The present application claims priority under 35 U.S.C. ยง 119 to DE 10 2018 216 426.6 filed in the Federal Republic of Germany on Sep. 26, 2018, the content of which is hereby incorporated by reference herein in its entirety.
The present invention relates to an assembly for operating a surroundings sensor and to a means of transportation, the assembly being used to improve the heat dissipation.
Based on their function, surroundings sensors are installed on or in an outer skin of a means of transportation. Depending on the type of the sensor, it can be advantageous or even necessary to install the sensor in a high installation position to enable the sensor a good all-round view. Surroundings sensors are thus preferably mounted on the roof of a means of transportation. This exposed position causes the surroundings sensors to be subjected to environmental conditions. With an accordingly suitable housing, it is possible to shield the surroundings sensors against many of these environmental conditions, such as dust and moisture. However, it is almost impossible to shield the surroundings sensors against thermal conditions, for example against direct solar radiation and the solar radiation reflected on the roof surface to the housing. Additionally, the sensor itself also emits inherent heat during operation, which means additional thermal impact. To protect the sensor against overheating, it is therefore necessary to ensure appropriate heat dissipation.
DE 10 2013 204808 A1 describes a vehicle, in particular a road or rail vehicle, including a vehicle roof and a receptacle mounted on the vehicle roof. The upper side of the receptacle is provided with at least one profile component, which includes at least one support section resting on the upper side of the receptacle. This profile component is used, on the one hand, as a sun screen for the receptacle by providing shade and, on the other hand, for heat emission to the ambient air.
According to a first aspect, the present invention relates to an assembly for a surroundings sensor. Surroundings sensors can be optical sensors, such as a LIDAR sensor, but also non-optical sensors and actuators. The sensor is connected to a thermally conducting segment in a thermally well-conducting manner. It is also possible that only portions of the sensor are connected to the thermally conducting segment in a thermally well-conducting manner. This is useful, in particular, for the portions that emit heat during operation of the sensor. In addition to the thermally conducting segment, the assembly includes a thermal interface. The thermal interface preferably has a combination of a large surface and a small overall volume, such as a cooling element can have, for example. The thermal interface is preferably configured in such a way that it protrudes into a passenger compartment of a means of transportation on or in whose outer skin the assembly is situated. The effectiveness of the thermal interface can be favored in that smaller openings are provided in the vehicle bottom and/or in the side wall of the vehicle, via which cool ambient air is able to flow into the passenger compartment. From here, the cool air can be guided in the direction of the surroundings sensors for cooling them. The air can be guided through an intermediate level in the roof area of the vehicle structure. The cool air can also be guided to the thermal interface in the process, which is thermally coupled to the thermally conductive segment. The air guidance can thus generate a chimney effect in which very warm air is able to escape from the vehicle passenger compartment to the surroundings, while cold air is resupplied from the vehicle bottom or the vehicle sides. For the passenger, excessively warm air is able to escape upwardly, while it is still sufficiently cool for the surroundings sensors to ensure their functional reliability. In other words, a vertical temperature gradient, which causes an air convection, is generated by the openings in the vehicle bottom or in the vehicle sides. A motor-driven convection is thus not necessary. It is possible that the thermal interface is connected to a volume of the passenger compartment of the means of transportation in a thermally well-conducting manner, and thus a thermal energy exchange is able to take place between the thermal interface and the volume.
According to an example embodiment of the assembly according to the present invention, the assembly is thermally insulated from an outer skin of the means of transportation. In this way, it can be prevented that, for example, thermal energy of the heated outer skin of the means of transportation penetrates into the assembly and thus negatively affects a heat dissipation capacity of the assembly.
According to an example embodiment of the assembly according to the present invention, at least the thermal interface of the assembly penetrates the outer skin of the means of transportation. In this way, the thermally conducting interface can be guided into the vehicle passenger compartment and connected there to the volume of the passenger compartment of the means of transportation in a thermally well-conducting manner.
According to an example embodiment of the assembly according to the present invention, it is permanently mechanically connected to the means of transportation and/or in a stationary manner. The mechanical connection can be established, for example, by a bonded joint, a welded joint, or a screwed joint. In addition, a sealing compound can be introduced into the connection between the assembly and the means of transportation, for example to establish and ensure a thermal insulation between the assembly and the means of transportation.
According to an example embodiment of the assembly according to the present invention, the thermally conducting segment can include a thermally well-conducting material. The thermally conducting segment can also include a heat exchanger tube, in particular a heat pipe, the thermal properties of the heat exchanger tube, such as a minimal operating temperature and/or a heat transfer capacity, preferably being adapted to an operating temperature range of the surroundings sensor.
According to an example embodiment of the assembly according to the present invention, the thermal interface can be situated in such a way that it protrudes into the air flow of a heating/air conditioning duct of the means of transportation and/or can be supplied with air from the heating/air conditioning duct. In this way, the emission of thermal energy from the thermal interface to the volume can be improved, which improves the cooling capacity of the assembly. A control, such as an automated setpoint/actual compensation of a predefined temperature in an air-conditioned passenger compartment of a means of transportation, can be carried out by a control unit or by other control techniques of an automatic climate control system.
While a control of the assembly according to the present invention can be regulated or controlled by the assembly's own sensor system and logic, an automated setpoint/actual value comparison can also be monitored by automatic climate control systems that are present anyhow in conventional vehicles or readily retrofittable. All actuators for controlling the influence on the functionality of the assembly according to the present invention can be activated thereby. In this way, the vehicle passenger compartment is used as an additional large thermal capacity for the surroundings sensors to be able to attenuate positive and negative temperature peaks of the assembly according to the present invention. This improves the availability and the durability of the assembly according to the present invention.
According to an example embodiment of the assembly according to the present invention, the assembly can include a receptacle for the surroundings sensor to mechanically connect it to the assembly. To be able to rotate the surroundings sensor during operation, the assembly can include a rotor. To drive the rotor, the assembly can include an electric motor. The rotor can include a thermally well-conducting material. The assembly can also include a mechanical interface for attachment in or on the means of transportation. The mechanical interface can include a thread, a flange, an attachment rail or the like. To be able to operate the surroundings sensor, the assembly can furthermore also include an electrical supply unit and/or a connection for data exchange. These connections can be designed as contact elements or as plug connectors, for example. To protect the assembly and/or the surroundings sensor against environmental conditions, the assembly can include a thermally conductive housing, the thermally conductive housing being configured in such a way that it is able to accommodate the surroundings sensor. The surroundings sensor is connected to the thermally conductive segment via a thermal connection. The thermal connection can include a thermally well-conducting material.
According to an example embodiment of the assembly according to the present invention, the surroundings sensor can be a LIDAR sensor, for example. Other optical and non-optical sensors can also be situated in the assembly.
According to a second aspect, the present invention relates to a means of transportation, which includes an assembly according to the first aspect. Possible means of transportation within the meaning of the present invention are, for example, automobiles, in particular passenger cars, trucks, airplanes, and/or ships.
According to an example embodiment of the second aspect, a headliner can be situated between the assembly and the passenger compartment of the means of transportation. The headliner is air permeable or provided with thermally conductive surface areas. In this way, the headliner can act as a thermal intermediate level and contribute to the spatial homogenization of temperature differences in the passenger compartment of the means of transportation. The thermal interface can be visually hidden by the headliner, so that a user of the means of transportation does not perceive the thermal interface. The thermal interface can also penetrate the headliner and thus protrude into the passenger compartment. To further improve the heat dissipation of the thermal interface, the air circulation in the passenger compartment of the means of transportation can be further improved by additional openings in a vehicle bottom and/or in side trim panels, so that a chimney effect is created in the passenger compartment of the means of transportation. Example embodiments of the present invention are described hereafter in greater detail with reference to the accompanying drawings.
Number | Date | Country | Kind |
---|---|---|---|
102018216426.6- | Sep 2018 | DE | national |