The present invention relates to wood framing systems for tall commercial and tenant buildings that may go upwards to and over twenty-five stories that are all made from wood without steel or concrete. More specifically, the present invention is concerned with vertical wall column, buttress and header framing systems and component designs with built-in thermal breaks. These systems and designs deal with and solve the load problems with tall buildings, while yet being all made with wood, and with no use of steel or concrete.
Standard residential and small commercial construction today uses either 2×4 or 2×6 solid lumber generally spaced 16″ on center. Where energy conservation is a concern, most builders frame an exterior wall with 2×6's. Up to 30 percent of the exterior wall (studs, top and bottom plates, cripple studs, window/door jams and headers) is solid wood framing. Thermal bridges are points in the wall that allow heat and cold conduction to occur. Heat and cold follow the path of least resistance—through thermals bridges of solid wood across a temperature differential wherein the heat or cold is not interrupted by thermal insulation. The more volume of solid wood in a wall also reduces available insulation space, and further, the thermal efficiency of the wall suffers and the R value (resistance to conductive heat flow) decreases. These problems were solved by Applicant's previous two issued U.S. Pat. Nos. 9,677,264 and 9,783,985 for thermal break wood studs (Tstuds®), both incorporated by reference here.
Commercial building structures in excess of five stories, and up to twenty-five stories, require phenomenally more vertical support and bending resistance beyond the capacity of Applicant's patented thermal break wood stud with rigid insulation with non-metal fasteners and wall framing system. Also, commercial building structures materials are beyond the capacity of convention lumber (2×2, 2×4, 2×6, 2×12, 4×4, 6×6 12×12, etc.). Traditionally these structures are made with steel and concrete floors, walls, ceilings and vertical support columns and headers. While structures made with these materials are adequate for vertical support and bending resistance, they are extremely expensive to build and do not adequately deal with heat and air conditioning losses to the environment through exterior walls. Steel and concrete structural materials deplete natural resources, are harsh on the environment in their manufacture and also pose significant problems when it is time to demolish and recycle these structural materials.
A thermal break wood and rigid insulation wall support column, buttress or header is comprised of spaced apart multiple parallel and right angled wood panels. The right angled wood panels are secured together by box joints. Non-metallic angled mechanical fasteners hold the lumber panels together in a truss angled arrangement maintaining the panels spaced relationship. A thermal break section of rigid foam insulation is injected between the lumber panels and around the mechanical fasteners.
A principal object and advantage of the present invention is that there is percentage increase in exterior wall construction energy efficiency.
Another principal object and advantage of the present invention is that the present invention would save considerable expense in not using concrete and steel which could cost twice as much.
Another principal object and advantage of the present invention is that using wood columns, which are a natural and renewable sourced material, would eliminate the manufacture, reclamation and recycling of waste or demolished steel and concrete.
Another principal object and advantage of the present invention is that the invention has a smaller carbon footprint than standard commercial building construction simply by use of less materials and labor costs.
Another principal object and advantage of the present invention is that there is more insulation in the column cavities with less solid wood to increase thermal efficiency (R value) as compared to R values of concrete, steel and conventional wood as noted below:
Another principal object and advantage of the present invention is that the windows and doors have a thermal break all around the window and door openings thus improving the thermal effectiveness of the window and door jams.
Another principal object and advantage of the present invention is that there could be a reduction in the needed and required sizing for HVAC, furnaces and air conditioning equipment.
Another principal object and advantage of the present invention is that the column designs and framing systems requires less labor time (carpenters only) to rough-in a building simply because the vertical strength of the columns will support commercial buildings with only wood up to and beyond twenty-five stories without the need of cement and steel workers.
Another principal object and advantage of the present invention is that all these objects and advantages are accomplished without losing any integrity in building performance or structural qualities.
Another principal object and advantage of the present invention is that there will be a reduction on the future utility grid and a reduction on the future carbon footprint required to produce the electricity and gas to heat and cool a commercial building built to according to this invention.
Another principal object and advantage of the present invention is the fire rating of the thermal break wood columns is significant by having a Class A fire rating versus typical construction 2× wood members of having a Class C fire rating, thus potentially saving lives, allowing fire personnel to enter a burning structure more often and allowing additional time for occupants to vacate a burning structure.
Referring to
One can size and place tabs and cut outs 28 so support column 10 has only one way to be put together as all square reference surfaces are built-in. Thus, this two dimensional all edge-face assembly is fool proof and easy to form and assemble.
Wood is defined as any wood or lumber product and any wood derivative composite product. Whereby the definition of “wood derivative” is defined as a “New product that results from modifying an existing product, and which has different properties than those of the product it is derived from.” Lumber, timber, wood, or wood derivative, includes any and all structural composite lumber products, such as laminated strand lumber (LSL). This would also include structural composite lumber (SCL), which includes laminated veneer lumber (LVL), parallel strand lumber (PSL), laminated strand lumber (LSL), oriented strand lumber (OSL) and cross-laminated lumber (CTL). Nanocellulose materials, such as cellulose nanocrystals (CNC), would be included in this group. These composite lumbers are of a family of engineered wood products created by layering dried and graded wood veneers, strands or flakes with moisture resistant adhesive into blocks of material known as billets, which are subsequently re-sawn into specified sizes. In SCL billets, the grain of each layer of veneer or flakes runs primarily in the same direction. The resulting products out-perform conventional lumber when either face or edge-loaded. SCL is a solid, highly predictable, and uniform engineered wood product that is sawn to consistent sizes and is virtually free from warping and splitting.
Mechanical fasters 40 are suitably hard wood dowels 40 approximately 11/16-1½ ″ in diameter to match holes H through the panels 14, 16, 18, 34, 36 and 38. The dowels 40 are run through an abrader device to create a helical outer grooved or fluted outer surface 44 which aids in retaining glue 30 on the outer surface 44 of dowels 40. Panels 14, 16, 18, 34, 36 and 38 suitably have angled holes H drilled through them as shown in
Next the assembled wood column 10 is coated with a liquid wood protection system that is warranted for fire (class A), mould, rot, and insect infestation, including termites. The wood protection system can be applied to the wood column 10 in the following manners: spray booth, flood coater, dip tank, sprayer, brush, roller or pressure treatment. Such a wood protection system is sold under the trademark NEXGEN ADVANCED™ by NexGen ECOatings, Inc. of Vancouver, BC, Canada
This double U wall wood column design 10 may be built, as shown to be a double U design 10, to be a triple 46, quad 48, five 50 or six 52 wall U Shape design, illustratively shown in
The final foam section 36 may be of expanded polyurethane, polystyrene or polyisocyanurate. The foam 36 is injected into the open spaces around the mechanical fasteners 40 and between the wood panel sections 34, 36 and 38. The foam 36 may suitably made by mixing an isocyanate, such as methylene diphenyl diisocyanate (MDI) with a polyol blend, or other suitable rigid foam sheet or there equivalent. Such foams are sold under the trademark AUTOFROTH® sold by BASF Corporation of 100 Park Avenue Florham Park, N.J. 07932 USA and under the trademark PROTECH™ by Carpenter Co. of 5016 Monument Ave. Richmond, Va. 23230 USA In fact, it is to be anticipated that rigid foams of yet even high R values are on the market now with more being created that are and will be suitable for use with the present invention. Polyurethane insulation has the highest thermal resistance (R-values) at a given thickness and lowest thermal conductivity.
The following Table 2 shows R values and vertical compression strength (Fc) of the double U-shaped (double half box) 10, triple U-shaped design (triple half box) 46 and the quad U-shaped (quad half box) 48 wherein the loads are supported on the ends of the pieces:
Referring next to
As previously stated one can size and place tabs and cut outs 28 so support column 60 has only one way to be put together as all square reference surfaces are built-in. Thus this two dimensional all edge-face assembly is also fool proof and easy to form and assemble. Alternatively as shown in
Mechanical fasters 40 are suitably hard wood dowels 40 approximately 11/16-1½ ″ in diameter to match holes H through the panels. The dowels 40 are run through an abrader device to create a helical outer grooved or fluted outer surface 44 which aids in retaining glue 30 on the outer surface 44 of dowels 40. Panels suitably have angled holes H drilled through them as shown in
The important consideration is that the dowel 40 must have a high modulus of elasticity. When using 90° angled panels, four staggered and angled mechanical fasteners 40 are used per foot of column 60.
Next the assembled wood column 10 is coated with a liquid wood protection system, discussed above, that is warranted for fire (class A), mold, rot, and insect infestation, including termites.
The final foam section 84 may be of expanded polyurethane, polystyrene or polyisocyanurate. The foam 84 is injected into the open spaces around the mechanical fasteners 40 and between the wood panels. The foam 84 may suitably made by mixing an isocyanate, such as methylene diphenyl diisocyanate (MDI) with a polyol blend, or other suitable rigid foam sheet or there equivalent.
This quad L column design 60 may be built, as shown to be a double L design 76, to be a triple 78, quad 60, five 80 or six 82 L Shape design, illustratively shown in
The following Table 3 shows R values and vertical compression strength (Fc) of the double L-shaped (double corner) 10, triple L-shaped design (triple corner) 46 and the quad L-shaped (quad corner) 48 wherein the loads are supported on the ends of the pieces:
Referring next to
As previously stated one can size and place tabs and cut outs 28 (box joints vs. mitered joints) so support column 90 has only one way to be put together as all square reference surfaces are built-in. Thus this two dimensional all edge-face assembly is also fool proof and easy to form and assemble.
Mechanical fasters 40 are suitably hard wood dowels 40 approximately 11/16-1½ ″ in diameter to match holes H through the panels. The dowels 40 are run through an abrader device to create a helical outer grooved or fluted outer surface 44 which aids in retaining glue 30 on the outer surface 44 of dowels 40. Panels suitably have angled holes H drilled through them as shown in
Next the assembled wood column 90 is coated with a liquid wood protection system, discussed above, that is warranted for fire (class A), mold, rot, and insect infestation, including termites.
The final foam section 110 may be of expanded polyurethane, polystyrene or polyisocyanurate. The foam 110 is injected into the open spaces around the mechanical fasteners 40 and between the wood panels. The foam 110 may suitably made by mixing an isocyanate, such as methylene diphenyl diisocyanate (MDI) with a polyol blend, or other suitable rigid foam or their equivalent.
This square column design 90 may be built, as shown to be a double square design 106, to be a triple 90 or quad 108 square shape design, illustratively shown in
The following Table 4 shows R values and vertical compression strength (Fc) of the double square (box) 106, triple square (box) 90 and the quad square (box) 108 wherein the loads are supported on the ends of the pieces:
Referring next to
Mechanical fasters 40 are suitably hard wood dowels 40 approximately 11/16-1½ ″ in diameter to match holes H through the panels. The dowels 40 are run through an abrader device to create a helical outer grooved or fluted outer surface 44 which aids in retaining glue 30 on the outer surface 44 of dowels 40. Panels suitably have angled holes H drilled through them as shown in
Next the assembled wood column 120 is coated with a liquid wood protection system, discussed above, that is warranted for fire (class A), mold, rot, and insect infestation, including termites.
The final foam section 136 may be of expanded polyurethane, polystyrene or polyisocyanurate. The foam 136 is injected into the open spaces around the mechanical fasteners 40 and between the wood panels. The foam 136 may suitably made by mixing an isocyanate, such as methylene diphenyl diisocyanate (MDI) with a polyol blend, or other suitable rigid foam or their equivalent.
This parallel column design 120 may be built, as shown to be a triple parallel design 130, to be a five parallel design 132 or a six parallel design 136, illustratively shown in
The following table 5 shows R values and vertical compression strength (Fc) of the triple parallel (stacked) 106, quad parallel (stacked) 120, 5 or quintuple parallel (stacked) 132 and the 6 or sextuple parallel (stacked) 134 wherein the loads are supported on the ends of the pieces:
Wind loads are also a very important consideration. The U-shaped, L-shaped, square-shaped and parallel-shaped triple and quad designs of the thermal break wood support columns, 46, 48, 78, 60, 90, 108, 130 and 120 respectively, where high wind storms and hurricanes put severe horizontal forces on buildings, stand up nicely to these forces as shown below:
Referring to
Referring to
The above disclosure and accompanying FIGS. are for illustrative purposes only. The true scope of Applicant's invention is described in the following claims.
Number | Date | Country | |
---|---|---|---|
62859387 | Jun 2019 | US |