This invention directly relates to the field of energy storage. The invention is a device used for increasing the efficiency and/or prolonging the operation of a fluid heating system. Such systems include but are not limited to water heating, space heating, boilers, and forced hot air systems.
Responsibly supplying energy needed for human society has arguably become the most complex, and controversial challenge facing us today. The sun setting at night remains the most prevalent challenge for solar energy as a primary power source. It is well known in the power industry that the highest demands for power usage are in the morning and evening, when people are leaving their homes for the day and returning home from work or school. Compounding the problem of high demand, these times are also when the sun's rays are at their weakest. This creates a need to supplement solar energy systems with some conventional carbon fuel based energy. Similarly, many long existing heating systems operate at low efficiencies. In between cycles, most conventional heating systems rapidly lose temperature to their surroundings, due to less than optimal insulation, and older, less efficient materials. This puts a heavy tax on the heat source, which must bring the entire system back up to operating temperature at the start of each cycle. These fundamental problems have led to widespread research into storage of thermal energy. Although there have been many reviews of storage media, there are not many which focus on the storage system itself. This disclosure goes in depth into the design and application of a practical and scalable thermal energy storage system.
The three most commonly used media for thermal energy storage today are water and stones, ceramic brick, and phase change material (PCM). This disclosure utilizes PCM as the storage media because it possesses the highest energy storage-to-volume ratio out of the three. This ratio means that PCM packs the most energy storage capability into the smallest footprint. PCMs are latent heat storage materials where thermal energy is absorbed by melting the PCM, and the majority of the thermal energy is absorbed at the PCM's melting temperature, during its transition from a solid to liquid.
There are two types of heat energy: latent and sensible. Latent heat is the amount of energy required to change matter from one state to another, such as from liquid-to-solid or liquid-to-gas. PCMs are typically substances which utilize a solid-to-liquid phase change. During a phase change of any substance, its temperature will remain the same as you add or subtract energy until its change is complete. This is something which can be observed by noting the amount of time liquid water will remain at 32° F. before freezing into a solid, or at 212° F. before turning into a vapor. Air conditioning is only possible because of this latent heat phenomenon. As warm liquid refrigerant is passed through a diffuser, the pressure drop causes the refrigerant to change phase into a gas, drawing an enormous amount of thermal energy out of its surroundings, thus cooling the air passing over it. Sensible heat is the very familiar rise of temperature which can be readily detected, and is the energy used to increase the temperature of an object without affecting a phase change. Sensible heat is far less efficient for thermal energy storage than latent heat, which may have 100 times the storage capacity of sensible heat. As an example, generic concrete has a specific heat (sensible) value of 1.0 kJ/kg K with no latent heat capacity. Whereas common paraffin wax as a PCM has a specific heat of 2.9 kJ/kg K with a latent heat capacity of 154 KJ/kg. The latent heat value is gained at the melting temperature of paraffin which is around 100° F. Examining a temperature rise from 0-100° F. (55.6 K) for 1kg of paraffin wax, 55.6K*2.9 KJ/kg K*1 kg+154 KJ/kg*1 kg=315 KJ of energy stored. Concrete at the same temperature rise would only absorb 55.6*1 KJ/kg*1 kg=55.6 KJ. This means that you would need nearly six times the amount of concrete to achieve the same amount of energy storage as paraffin wax, showing the superiority of PCM to ceramic materials.
Phase change materials (PCM) are substances which absorb and release thermal energy depending on the thermodynamic process of its environment. During a process of melting or vaporizing, PCMs absorb large amounts of energy. Conversely, when such a material is in process of condensing or freezing it releases a large amount of energy in the form of latent heat at a relatively constant temperature. PCMs can store 5 to 14 times more heat per unit volume than naturally occurring materials such as water, masonry or rock. Among various heat storage options, PCMs are particularly attractive because they offer high-density energy storage and store heat within a narrow temperature range.
One key advantage to PCMs are their narrow temperature range of latent heat storage, based on its specific phase change temperature. This allows PCM systems to be optimized for specific applications. One example being household hot water, a PCM which melts at a desirable hot water temperature could be chosen and regulated at +/−5 degrees Fahrenheit of that temperature.
The invention provides a single self-contained system for storage and release of thermal energy. In a preferred embodiment, phase change material (PCM) is charged to store heat, and operation fluid flows through a heat exchanging system which is immersed in the PCM to absorb thermal energy from the PCM, increasing the temperature of the operation fluid for use outside of the invention. Preferably the PCM is charged by a heated charging fluid or other external heat source. The preferred embodiment of the invention uses separate modules of operation and/or charging fluid to interact with PCM by means of conduction, via a series of interconnected pipes. The interconnected pipes and PCM are contained within a well-insulated vessel to maximize the exchange of thermal energy between the PCM and operation/charging fluids. Where a charging fluid is used, a separate system of interconnected pipes carries thermal energy from an outside heat source, and transfers it to the surrounding PCM within the invention.
As used herein, the term “operation fluid” refers to fluid which is affected by the invention, for example heated water for use with residential or commercial plumbing and appliances. The term “charging fluid” refers to fluid used to affect the PCM of the invention.
As shown in
All free space within interior cavity wall 502 and surrounding the heat exchanger assembly is preferably filled with PCM 200. PCM 200 may be any of the known types of phase charged materials, where the type of PCM will be determined by the preferred operating temperature. For household hot water use, the latent temperature of PCM 200 would preferably be in the range of 100 to 150 degrees Fahrenheit, similar to the range of a conventional hot water heater. For other uses, the latent temperature of PCM 200 may be in anywhere between 80 and 950 degrees Fahrenheit.
Entry port 301 is an inlet for heated charging fluid to enter vessel 500, where the heated charging fluid provides thermal energy to the PCM within vessel 500. Outlet port 302 is in fluid communication within vessel 500 to entry port 301, and allows for cooled charging fluid to exit the vessel. Outlet port 302 is in fluid communication to an external heating source, such as a solar panel, furnace or hot water heater. In a preferred embodiment, the charging fluid path is cyclic, where the charging fluid starts at the external heating source, enters the charging fluid circuit 300 via entry port 301, exchanges its thermal energy into the PCM, and then exits the vessel via outlet port 302 to return to the external heating source for reheating.
Charging fluid circuit 300 is preferably formed by an inner coil 306 and outer coil 305 which carry the charging fluid. These coils may be a standard copper tubing which is mechanically coiled into an optimally spaced helix, such that all of the coils' surface area is in contact with PCM. The inner coil 306 is positioned concentrically inside of the outer coil 305 and connected by connector conduit 303 which crosses over at the bottom or top of the dual fluid heat exchanger assembly. The coils are made such that the tubes are separated at an optimal distance for dissipating heat evenly all around into the PCM. The heated charging fluid first travels through the inner coil 306 then through the outer coil 305, heating the PCM from the center of the vessel 500 outward, allowing for the highest temperatures to be in the center region of the vessel 500.
Entry port 101 is an inlet for the introduction of operation fluid to be heated by the invention. Outlet port 102 in fluid connection with entry port 101, said fluid connection within vessel 500. Outlet port 102 allows for the heated operation fluid to exit the vessel. The heated fluid exiting from outlet port 102 is capable of any number of uses, such as appliances, showers, or other uses. The two fluids (charging fluid and operation fluid) flow through two separate paths within the heat exchanger assembly, and do not mix with each other. The locations of entry ports 101 and 301, and outlet ports 102 and 302 may be in other locations relative to the vessel 500 than as shown in the figures, and one or both of the pairs of entry and outlet ports may be reversed.
As shown in
The inventive concept here is that a relatively cold operation fluid enters through entry port 101, and travels through the operation fluid circuit 100, consecutively flowing through each operation fluid container 104 before exiting though the last operation fluid container 104 via outlet port 102. The operation fluid exiting outlet port 102 will preferably have been heated by the charged PCM 200 surrounding the operation fluid containers 104, to reach a desired temperature, greater than the temperature of the operation fluid at entry port 101. The PCM 200 surrounding the operation fluid containers 104 is charged by charging fluid traveling though the heat exchanging circuit 300. Arriving at entry port 301 from an external heat source, heated charging fluid first travels down through the inner coil, and continues up through the outer coil via connection tube 303 at the bottom of the vessel. The heat exchanging circuit 300 carries thermal energy from an external heat source, and quickly disperse that energy to the PCM 200 by conduction.
The cylindrical shape of vessel 500 is preferred because it facilitates maximal contact surface area between the heat exchanging assembly and PCM material. The cylindrical shape also provides good manufacturing capability. Structures with angular cross-sections, such as rectangular or triangular cross-sections have corners which may create cold spots for the PCM 200 because of lack of contact area, or require additional thermal contact points.
In contrast to the three layer encapsulation method of having an outer most containment barrier concentric with an inner containment barrier with the empty space in-between the two filled with some insulation material, a single layer method of encapsulation is possible. Very similar to how beverage carriers are constructed, injection molded single layer encapsulation of the PCM and heat exchanger assembly is efficient. This type of encapsulation would make for a more efficient and cost effective volume production, greatly cutting down on material cost as well as labor time involved with assembly. Aside from injection molding techniques, this single layer design could also be formed stainless steel with a vacuum insulation layer. Although stainless steel is a more expensive material, it could provide a more efficient insulation layer, while also enabling the ability for the heat exchanging system and PCM to operate at much higher temperatures.
This disclosure takes into consideration common building materials which are commercially available. All internal heat exchanging components are preferably comprised of materials which have a high thermal conductivity. An example of such materials are aluminum and copper. The vessel which contains the PCM and heat exchanger assembly, should be made from nonporous materials with low thermal conductivity. Commonly available would be polymer plastics such as polyvinyl chloride (PVC) and chlorinated polyvinyl chloride (CPVC). To maximize efficiency of the storage system, the containment vessel should also be insulated from its surroundings. To achieve this, the preferred embodiment utilizes an outer vessel to retain an insulation layer surrounding the PCM and heat exchanger assembly. This insulation layer can be made from a number of different media including vacuum, air, spray foam, hard foam, or fiberglass.
The capabilities of the storage system described in this disclosure are limited by the working temperature of the vessel which contains the PCM and heat exchanger assembly, and to a lesser extent the working temperature of the heat exchanger materials themselves. For instance, PVC and CPVC have a maximum operating temperature of 200° F. Common soldered joints of copper tubing will melt at 370° F., acting as another limit of the system. The designs presented in this disclosure could be made from any engineered materials. The highest latent heat temperatures of tested PCMs reach 900-1200° F. The heat exchanger and containment materials could be designed to withstand this temperature range.
While certain novel features of the present invention have been shown and described, it will be understood that various omissions, substitutions and changes in the forms and details of the device illustrated and in its operation can be made by those skilled in the art without departing from the spirit of the invention.