress rated to 2100 psi in bending; LSL = laminated strand lumber; LVL = laminated veneer lumber)






Referring next to FIGS. 8-17, the quad-shaped 90° or L shaped design of the thermal break wood support column (or header) 60 with mechanical fasteners 40 of the invention may be seen and is generally used as an exterior or interior corner wall support column 10. The quad L design 60 (corner) comprises an inner smallest section 62 that has two side panels 64 and 66. The panels are held together by an overlapping tab and cut out (box joint) 28 that are fastened together suitably with glue 30 illustrated in FIGS. 5A. 5B and 5C. Increasing size are second L section 68, third L section 70 and fourth largest L section 72 and similarly made panels.


As previously stated one can size and place tabs and cut outs 28 so support column 60 has only one way to be put together as all square reference surfaces are built-in. Thus this two dimensional all edge-face assembly is also fool proof and easy to form and assemble. Alternatively as shown in FIGS. 9, 12 and 13, the boards side edges can be mitered and glued at their meeting joints.


Mechanical fasters 40 are suitably hard wood dowels 40 approximately 11/16-1½ ″ in diameter to match holes H through the panels. The dowels 40 are run through an abrader device to create a helical outer grooved or fluted outer surface 44 which aids in retaining glue 30 on the outer surface 44 of dowels 40. Panels suitably have angled holes H drilled through them as shown in FIGS. 6 and 7. The holes H in the longitudinal direction have an angles that range from 20°-50° (preferably 38°) and 0°-10° (preferably 8°) in the width direction. Next, wood glue 30 is suitably then coated on the inside surfaces of the angled holes H. The dowels 40 are then pounded into and through holes H after which sawing, sanding or grinding will make the dowels 40 flush with the outer wood section. Mechanical fasteners 40 may also be made of heat resistant plastic.


The important consideration is that the dowel 40 must have a high modulus of elasticity. When using 90° angled panels, four staggered and angled mechanical fasteners 40 are used per foot of column 60.


Next the assembled wood column 10 is coated with a liquid wood protection system, discussed above, that is warranted for fire (class A), mold, rot, and insect infestation, including termites.


The final foam section 84 may be of expanded polyurethane, polystyrene or polyisocyanurate. The foam 84 is injected into the open spaces around the mechanical fasteners 40 and between the wood panels. The foam 84 may suitably made by mixing an isocyanate, such as methylene diphenyl diisocyanate (MDI) with a polyol blend, or other suitable rigid foam sheet or there equivalent.


This quad L column design 60 may be built, as shown to be a double L design 76, to be a triple 78, quad 60, five 80 or six 82 L Shape design, illustratively shown in FIGS. 8A, 8b, 8C and 8D. These designs are structurally desirable from 25′ to as high as 40′ tall with little to no deflection. This design will easily hold 45,000 lbs with no wind load deflection. Additional larger sizes should be anticipated.


The following Table 3 shows R values and vertical compression strength (Fc) of the double L-shaped (double corner) 10, triple L-shaped design (triple corner) 46 and the quad L-shaped (quad corner) 48 wherein the loads are supported on the ends of the pieces:









TABLE 3







Compression Parallel to Grain Fc and Average R Value





















Double


Triple


Quad




Type of

Depth
Half
Ultimate

Half
Ultimate

Half
Ultimate


Wood

in
Box
Load in
Average
Box
Load in
Average
Box
Load in
Average


Member
PSI
inches
Tmax*
Pounds*
R Value
Tmax*
Pounds*
R Value
Tmax*
Pounds*
R Value





















SPF
1,150
1.5
40
69,000
30
84
144,900
40
144
248,400
50


HemFir
1,450
1.5
40
87,000
30
84
182,700
40
144
313,200
50


DougFir
1,400
1.5
40
84,000
30
84
176,400
40
144
302,400
50


SYP #2
1,300
1.5
40
78,000
30
84
163,800
40
144
280,800
50


MSR2100
1,825
1.5
40
109,500
30
84
229,950
40
144
394,200
50


LSL
2,600
2
40
208,000
30
84
436,800
40
144
748,800
50


LVL
3,571
2
40
285,680
30
84
599,928
40
144
1,028,448
50





*Total lineal inches of wood fiber


**Based on known paralell to grain axial loading based on Fc


(SPF = spruce, pine fur; HemFir = hemlock fir; DougFir = Douglas fir; SYP #2 = southern yellow pine #2; MSR 2100 = machine stress rated to 2100 psi in bending; LSL = laminated strand lumber; LVL = laminated veneer lumber






Referring next to FIGS. 18-23, the triple square design of the thermal break wood support column (or header) 90 with mechanical fasteners 40 of the invention may be seen and is generally used as an exterior wall or interior support buttress 90. The triple square design 90 (box) comprises an inner smallest square section 92 that has four side panels 94, 96, 98 and 100. The panels are held together by an overlapping tab and cut out (box joint) 28 or a mitered joint that are fastened together suitably with glue 30 illustrated in FIGS. 5A. 5B and 5C. Increasing in size are middle square section 102 and outer largest square section 104 all with similarly made panels.


As previously stated one can size and place tabs and cut outs 28 (box joints vs. mitered joints) so support column 90 has only one way to be put together as all square reference surfaces are built-in. Thus this two dimensional all edge-face assembly is also fool proof and easy to form and assemble.


Mechanical fasters 40 are suitably hard wood dowels 40 approximately 11/16-1½ ″ in diameter to match holes H through the panels. The dowels 40 are run through an abrader device to create a helical outer grooved or fluted outer surface 44 which aids in retaining glue 30 on the outer surface 44 of dowels 40. Panels suitably have angled holes H drilled through them as shown in FIGS. 6 and 7. The holes H in the longitudinal direction have an angles that range from 20°-50° (preferably 38°) and 0°-10° (preferably 8°) in the width direction. Next, wood glue 30 is suitably then coated on the inside surfaces of the angled holes H. The dowels 40 are then pounded into and through holes H after which sawing, sanding or grinding will make the dowels 40 flush with the outer wood section 104. Mechanical fasteners 40 may also be made of heat resistant plastic. The important consideration is that the dowel 40 must have a high modulus of elasticity. When using 90° angled panels, four staggered and angled mechanical fasteners 40 are used per foot of column 60.


Next the assembled wood column 90 is coated with a liquid wood protection system, discussed above, that is warranted for fire (class A), mold, rot, and insect infestation, including termites.


The final foam section 110 may be of expanded polyurethane, polystyrene or polyisocyanurate. The foam 110 is injected into the open spaces around the mechanical fasteners 40 and between the wood panels. The foam 110 may suitably made by mixing an isocyanate, such as methylene diphenyl diisocyanate (MDI) with a polyol blend, or other suitable rigid foam or their equivalent.


This square column design 90 may be built, as shown to be a double square design 106, to be a triple 90 or quad 108 square shape design, illustratively shown in FIGS. 18A, 18b, 18C and 18D. These designs are structurally desirable from 25′ to as high as 40′ tall with little to no deflection. This design will easily hold 45,000 to 90,000 lbs with no wind load deflection. Additional larger sizes should be anticipated to include quintuplet and sextuplet square designs.


The following Table 4 shows R values and vertical compression strength (Fc) of the double square (box) 106, triple square (box) 90 and the quad square (box) 108 wherein the loads are supported on the ends of the pieces:









TABLE 4







Compression Parallel to Grain Fc and Average R Value


















Type of

Depth
Double
Ultimate

Triple
Ultimate

Quad
Ultimate



Wood

in
Box
Load in
Average
Box
Load in
Average
Box
Load in
Average


Member
PSI
inches
Tmax*
Pounds*
R Value
Tmax*
Pounds*
R Value
Tmax*
Pounds*
R Value





















SPF
1,150
1.5
29
50,025
40
152
262,200
50
266
458,850
60


HemFir
1,450
1.5
29
63,075
40
152
330,600
50
266
578,550
60


DougFir
1,100
1.5
29
47,850
40
152
250,800
50
266
438,900
60


SYP #2
1,300
1.5
29
56,550
40
152
296,400
50
266
518,700
60


MSR2100
1,825
1.5
29
79,388
40
152
416,100
50
266
728,175
60


LSL
2,600
2
29
150,800
40
152
790,400
50
266
1,383,200
60


LVL
3,571
2
29
207,118
40
152
1,085,584
50
266
1,899,772
60





*Total lineal inches of wood fiber


**Based on known paralell to grain axial loading based on Fc


(SPF = spruce, pine fur; HemFir = hemlock fir; DougFir = Douglas fir; SYP #2 = southern yellow pine #2; MSR 2100 = machine stress rated to 2100 psi in bending; LSL = laminated strand lumber; LVL = laminated veneer lumber)






Referring next to FIGS. 24-28, the quad parallel design of the thermal break wood support column (or header) 120 with mechanical fasteners 40 of the invention may be seen and is generally used as an exterior wall support column, interior support column or a header 120. The quad parallel design 120 comprises like inner panel sections 122, 124 and outer panel section 126, 128. Mitered joints or overlapping tab and cut out (box joint) 28 are not needed with this embodiment.


Mechanical fasters 40 are suitably hard wood dowels 40 approximately 11/16-1½ ″ in diameter to match holes H through the panels. The dowels 40 are run through an abrader device to create a helical outer grooved or fluted outer surface 44 which aids in retaining glue 30 on the outer surface 44 of dowels 40. Panels suitably have angled holes H drilled through them as shown in FIGS. 6 and 7. The holes H in the longitudinal direction have an angles that range from 20°-50° and 0°-10° in the width direction. Next, wood glue 30 is suitably then coated on the inside surfaces of the angled holes H. The dowels 40 are then pounded into and through holes H after which sawing, sanding or grinding will make the dowels 40 flush with the outer wood section 126, 128. Mechanical fasteners 40 may also be made of heat resistant plastic. The important consideration is that the dowel 40 must have a high modulus of elasticity. When using parallel panel sections, two staggered and angled mechanical fasteners 40 are used per foot of column 120.


Next the assembled wood column 120 is coated with a liquid wood protection system, discussed above, that is warranted for fire (class A), mold, rot, and insect infestation, including termites.


The final foam section 136 may be of expanded polyurethane, polystyrene or polyisocyanurate. The foam 136 is injected into the open spaces around the mechanical fasteners 40 and between the wood panels. The foam 136 may suitably made by mixing an isocyanate, such as methylene diphenyl diisocyanate (MDI) with a polyol blend, or other suitable rigid foam or their equivalent.


This parallel column design 120 may be built, as shown to be a triple parallel design 130, to be a five parallel design 132 or a six parallel design 136, illustratively shown in FIGS. 25A, 25B, 25C and 25D. These designs are structurally desirable from 25′ to as high as 40′ tall with little to no deflection. This design will easily hold 45,000 to 90,000 lbs with no wind load deflection. Additional larger sizes should be anticipated.


The following table 5 shows R values and vertical compression strength (Fc) of the triple parallel (stacked) 106, quad parallel (stacked) 120, 5 or quintuple parallel (stacked) 132 and the 6 or sextuple parallel (stacked) 134 wherein the loads are supported on the ends of the pieces:









TABLE 5





Compression Parallel to Grain Fc and Average R Value























Type of

Depth
Triple
Ultimate

Quadruple
Ultimate



Wood

in
Stacked
Load in
Average
Stacked
Load in
Average


Member
PSI
inches
Tmax*
Pounds*
R Value
Tmax*
Pounds*
R Value





SPF
1,150
1.5
33
56,925
37
44
75,900
44


HemFir
1,450
1.5
33
71,775
37
44
95,700
44


DougFir
1,400
1.5
33
69,300
37
44
92,400
44


SYP #2
1,300
1.5
33
64,350
37
44
85,800
44


MSR2100
1,825
1.5
33
90,338
37
44
120,450
44


LSL
2,600
2
33
171,600
37
44
228,800
44


LVL
3,571
2
33
235,686
37
44
314,248
44


















Type of
Quintuple
Ultimate

Sextuple
Ultimate




Wood
Stacked
Load in
Average
Stacked
Load in
Average R



Member
Tmax*
Pounds*
R Value
Tmax*
Pounds*
Value







SPF
55
94,875
51
66
113,850
58



HemFir
55
119,625
51
66
143,550
58



DougFir
55
115,500
51
66
138,600
58



SYP #2
55
107,250
51
66
128,700
58



MSR2100
55
150,563
51
66
180,675
58



LSL
55
286,000
51
66
343,200
58



LVL
55
392,810
51
66
471,372
58







*Total lineal inches of wood fiber



**Based on known paralell to grain axial loading based on Fc



(SPF = spruce, pine fur; HemFir = hemlock fir; DougFir = Douglas fir; SYP #2 = southern yellow pine #2; MSR 2100 = machine stress rated to 2100 psi in bending; LSL = laminated strand lumber; LVL = laminated veneer lumber)






Wind loads are also a very important consideration. The U-shaped, L-shaped, square-shaped and parallel-shaped triple and quad designs of the thermal break wood support columns, 46, 48, 78, 60, 90, 108, 130 and 120 respectively, where high wind storms and hurricanes put severe horizontal forces on buildings, stand up nicely to these forces as shown below:









TABLE 5







Compression Parallel to Grain











Type
PSI
Width
Total Length
Ultimate Load*














SPF
1,150
1.5
44
75,900


HemFir
1,450
1.5
44
95,700


DougFir
1,400
1.5
44
92,400


SYP #2
1,300
1.5
44
85,800


MSR2100
1,825
1.5
44
120,450


LSL
2,600
1.5
44
171,600


LVL
3,571
1.5
44
235,686





*Provided it does not deflect in the “x” or “y” axis in axial compression loading, in other words, the shape, and the adhesive, and the dowels need to hold it together.













TABLE 7







Wind Load Chart Maximum Allowable Pressure














Width
Height
Height
Height



PSF
2
10
16
24
















Category 1
22.5
Z
450
720
1080


Category 2
35

700
1120
1680


Category 3
45

900
1440
2160


Category 4
55

1100
1760
2640


Category 5
65

1300
2080
3120



















TABLE 8







Maximum
Maximum



Load
Deflection
















Tstud/MM Triple










918
0.206



1,815
0.535







Tstud/MM Quad










1,257
0.251



2,963
0.755



3,661
1.088



4,299
1.779



4,976
2.631



6,413
4.561



6,843
5.489



7,303
6.823










Referring to FIGS. 29-32, U-shaped, L-shaped, square-shaped and parallel-shaped designs of the thermal break wood support columns, 10, 60, 90 and 120 respectively, may be seen as illustratively anticipated to be used. The columns suitable may be in an outer building wall as well as within the interior of the building. Suitably, a LVL top plate or bottom plate 140 is placed between the floor and a header like parallel shaped wood support column 120 before it is securely mounted to the particular column 10, 60 and 90.


Referring to FIG. 33, an illustrated twenty story building is illustrated and all its vertical supports are various sizes of thermal break wood support columns, 10, 60, 90 and 120 except the top floors may use vertical supports of the type shown in Applicant's previous two issued U.S. Pat. Nos. 9,677,264 and 9,783,985 for thermal break wood studs (Tstuds®).


The above disclosure and accompanying FIGS. are for illustrative purposes only. The true scope of Applicant's invention is described in the following claims.

Claims
  • 1. A thermal break wood and rigid insulation wall support buttress, column or header, comprising: a. spaced apart multiple right angled aligned wood panel sections wherein the right angled wood panels have angled holes therethrough;b. non-metallic angled mechanical fasteners for passing through the holes and holding the lumber panel sections together in a truss angled arrangement maintaining the panel spaced relationship; andc. glue for permanently securely the panel sections and the mechanical fasteners together.
  • 2. The thermal break wood and rigid insulation wall support buttress, column or header of claim 1, wherein side edges of the wood panels are secured together by box joints.
  • 3. The thermal break wood and rigid insulation wall support buttress, column or header of claim 1, wherein side edges of the wood panels are secured together by miter joints.
  • 4. The thermal break wood and rigid insulation wall support buttress, column or header of claim 1, wherein a thermal break section of rigid foam insulation is injected between the wood panel sections and around the mechanical fasteners.
  • 5. The thermal break wood and rigid insulation wall support buttress, column or header of claim 1, wherein one of the spaced apart multiple right angled aligned wood panel sections has an opposing parallel aligned wood panel section forming a first U-shape support buttress, column or header.
  • 6. The thermal break wood and rigid insulation wall support buttress, column or header of claim 5 further comprising a second larger U-shape support buttress, column or header portion spaced from and permanently secured to the first U-shape support buttress, column or header.
  • 7. The thermal break wood and rigid insulation wall support buttress, column or header of claim 1, wherein spaced apart multiple right angled aligned wood panel sections form a first L-shape support buttress, column or header.
  • 8. The thermal break wood and rigid insulation wall support buttress, column or header of claim 7 further comprising a second larger L-shape support buttress, column or header portion spaced from and permanently secured to the first L-shape support buttress, column or header.
  • 9. The thermal break wood and rigid insulation wall support buttress, column or header of claim 1, wherein spaced apart multiple right angled aligned wood panel sections have opposing parallel aligned wood panel sections forming a first box-shape support buttress, column or header.
  • 10. The thermal break wood and rigid insulation wall support buttress, column or header of claim 9 further comprising a second larger box-shape support buttress, column or header portion spaced from and permanently secured to the first box-shape support buttress, column or header.
  • 11. A thermal break wood and rigid insulation wall support buttress, column or header, comprising: a. at least three spaced apart multiple parallel aligned wood panel sections wherein the parallel wood panels have angled holes therethrough;b. non-metallic angled mechanical fasteners for passing through the holes and holding the lumber panel sections together in a truss angled arrangement maintaining the panel spaced relationship; andc. glue for permanently securely the panel sections and the mechanical fasteners together.
  • 12. The thermal break wood and rigid insulation wall support buttress, column or header of claim 11, wherein a thermal break section of rigid foam insulation is injected between the wood panel sections and around the mechanical fasteners.
  • 13. A thermal break wood and rigid insulation wall support buttress, column or header, comprising: a. spaced apart multiple right angled aligned wood panel sections and at least one opposing parallel aligned wood panel section forming a first U-shape support buttress, column or header, wherein the wood panels have angled holes therethrough;b. non-metallic angled mechanical fasteners for passing through the holes and holding the lumber panel sections together in a truss angled arrangement maintaining the panel spaced relationship; andc. glue for permanently securely the panel sections and the mechanical fasteners together.
  • 14. A thermal break wood and rigid insulation wall support buttress, column or header, comprising: a. spaced apart multiple right angled aligned wood panel sections wherein the right angled wood panels have angled holes therethrough;b. non-metallic angled mechanical fasteners for passing through the holes and holding the lumber panel sections together in a truss angled arrangement maintaining the panel spaced relationship; andc. glue for permanently securely the panel sections and the mechanical fasteners together forming a L-shaped support buttress, column or header
  • 15. A thermal break wood and rigid insulation wall support buttress, column or header, comprising: a. spaced apart multiple right angled aligned wood panel sections and an opposing parallel aligned wood panel sections forming a first box-shape support buttress, column or header, wherein the wood panels have angled holes therethrough;b. non-metallic angled mechanical fasteners for passing through the holes and holding the lumber panel sections together in a truss angled arrangement maintaining the panel spaced relationship; andc. glue for permanently securely the panel sections and the mechanical fasteners together.
Provisional Applications (1)
Number Date Country
62859387 Jun 2019 US