This invention relates to machines for converting bulk rolls of a web material into smaller rolls suitable for consumers, commonly referred to as rewinders, and more specifically, to an improved mounting arrangement for a web cutting device used to cut or perforate the web material in such rewinding machines.
Continuous webs of fabric, paper and the like are conventionally severed by feeding the web through cutting devices having at least one rotating roll carrying one or more knives engageable with an anvil, either stationary or mounted on an opposing roll. The continuous web is fed along a conveyor means, passes between the knife roll and anvil where it may be cut into a number of segments or perforated. Cut segments or the perforated web is conveyed away from the cutting device. By modifying the knife and interface with the anvil, the web may be perforated rather than severed using a similar roll arrangement. U.S. Pat. Nos. 5,363,728 and 8,540,181 illustrate roll winding machines of the type on which this invention might be useful.
The thickness of most webs requires precise control of the spacing between the knife and anvil. Insufficient space may lead to severing of the web when perforation is desired and increase the rate of knife edge deterioration. Too much space may result in the web failing to be severed or perforated by the knife. Bulk rolls of web materials may be up to 6 feet wide, requiring the rotary knife to span the width of the roll. Maintaining a separation tolerance between knife and anvil on the order of 0.0005 inches on a roll that may span up to 6 feet requires the knife roll to be robust and the connection between knife and roll stably secure, yet allow the knife to be removed for sharpening with reasonable ease.
Web speeds in modern rewinding machines can approach 700 feet per minute. Rolls in the web path may thus be subjected to correspondingly high rotational speeds which generates heat in bearings and connections to the machine structure. As the rewinding machine continues to operate, thermal expansion may affect the spatial relationship of critical interfaces in the machine, including the knife-anvil interface, which results in inconsistent performance of the rotary cutting device.
Accordingly, the present invention, in any of the embodiments described herein, may provide one or more of the following advantages:
It is an object of the present invention to provide an improved rotary cutting device for a web converting machine that maintains spatial tolerance between a knife and anvil in the cutting device as the machine undergoes thermal expansion. The rotary cutting device comprises a roll having at least one knife affixed thereon, the roll being rotatably mounted to the machine by bearings disposed on opposing ends of the roll and supported by bearing mounts connected to the machine. A thermal isolator is disposed between the bearing mounts and the machine to inhibit heat transfer from the bearings into the machine structure and the bearing mount is oriented so that thermal growth in the mount aligns perpendicularly to a plane in which the knife and anvil interface.
It is a further object of the present invention to provide an improved rotary cutting device for a web converting machine that maintains spatial tolerance between a knife and anvil in the cutting device by minimizing stress-induced deflections in the knife roll. The rotary cutting devices comprises a roll having at least one knife affixed, typically helically, thereon, and the roll being rotatably mounted to the machine by bearings disposed on opposing ends of the roll and supported by bearing mounts connected to the machine. In rolls having a single knife, stresses induced by connecting the typically planar knife to the slight helical mounting connection on the roll can lead to minor deflection of the roll from its rotating axis. To counteract these stresses, a second knife location is provided, symmetrically positioned in relation to the first knife, and a second knife lacking a cutting edge is mounted to produce symmetric stresses in the roll thereby minimizing any deflection in the roll.
It is a still further object of the present invention to provide an improved rotary cutting device for a web converting machine that maintains spatial tolerance between a knife and anvil in the cutting device by managing thermal and stress-induced deflections in the rotary cutting device that is durable in construction, inexpensive of manufacture, carefree of maintenance, easily assembled, and simple and effective to use.
These and other objects are achieved in accordance with the present invention by providing a rotary cutting device comprising a roll having at least one knife affixed thereon, the roll being rotatably mounted to the machine by bearings disposed on opposing ends of the roll and supported by bearing mounts connected to the machine. A thermal isolator is disposed between the bearing mounts and the machine to inhibit heat transfer from the bearings into the machine structure and the bearing mount is oriented so that thermal growth in the mount aligns perpendicularly to a plane in which the knife and anvil interface. The roll is further provided with at least two knife mounting positions, symmetrically arranged on the roll, so that stresses induced by the knife-to-roll connection are balanced and thus do not cause asymmetric deflection of the roll.
The advantages of this invention will be apparent upon consideration of the following detailed disclosure of the invention, especially when taken in conjunction with the accompanying drawings wherein:
Many of the fastening, connection, processes and other means and components utilized in this invention are widely known and used in the field of the invention described, and their exact nature or type is not necessary for an understanding and use of the invention by a person skilled in the art, and they will not therefore be discussed in significant detail. Also, any reference herein to the terms “up” or “down,” or “top” or “bottom” are used as a matter of mere convenience and are determined as the machine would normally rest on a level surface. Furthermore, the various components shown or described herein for any specific application of this invention can be varied or altered as anticipated by this invention and the practice of a specific application of any element may already be widely known or used in the art by persons skilled in the art and each will likewise not therefore be discussed in significant detail. When referring to the figures, like parts are numbered the same in all of the figures.
Referring to
The roll cutter 20 and cutting anvil 50 extend for at least the width of the web 5. In practice, web widths ranging from 36 to 72 inches are common.
Desired production rates in modern web converting machines require web travel speeds ranging from 200 to 700 feet per minute. Upward pressure for production efficiency improvements pushes development of machines using even higher web speeds. With higher web speeds comes increased heat generation in the bearings and other friction interfaces.
Maintaining close spatial tolerance in the gap between the knife 30 and the anvil 50 of the web cutting device 10 is essential for high production efficiency, especially for perforation of the web. The web converting machine 10 may be required to handle web thicknesses ranging from 0.005 to 0.100 inches. This gap “G” (see
Thermal displacement in the frame 100 caused by heat transfer from the roll cutter bearings can cause movement of the roll cutter centerline 200 away from the anvil 50 (shown as arrow “A” in
Further limitation of thermally induced effects on knife positioning and gap G is provided by incorporating a thermal isolator 60 between the bearing support blocks 40 and the frame 100 to limit heat transfer from the support blocks 40 to the machine frame 100 which might otherwise contribute to thermal expansion of the frame members along an axis perpendicular to the web feed path.
In
The thermal isolator 60 is preferably constructed of a material that is thermally stable and has a low coefficient of thermal conductance, significantly lower compared to the ferrous material comprising the frame and bearing support blocks and preferably lower by one or more orders of magnitude. In one embodiment, a thermal isolator 60 is fabricated from mica, which has a thermal conductance approximately two orders of magnitude less that iron or steel, has demonstrated acceptable results.
In addition to stabilizing the relative position between the knife and anvil overall, a second aspect of the invention is directed toward improving the spatial relationship between the knife 30 and the anvil 50 along the extent of its transverse span across the web.
The preferred knife arrangement on the cutter roll aligns the knife on a slight helix of the cutter roll so that the knife and anvil interact in a double helix fashion to produce a “scissors-type” of shearing of the web. The knifes are typically formed from flat metal stock which must then be twisted when attached to the cutter roll. The stresses introduced which attaching a knife formed from a two-inch wide strip of one-quarter inch thick plate are significant and lead to bowing of the cutter roll.
A single knife 30 is secured to the cutter roll using a connector arrangement 70 comprising a plurality of fasteners 72 generally uniformly spaced along the knife-cutter roll interface for the entire length of the cutter roll to create a robust connection of the knife to the roll. The fasteners 72 are preferably positioned on approximately two to three inch spacing for the entire width of the roll cutter 20. Multiple fasteners (e.g., pairs) may be used at each lateral location. As a result, the fasteners 72 may easily number eight or more for every twelve inches of cutter roll width. Stresses introduced by bending the knife to securing it to the cutter roll 20 result in a static mechanical stress imbalance in the cutter roll that may cause slight deflection from its roll centerline 200. Cutter roll deflections induced by the knife mounting stresses may be compounded as the cutter roll temperature increases during operation.
Any deflection can cause the edge 32 of the knife 30 being slightly bowed from a straight-line interface with the anvil 50 which is typically greatest at mid-span of the cutter roll. Even though the maximum displacement may be only on the order of a few thousandths of an inch, the result in less than adequate cutting or perforation of the web by the knife, typically in the middle of the web width where the knife edge will be closer to the anvil than desired and potentially resulting in contact between the knife edge and the anvil which may damage the knife. This is best illustrated in
As is best illustrated in
Naturally, the invention is not limited to the foregoing embodiments, but it can also be modified in many ways without departing from the basic concepts. Changes in the details, materials, steps and arrangements of parts which have been described and illustrated to explain the nature of the invention will occur to and may be made by those skilled in the art upon a reading of this disclosure within the principles and scope of the invention. The foregoing description illustrates the preferred embodiment of the invention; however, concepts, as based upon the description, may be employed in other embodiments without departing from the scope of the invention.
Number | Date | Country | |
---|---|---|---|
62533451 | Jul 2017 | US |