Field of the Invention
The invention relates to a thermally actuated circuit breaker for protecting a load, in particular a vehicle power supply, also known as an onboard electrical system, comprising in a switch housing a temperature-dependent switching mechanism, which subject to its temperature establishes an electrically conductive connection between two external terminals positioned on opposite sides of the housing and fed out of the switch housing.
Description of the Background Art
From US 2005/0057336 A1, a thermally actuated circuit breaker for protecting electrical components against excess current, having a switch housing and a temperature-dependent switching mechanism disposed therein, is known, which produces as a function of its temperature an electrically conductive connection between two external terminals leading out of the switch housing, which are fed out on opposite sides of the housing.
The protection of a power supply having vehicle loads supplied by a power supply, especially a passenger car or a commercial vehicle, particularly a truck or a bus, is usually carried out by means of fuses, circuit breakers or relays, which are arranged centrally in a fuse box of an onboard electronics, also designated as a central electrical system, with corresponding slots. This requires the laying or routing of cables or lines from the protected loads, which can be located virtually at any location within the vehicle, to the onboard electronics. Hereinafter, a single-lead or multicore composite of cores coated with an insulating material will be referred to as a cable, which serves to transfer energy, in particular, nominal or load current supplied to the respective load.
The laying of the cable or conductors and the cable/conductive material itself represent not only a cost factor, but also lead to a corresponding increase in vehicle weight. This in turn is undesirable, especially in view of the desired reduction in emissions of such vehicles in respect of optimizing the carbon footprint.
The circuit breaker used to-date to protect the power supply or onboard electrical system and/or for overcurrent protection of loads is inserted in sockets of an onboard electronics or into the vehicle control unit, wherein the sockets serve on the one hand to (mechanically) fix the circuit breakers and on the other hand, to (electrically) contact these to the respective cable. Usually, in the automobile sector, thermally actuated, self-resetting miniature circuit breakers using a bimetal switching mechanism in conjunction with a PTC resistor as the heating element for holding open the switch contacts are used when tripping occurs, such as those known, for example, from DE 20 2009 010 473 U1 and WO 2012/037991 A1.
In order to fix the circuit breakers on the cable or conductor cores, spring contacts are crimped, which in turn are inserted into the socket and lock in place there. The respective circuit breaker contacts these spring contacts by means of its plug-in connections. The socket also serves to electrically insulate this connection and must be separately attached, for example, clipped, into the cable or the cable harness.
It is therefore an object of the invention to provide a thermally actuated circuit breaker that is particularly suitable for a vehicle electrical system and can be particularly suitably integrated into the system.
In a thermally actuated circuit breaker used to protect a load of a vehicle power system in a switch housing with a temperature-dependent switching mechanism, which depending on the temperature thereof establishes an electrically conductive connection between two external terminals fed out of the switch housing, according to the invention the external terminals are fed out on opposite housing sides of the switch housing as well as provided and configured for an electrical and mechanical terminal connection with the cable connection ends of in each case one cable portion, of which one cable portion leads to a load being protected, and the other cable portion leads to an onboard electronics system. The switch housing of the particularly advantageously integratable circuit breaker has a plurality of housing sections, wherein a middle housing section surrounds the switch-specific switching mechanism, whereas there, housing sections connected thereto on both sides are used for receiving the respective terminal connection.
The term “onboard electronics” can be, for example, a vehicle control unit or an onboard power supply of such a vehicle. Furthermore, the term “cable” can be, for example, a single conductor with conductor insulation encasing a conductor core, or a number of such conductors that are encased by a common cable insulation.
In an exemplary embodiment, the invention is based on the consideration of moving the protection of the respective load as closely as possible to the load. Since such protection can practically be located anywhere on the vehicle, e.g. also at an inaccessible locations, the circuit breaker according to an embodiment can be self-resetting.
In an embodiment, the switching mechanism has a bimetal element supporting a moving contact at its free end, and a heating element in the form of preferably a PTC resistor, which rests on the bimetal element and is supported by means of a spring element on a fixed contact arm. Together with the moving contact, a fixed contact supported by the fixed contact arm forms the switch contact point of the circuit breaker.
In this regard, according to the SAE standard J553, one can generally make use of two types of devices, in which the device, i.e. the circuit breaker, automatically closes (type I) after a specified time after a power interruption due to an overcurrent. In this case, operation is ordinarily based on the cooling of a bimetal upon opening, which then again closes the circuit. A device (circuit breaker) of the type II holds the circuit in an open state until the (supply) voltage is removed, wherein for the thermal tripping after the opening process, a bimetal is maintained at temperature by a heating element so that the thermally actuated circuit breaker may initiate the closing operation only after it has been switched off, that is, after removal of the voltage.
The circuit breaker can be of the type II, using a PTC resistor as a heating element for keeping the circuit open. It is advantageous here, in particular, that on the one hand, the temperature in case of overload remains in a range enabling the use of a switch housing consisting of a plastic, and that on the other hand, overheating in the cable (harness) in which the circuit breaker is integrated according to the invention is avoided. Moreover, the inventive circuit breaker integrated in the assembled state in a cable, in particular in a power supply cable of a vehicle, is a miniature construction or design. These are understood to be housing dimensions of the switch housing with lengths of about 10 mm to 25 mm, widths of about 5 mm to 10 mm and heights of about 15 mm to 25 mm. Here, a rectangular switch housing with terminals fed out at the narrow sides that oppose each other in the housing longitudinal direction is particularly suitable and preferred.
Suitably, the terminal connections of the circuit breaker with the cable ends and the conductor cores guided therein are designed as connections without screws. Suitable here are clamp connections or also insulation displacement connections. Designing the external terminals of the circuit breaker as an insulation displacement contact (IDC) saves the assembly step of stripping the cable or the conductor cores. By utilizing double-edged insulation displacement contacts, it is possible to use both cutting edges for the electrical contact, or to design one of the blades as strain relief.
While the external terminals of the circuit breaker can also be designed as spring contacts or double spring contacts, crimp connections are particularly advantageous. In this regard, further savings is possible when the respective external terminal of the circuit breaker is directly designed as a blade receptacle with a molded crimp shaft. In addition to the core or wire crimp chamfers, this crimp shaft has strain relief chamfers at its free end, which during the crimping process enclose the cable or conductor insulation, which are thereby deformed due to the pressing process up to a, usually predetermined, extent.
The design of the thermally actuated circuit breaker for its integration into a cable, in particular a power supply cable of a vehicle, further allows, in addition to the aforementioned, preferably screwless connection variants, designing the external terminals as spring-loaded terminals, for example, in the manner of a so-called cage clamp spring. The advantage of such spring-loaded terminals is on the one hand their easy handling in the terminal connection of the stripped cable or conductor end, and on the other hand, their reliable electrical and mechanical connection contact. Particularly when using a spring or cage clamp spring as a connecting element, it is possible to easily manually loosen the connection.
Basically, it is also possible to directly weld the connection of the circuit breaker with the cable ends or their conductor cores in the area of the external terminals of the circuit breaker, for example, using ultrasonic welding.
The terminal-side housing sections are suitably formed from a, e.g., shell-like housing lower part and a, e.g., also shell-like housing upper part that closes the housing lower part. Particularly expediently, the respective housing upper shell is pivotally connected to the corresponding housing lower part of the connection-side housing section. Especially suitable is the formation of a film hinge between the housing upper part and the housing lower part, particularly since the switch housing or its housing sections are expediently made of a plastic that is suitable in particular as regards the best possible insulation properties and high heat resistance, in particular during the spraying process.
The terminal-side housing sections directly join the middle housing section of the switch housing, for example, designed in one piece. The closing of the terminal-side housing sections taking place following the connection contact of the cable ends with the circuit breaker-side external terminals suitably occurs by latching connections between the housing upper part and the housing lower part on the housing side opposite the hinge or film hinge connection.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes, combinations, and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitive of the present invention, and wherein:
The load 4 may be, for example, an electric motor driven actuator or other conventional electrical load of a vehicle (car, truck).
The thermal, i.e., thermally actuated circuit breaker 1 includes a switch housing 5 which is suitably designed in as flat a construction as possible. The thus miniaturized circuit breaker 1 is suitably designed to be self-resetting and for this purpose, within the housing includes a switching mechanism 6 with a, for example, strip-shaped bimetal element 7 and a switch contact point 8 and a heating element 9 in the form of a PTC resistor which rests on the bimetal element 7 and is supported by a spring element 10 on a fixed contact arm 11 that supports a fixed contact 8a on its free end. The bimetal 7 supports a movable contact 8b on its free end, which, together with the fixed contactor 8a, forms the contact point 8 of the circuit breaker 1 shown in the closed position. The bimetal element 7 is electrically and mechanically connected with a movable contact arm 13 by its bimetallic end 12 situated opposite the contact point 8.
The fixed contact arm 11 and the movable contact arm 13 are designed as flat contacts as well as suitably power rail-like, and for this purpose, expediently designed as a stamped bent part. The contact arms 11 and 13 are fed out from the switch housing 5 on the end side in the housing longitudinal direction 14 on opposite narrow housing sides 5a and 5b and there, form the external terminals 15a, 15b. These are provided and arranged for electrical and mechanical connections 16a and 16b, with cable ends 17a, 17b of the supply-side cable portion 3a and the load-side cable portion 3b. The connections 16a, 16b are suitably situated in terminal-side housing sections 51 and 52 of, for example, a middle housing section 53, in particular, as a plastic injection molded part.
The operation of the thermal circuit breaker 1 corresponds practically to that of a thermally actuated circuit breaker known per se from WO 2012/037991 A1, in which in case of an overcurrent, the breaker flows through the bimetal element 7 in the closed position of the contact point 8 and flexes the element as a result of its deflection in the tripping direction 18. Thereby, the movable contact 8b is lifted from the fixed contact 8a and thereby pivoted in the direction of the movable contact arm 13. The current interruption thus caused, that is, the interruption of the circuit closed via the contact point 8 in the closed state of the contacts 8a, 8b of the contact point, would result in a cooling of the bimetal element 7 and, consequently, lead to a reclosing of the contact point 8. To prevent this, the suitably high-impedance-designed heating element 9 is also electrically connected to the power rail-like contact arms 11, 13 when the contact point 8 is open and thus energized. Due to the resulting heat build-up, a cooling of the bimetal element 7 adequate for renewed closing of the contact point 8 is avoided. The spring element 10 serves substantially to apply a sufficient pressing force of the heating element 9 designed as a PTC resistor to the bimetal element 7.
In the embodiments according to
In the embodiment of
The embodiments of
Locking elements 23, 24 are molded at the housing upper parts 51b, 52b of the terminal-side housing sections 51, 52, which engage in corresponding latching elements 25 and 26 molded on each housing part 51a, 52a by forming undercuts.
In a perspective view and in a longitudinal section,
As can be relatively clearly seen in
Due to the practically streamlined geometry and the relatively small mass of the thermal circuit breaker 1, it is possible to integrate the breaker without a separate attachment directly in the cable harness or in the onboard power supply cable 3 in an electrically contacting and mechanically reliable manner, firmly fastened, and thus integrate it in the cable 3 in a particularly space-saving manner.
The invention is not limited to the embodiments described above. Rather, other variations of the invention can be derived therefrom by those skilled in the art without departing from the scope of the invention. In particular, further, all single features described in connection with the embodiments can be combined in other ways without departing from the scope of the invention.
For example, the terminal connections 16a, 16b with the two external terminals 15a and 15b of the thermal circuit breaker 1 may be designed as different, screwless plug connections in accordance with the variations in
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 004 106 | Mar 2014 | DE | national |
This nonprovisional application is a continuation of International Application No. PCT/EP2015/000437, which was filed on Feb. 26, 2015, and which claims priority to German Patent Application No. 10 2014 004 106.9, which was filed in Germany on Mar. 21, 2014, and which are both herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2727116 | Alfred | Dec 1955 | A |
3537052 | Snider | Oct 1970 | A |
3609620 | Lee | Sep 1971 | A |
3827013 | Kowalski | Jul 1974 | A |
3913054 | Wolfe | Oct 1975 | A |
4358667 | Johnson | Nov 1982 | A |
4380001 | Kasamatsu | Apr 1983 | A |
4490704 | Snider | Dec 1984 | A |
4626820 | Takahashi | Dec 1986 | A |
4876523 | Kushida et al. | Oct 1989 | A |
5337036 | Kuczynski | Aug 1994 | A |
5489762 | Martin et al. | Feb 1996 | A |
5880665 | Yetter | Mar 1999 | A |
6064295 | Becher | May 2000 | A |
8289124 | Hofsaess | Oct 2012 | B2 |
20030122650 | Yamamoto | Jul 2003 | A1 |
20050057336 | Toyosaki | Mar 2005 | A1 |
20100066478 | Hofsaess | Mar 2010 | A1 |
20100149698 | Torella et al. | Jun 2010 | A1 |
20130214895 | Ullermann | Aug 2013 | A1 |
20140111299 | Takeda | Apr 2014 | A1 |
20140285308 | Namikawa | Sep 2014 | A1 |
20160035521 | Namikawa | Feb 2016 | A1 |
20180233310 | Tanaka | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
201689827 | Dec 2010 | CN |
103081051 | May 2013 | CN |
103597566 | Feb 2014 | CN |
298 06 869 | Jun 1998 | DE |
198 52 578 | Apr 2000 | DE |
10 2005 001 371 | Jul 2006 | DE |
10 2008 048 554 | Feb 2010 | DE |
20 2009 010 473 | Apr 2010 | DE |
102009053258 | May 2011 | DE |
0 800 193 | Oct 1997 | EP |
0938116 | Aug 1999 | EP |
1362441 | Jun 1964 | FR |
H07-326268 | Dec 1995 | JP |
H 09-134634 | May 1997 | JP |
WO 2012037991 | Mar 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20170011877 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2015/000437 | Feb 2015 | US |
Child | 15271539 | US |