Thermal curing oven and thermal curing process

Abstract
An apparatus and a method for curing coatings on ophthalmic lenses is disclosed. The apparatus includes an oven that is continuously supplied with lenses. A vertically oriented conveyor having multiple carrier bars for supporting the lenses is positioned within the oven. The conveyor moves the lenses through a series of positions within the oven where the lenses are subjected to heat. Ambient air is filtered and forced into the oven by an intake blower which keeps the air pressure within the oven above the ambient air pressure. Air is recirculated and filtered within the oven by recirculation blowers. Air is exhausted from the oven by an exhaust blower which effects air exchange with the ambient.
Description




FIELD OF THE INVENTION




This invention concerns an oven for curing articles. In particular, a thermal cure oven is provided that is compatible with an automated manufacturing process having a substantially continuous product flow.




BACKGROUND AND OBJECTS OF THE INVENTION




The manufacture of a product requiring multiple manufacturing steps has, in the past, been conveniently performed by batch manufacturing processes. In batch processing, each process step is completed for every member of a group before the group is transferred to the next station for further processing.




The manufacture of modern ophthalmic lenses provides an example in which batch methods, for the most part, are no longer the most efficient means of production. However, some steps in the production of ophthalmic lenses still may be most efficiently handled by batch manufacturing processes. For example, lenses that are coated often require curing to harden and fix the coating, and all of the coated lenses must go through the same curing process regardless of their particular prescription.




Furthermore, ophthalmic lenses are made of polymer materials the melting point of which may be close to the temperature at which the coatings are cured. Thus, the lenses may become relatively soft during the curing process making it desirable to keep the environment in which the lenses are cured free of particulate contaminates that may come into contact with and adhere to the soft surfaces of the lens. It is also desirable that the curing environment be maintained at a substantially uniform temperature throughout, so that the lenses are exposed to the required temperature for the required time necessary to effect the complete curing of the coating material.




Therefore, a need exists for processes and equipment for use in batch curing coated lenses. Additionally, a need exists for processes and equipment in which the curing is carried out free from particulates and in carried out at a substantially uniform temperature.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic top plan view of a portion of a manufacturing line for ophthalmic lenses;





FIG. 2

shows a detailed portion of

FIG. 1

on an enlarged scale;





FIG. 3

is a flow chart outlining manufacturing steps for curing a coating on ophthalmic lenses;





FIG. 4

is a top plan view of a thermal curing oven according to the invention;





FIG. 5

is a side elevational view of the oven as seen along view line


5





5


of

FIG. 4

;





FIG. 6

is a cross-sectional view of the oven taken along section line


6





6


of

FIG. 4

;





FIG. 7

is a cross-sectional view of the oven taken along section line


7





7


of

FIG. 6

;





FIG. 8

is a cross-sectional view of the oven taken along section line


8





8


in

FIG. 7

;





FIG. 9

is an enlarged fragmentary cross-sectional view of a portion of the oven shown encircled in

FIG. 8

;





FIG. 10

is a fragmentary cross-sectional perspective view of a portion of the oven;





FIG. 11

is a partial top plan view of a carrier bar assembly with lens carriers shown in phantom line;





FIG. 12

is a front elevational view of the carrier bar assembly shown in

FIG. 10

;





FIG. 13

is an end elevational view of the carrier bar assembly of

FIG. 12

; and





FIG. 14

is a cross-sectional side view showing the conveyor assembly in phantom line being removed from the oven.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




The invention provides an oven for heating a plurality of items in an atmosphere substantially free of particulate contaminants. The invention also provides a batch process for thermal curing ophthalmic lenses that is compatible with a substantially continuous manufacturing process for the lenses. Further, the temperature throughout the oven of the invention is substantially uniform to ensure adequate exposure of all the lenses in the oven.




The oven of the invention preferably comprises a plurality of side walls defining an enclosed oven chamber and a heating element for heating the air within the oven chamber. An intake blower is configured to receive air from the ambient and force the ambient air into the oven chamber, thereby maintaining the air pressure therein at a relatively higher pressure than the pressure of the ambient air. This prevents airborne particulate contaminants from being drawn into the oven chamber. An air filter, preferably a HEPA type, is operatively associated with the intake blower to filter the air forced into the oven chamber. The oven also has an exhaust blower configured to draw air from the oven chamber and exhaust the air to the ambient. The exhaust blower works in conjunction with the intake blower to provide air exchange with the ambient while maintaining the relatively higher pressure state within the oven chamber.




A temperature sensor allows the heating element to be controlled to maintain the air within the oven chamber at a desired temperature, for example, the temperature required to cure a coating on an ophthalmic lens. A closeable entrance is arranged in one of the side walls of the oven for admitting the items to be heated to the oven chamber. There is also a closeable exit arranged in one of the side walls for releasing the items from the oven chamber. A conveyor within the oven chamber carries the items to be heated through the oven. The items are movable on the conveyor throughout the oven chamber from a first position, adjacent to the entrance, to a second position, adjacent to the exit and through a plurality of intermediate positions therebetween. The conveyor is capable of carrying at least one but, preferably, carries a plurality of the items.




The various systems are under the command of a controller that controls the motion of the conveyor, the entrance and exit openings the first and second blowers and the heating element (with feedback from the temperature sensor) to coordinate the operation of the oven. In a preferred embodiment, the conveyor comprises a flexible mechanical element, such as a chain, housed within an elongated trough. The trough has a ventilation aperture in communication with the air in the oven chamber and is also in fluid communication with the exhaust blower such that the exhaust blower draws air from the oven chamber through the trough and exhausts the air to the ambient.




The air within the oven is constantly filtered and recirculated within the oven chamber primarily to limit the concentration and size of particulate contaminates to acceptable levels. Recirculation of the air also ensures thorough mixing, thus, providing for a more consistent temperature throughout the oven chamber, avoiding hot spots that may overheat and melt the items, as well as cooler zones insufficient to perform the task for which the oven is designed.




The invention also contemplates a process for manufacturing a multiplicity of items wherein the items are moved one item at a time substantially simultaneously through a plurality of respective work stations at which respective manufacturing steps are effected on each said item substantially simultaneously. The process includes at least one work station, such as the oven described above, through which a plurality of the items moves together as a group. Preferably, the process comprises, consists essentially of and consists of the steps of:




(a) moving a plurality of items to the one work station one item at a time;




(b) accumulating the plurality of items at the one work station to form a group comprising the plurality of items;




(c) admitting the group to the one work station;




(d) performing a manufacturing step, such as heating or curing, on the items comprising the group at the one work station;




(e) discharging the group from the one work station;




(f) moving the plurality of items comprising the group one item at a time to another of the stations.




Preferably, the process comprises, consists essentially of and consists of moving a plurality of groups through the one work station substantially simultaneously, one group of the plurality being discharged from the one work station as another group of the plurality is admitted to the one work station. This allows the process to operate in a combination of a batch mode and a quasi-continuous mode and thus be compatible with other processes, upstream and downstream of the one work station where the product moves through the other stations in a substantially continuous flow.




The method of the invention may be applied to the task of heating pluralities of items while maintaining a surface of the items substantially contaminant free. This process is particularly suited to curing a coating on ophthalmic lenses and allows the curing step to be efficiently accomplished in a batch mode while integrating the task into a manufacturing process which proceeds with a substantially continuous product flow. Preferably, the applied method comprises, consists essentially of and consists of the steps of:




(a) providing an oven having an oven chamber adapted to receive the pluralities of the items, such as the ophthalmic lenses, the oven chamber having a closeable entrance and a closeable exit;




(b) providing a conveyor located within the oven chamber and adapted to transport the pluralities of items from a first position adjacent to the entrance, to a second position adjacent to the exit, and through an intermediate position between the entrance and the exit within the oven chamber;




(c) heating the air within the oven chamber;




(d) forcing ambient air into the oven chamber under pressure at a first rate;




(e) filtering the ambient air forced into the oven chamber;




(f) exhausting air from the oven chamber at a second rate lower than the first rate, thereby maintaining the air pressure within the oven chamber at a relatively higher pressure than the ambient air;




(g) opening the entrance;




(h) placing a first plurality of the items onto the conveyor at the first position;




(i) closing the entrance;




(j) transporting the first plurality to the intermediate position on the conveyor;




(k) repeating steps (g) through (j) for a second plurality of the items;




(l) transporting the first plurality of items to the second position and the second plurality of items to the intermediate position;




(m) repeating steps (g) through (j) for a third plurality of the items;




(n) opening the exit;




(o) removing the first plurality of items from the oven chamber;




(p) closing the exit; and




steps (c) through (f) being performed simultaneously with one another and with steps (g) through (p). The steps (i) and (l) are performed in a stepwise manner between the positions allowing the conveyor to dwell at the entrance and exits to accept and discharge the pluralities of items to and from the oven chamber.





FIG. 1

shows a plan schematic view of a portion of a manufacturing line


10


for ophthalmic lenses having a plurality of work stations


12


,


14


and


16


at which different manufacturing steps are performed on each lens. Each lens


18


may be held in its own carrier


20


, the carriers being transported by a main conveyor


22


to predetermined transfer locations such as


24


,


26


and


28


along main conveyor


22


where transfer means, such as robotic transfer devices,


30


,


32


and


34


can pick carriers off of the main conveyor and place them on adjacent secondary conveyors such as


36


,


38


and


40


.




The secondary conveyors transport the carriers


20


with their lens


18


to other robotic transfer devices, indicated at


42


,


54


and


46


. The other robotic transfer devices (


42


,


54


and


46


) transfer the lens


18


from the adjacent secondary conveyors to a respective work station (


12


,


14


,


16


as appropriate) where a particular manufacturing step is performed on each lens. Manufacturing steps may include, without limitation, grinding, casting, edging, cleaning, inspecting, coating, curing, packaging, and the like and combinations thereof.




Upon completion of the manufacturing step at a particular work station, the other robotic transfer devices (


42


,


46


and


66


) move the lenses


18


in their carriers


20


from the work station to associated return conveyors indicated at


48


,


50


and


52


. The return conveyors transport the lens on their carriers back to main conveyor


22


where the aforementioned robotic transfer devices (


30


,


32


and


34


) transfer the lens and carriers back onto the main conveyor where each lens is transported to the next work station for further processing.




The conveyors are of conventional design and are preferably endless belts with palates or plates on their upper surface for receiving the carriers


20


. The robotic transfer devices may be, for example, four finger grippers on articulated arms, suction devices, push rams, lifting forks, pick and place mechanisms and the like as appropriate to move the lenses between the various conveyors and work stations.




The entire manufacturing line preferably is under the control of a manufacturing execution system (“MES”) that connects a computerized lens ordering system to the manufacturing equipment. Each lens is identified to the system by a unique bar code displayed on its carrier


20


. The bar codes are read by scanners (not shown) positioned at various locations on the manufacturing line allowing the MES to identify, track and process each lens as an individual product that may require different manufacturing steps to be performed at the various work stations. A preferred manufacturing line, including the MES, are described in related co-pending application Ser. No. 09/579,048 entitled “Process for the Automated Manufacture of Spectacle Lenses” (Attorney docket number INT 89) incorporated in its entirety by reference.




Preferably, the lenses move through the line in a continuous flow, each manufacturing step, including transporting the lenses to and from a particular work station, taking no longer than a brief period of time, for example, about 5 to about 15 seconds. Thus, a lens arrives at a particular work station for processing, seconds later the process is complete, the lens is sent on its way to the next station and another lens arrives for processing.




Although most of the manufacturing steps for ophthamic lenses can be performed within a short period of time, some operations such as lens coating curing, which cannot. Ophthalmic lenses desirably may be coated with coatings, including, without limitation, anti-reflective coatings, scratch resistant coatings, photochromic coatings, polarizing coatings, or combinations thereof. The coatings must be hardened by a curing step including, without limitation, radiation, thermal, visible light curing and combinations thereof.




Modern ophthalmic lenses are made of polymer materials that tend to be relatively soft and, therefore, easily scratched. It is, thus, desirable to coat these lenses with a scratch-resistant coating to protect the outer surface. The scratch-resistant coating requires that the lenses be subjected to temperatures of about 115 to about 130° C. for a duration of about 2½ to 3½ hours to completely cure the coating.




Incorporation of the curing step into an automated lens manufacturing process is efficiently accomplished by using the oven of the invention, shown at


14


in FIG.


1


. The lenses are organized into groups that enter and leave the oven in a quasi-continuous, first in first out (FIFO) process preferably timed to be compatible with the operation of the other work stations on the manufacturing line.




By way of example, the work stations shown in

FIG. 1

represent: (a) a lens inspection station


12


where the lenses are optically and cosmetically examined after receiving a scratch resistant coating at an upstream station; (b) the thermal curing oven


14


where the lenses are subjected to the appropriate temperature conditions for the appropriate duration to completely cure the coating; and (c) a lens finishing station


16


where the lenses, once cured, undergo further optical inspection, marking, edging and packaging.




In operation, a lens


18


on its carrier


20


arrives every several seconds at transfer location


26


along main conveyor


22


. By the time the lenses reach transfer location


26


, each has been ground and/or cast to a particular optical prescription, cosmetically and optically inspected and coated with a scratch resistant coating that must be cured. The robotic transfer device


32


, preferably a four-finger gripper type, transfers the carrier


20


with its lens


18


onto secondary conveyor


38


that transports the carrier to the oven


14


. Preferably, secondary conveyor


38


is a “dead end” conveyor allowing a plurality of carriers


20


to line up adjacent to the “load side”


14




a


of the oven


14


, as shown in FIG.


2


.




After a desired number of carriers


20


accumulates on conveyor


38


, another robotic transfer device, preferably a push ram


54


, moves the accumulated carriers onto a load side transfer plate


56


arranged adjacent to an entrance opening to the oven


14


, described below. In the preferred embodiment, the carriers are staged onto the load side transfer plate in groups of 24 carriers and lenses arranged in two adjacent rows of 12. One such group,


58


, is shown in FIG.


2


. Thus, for example, over a period of 240 seconds, 24 carriers are transferred one at a time to secondary conveyor


38


, transported on the conveyor to a position adjacent to oven


14


and moved in two rows of 12 onto load side transfer plate


56


forming a group


58


.




Once the group


58


is staged on the transfer plate, the oven entrance is opened and another robotic transfer device,


44


, moves the group into oven


14


, placing the carriers onto a conveyor within the oven (described below). As the group


58


is transferred into the oven another group


60


, which entered the oven about three hours earlier, is discharged from the opposite or “unload side” of the oven


14




b


. The curing process being completed for the lenses in group


60


, a robotic transfer device


62


removes the group


60


from the oven and places it on an unload side transfer plate


64


. Each row of 12 carriers from the group


60


is moved onto return conveyor


50


by another robotic transfer device


66


, and the carriers are transported back to transfer location


26


of the main conveyor


22


(see

FIG. 1

) where the robotic transfer device


32


transfers the carriers


20


with their lenses


18


to the main conveyor


22


one at the desired interval. The main conveyor transports each carrier in turn to the lens finishing station


16


at which the cured lenses may undergo further optical inspection, marking, edging and packaging, and the like and combinations thereof.




The oven operates effectively as a component of the manufacturing line such that it appears to both its neighboring upstream and downstream work stations to process lenses one at a time in several second intervals when in actuality there are three hours worth of lenses being processed at any one time in the oven in a FIFO batch operation. It is understood that production parameters such as the processing interval per lens, the number of lenses in a group, and the duration of the curing time when specified herein are by way of example of a preferred embodiment only and will vary depending upon the particular needs of the particular product being manufactured.




As best shown in

FIGS. 6-8

, curing oven


14


comprises, consists essentially of, and consists of an enclosed chamber


68


surrounded by a plurality of insulated side walls


70


,


72


,


74


,


76


and top and bottom closure panels


78


and


80


respectively. As seen in

FIG. 7

, sidewall


70


is positioned on the load side


14




a


of the oven and has an opening


82


which is closeable by a door


84


. Door


84


is opened and closed by means of actuators


86


to admit lens groups such as


58


to the oven chamber for curing. A similar opening


88


and door


90


are positioned on the unload side sidewall


74


, door


90


being opened and closed by means of its own actuators


92


to discharge lens groups from the oven chamber


68


. The operation of the doors


84


and


90


is controlled by a local microprocessor


15


(see

FIG. 1

) under command of the MES (not shown) through a connecting cable


17


, the microprocessor


15


coordinating the operation of the oven, the conveyors and the robotic transfer devices to ensure an orderly flow of product through the oven. A suitable microprocessor is an Allen Bradley SLC-505 PLC along with an Allen Bradley Panelview 1000.




A conveyor


94


, that holds and transports the lenses, is positioned within the oven chamber


68


, as shown in

FIGS. 6 and 7

. Preferably, conveyor


94


is a vertically oriented carousel which has a plurality of carrier bars


96


positioned substantially one above another in two adjacent runs, an upward run


98


facing the load side sidewall


70


of the oven and a downward run


100


facing the unload side sidewall


74


. Carrier bars


96


, shown in FIG.


8


and in detail in

FIGS. 11-13

, are adapted to support carriers


20


in groups of 24 to transport the lenses


18


through the oven chamber


68


. Preferably, two carrier bars


96


are mounted on pairs of end plates


97


which have protrusions


99


and


101


to effect mounting of the carrier bars to the conveyor, as described below. A plurality of standoffs


103


are arranged in spaced relation lengthwise along the carrier bars. Standoffs


103


are spaced so as to support lens carriers


20


and allow them to be placed on and removed from each carrier bar in groups of 24 by means of a robotic transfer device, such as


44


and


62


, the transfer device having lifting tines which support the carriers


20


and interfit between the standoffs


103


to effect the transfer to the carrier bars without disturbing lenses


18


.




The carrier bars are suspended on one or more flexible mechanical elements which support and convey the carrier bars through the oven chamber


68


. As used herein, flexible mechanical elements refers to items such as belts, ropes, chains and cables that can be formed into an endless loop that can support and move the items in the manner of a conveyor.




In the preferred embodiment, the flexible mechanical elements are a pair of oppositely arranged endless chains


102


. As best shown in

FIG. 9

, the carrier bars


96


are rotatably mounted on the chains


102


by means of protrusions


99


rotatably engaging chains


102


(only one mounting being shown) allowing the carrier bars to remain level at all times during their motion through the oven chamber. The carrier bars are also stabilized so as not to rotate when carriers are being loaded onto them. The stabilization is provided by means of protrusions


101


engaging an elongated “U” channel


105


which is attached to the side frame member


107


, channel


105


extending substantially vertically lengthwise along the conveyor runs and preventing excessive rotation of the carrier bars when they are loaded and unloaded with carriers. A separate channel


105


is provided for each run of the conveyor, one of the two protrusions


101


engaging the channel as appropriate depending upon which run (upward,


98


, or downward,


100


) the particular carrier bar is traversing.




As shown in

FIGS. 6 and 7

, endless chains


102


engage two pairs of toothed sprockets, a top pair


104


and a bottom pair


106


. The sprocket pairs are connected by respective top and bottom axles


108


and


1




10


which are rotatably supported on respective top and bottom bearing pairs


112


and


114


. The bearing pairs are supported on a support framework


116


which is removably positioned within oven chamber


68


as described in detail below. Preferably, the bottom axle/sprocket pair is an idler while the top axle/sprocket is driven by an electric motor


118


. Motor


118


is coupled to the top axle through a reduction gear transmission


120


. Motor


118


is controlled by the local microprocessor


15


and moves the conveyor


94


in a stepwise fashion through the oven chamber, as described below.





FIG. 6

shows a plurality of heating elements


122


positioned within the oven chamber


68


to heat the air within the oven and maintain the temperature at the desired level to effect curing of the coating. The heating elements are preferably of the electrical resistive variety and have a capacity of about 48,000 watts. Their operation is controlled by the local microprocessor with the help of temperature sensors


124


positioned within the oven chamber. The sensors feed back temperature information to the local microprocessor


15


which activates the heating elements


122


as necessary to keep the air in the oven chamber within the desired limits. For curing a scratch resistant coating, for example, the oven temperature preferably is kept between about 115 to about 130° C.




The relatively high curing temperature means that the lenses may be somewhat soft as they proceed through the oven and if particulate contaminants within the oven contact the lens surface, they will adhere and become embedded in the soft lens surface. Thus, it is important that the size and concentration of particulate contaminants within the oven chamber be held to acceptable levels that will not adversely affect the lenses.




To control the size and concentration of particulate contaminants within the oven chamber, four steps are taken: (1) all components located within the oven are made of stainless steel or anodized aluminum; (2) air within the oven chamber


68


is constantly recirculated and filtered; (3) the air pressure within the oven chamber is kept at a pressure higher than the ambient; and (4) the moving parts such as the sprockets and endless chains are fully enclosed, and this enclosure is separately exhausted to create negative pressure with respect to the oven environment.




Using stainless steel or anodized aluminum for components located within the oven will help prevent particulate contaminants within the oven, because these metals will not oxidize and release oxidation particles, such as rust flecks, into the oven chamber. Recirculating the air within the chamber ensures mixing of the air and results in a more consistent temperature distribution throughout the oven chamber, preventing hot or cold spots from forming. Constant filtering of the air during its recirculation removes any particulate contaminates from the air and prevents them from contaminating the lenses.




Air within the oven chamber is recirculated by means of recirculation blowers


126


, illustrated in FIG.


6


. Preferably, the recirculation blowers are mounted in a side wall such as the side wall


72


which is not the load or unload side of oven


14


. As shown in

FIGS. 7 and 8

, recirculation blowers


126


have intakes


128


positioned within the oven chamber


68


allowing the blowers to draw air through the chamber across the carrier bars


96


of conveyor


94


. Blowers


126


have outlets


130


which direct the air through a pair of supply ducts


132


and


134


arranged on the load and unload sides of the oven respectively, supply duct


132


being positioned between load side sidewall


70


and the oven chamber


68


and supply duct


134


being positioned between unload side sidewall and the oven chamber.




Supply ducts


132


and


134


direct the air to a plenum


136


located on the side of the oven opposite the blowers between side wall


76


and oven chamber


68


. As shown in

FIGS. 6 and 8

, oven chamber


68


has a plurality of openings


138


providing fluid communication with plenum


136


, each opening having a recirculation filter


140


which filters the recirculating air as it passes from the plenum


136


to the oven chamber


68


. Recirculation filters


140


are preferably HEPA filters and can filter out particles as small as about 0.3 microns in size. The recirculation air flow regime within the oven is shown by arrows


142


. Air is drawn through oven chamber


68


by recirculation blowers


126


and forced through supply ducts


132


and


134


on opposite sides of the oven chamber. The supply ducts direct the air into plenum


136


, and the air passes through recirculation filters


140


where particulate contaminants are separated from the flow before again entering oven chamber


68


. Heating elements


122


are located adjacent to the recirculation blowers


126


heating the air as required to maintain the desired curing temperature within the oven and temperature sensors


124


are preferably located adjacent to where the recirculating air enters the oven chamber. The recirculation air is permitted to mix in the supply ducts


132


and


134


as well as the plenum


136


to help ensure a consistent temperature throughout the oven chamber


68


.




Keeping the air pressure within the oven chamber higher than the ambient air pressure prevents particles in the ambient air from entering the oven, as, for example, when doors


84


and


90


are opened to respectively load and discharge lenses. Air pressure within the oven chamber is primarily controlled by an intake blower


144


shown in

FIG. 5

, which forces ambient air into the oven chamber


68


at a greater rate than it is permitted to escape. Intake blower


144


is preferably mounted on the load side


14




a


ofthe oven


14


and has an inlet


146


which draws air from the ambient, and an outlet


148


which directs the air to an intake air filter


150


which separates particulate contaminants from the ambient air. Preferably, intake air filter


150


is a HEPA type filter which will filter particles down to 0.3 microns in size from the ambient air.




After filtering, the air drawn from the ambient is directed through one or more inlet ducts


152


into the oven chamber


68


. Preferably, as seen in

FIG. 8

, inlet ducts


152


are positioned adjacent to one or more intakes


128


of the recirculation blowers


126


. Thus, ambient air forced into the oven chamber by the intake blower


144


will not immediately contact any of the lenses within the oven chamber but will first be drawn into the recirculation blowers, forced through the supply ducts


132


and


134


, into plenum


136


and through filters


140


before it is allowed to contact the lenses on conveyor


94


. Routing the air drawn in from the ambient in this manner ensures that it will pass through two sets of filters, the intake air filter


150


and the recirculation filters


140


, before it contacts any lenses, thus, helping to prevent contamination of the oven chamber with particulates from the ambient.




It is desirable to draw air out of the oven at a controlled rate to control the exchange of air between the oven chamber and the ambient, as well as to control the pressure differential between the oven chamber and the ambient. As shown in

FIGS. 4 and 5

, air is drawn from the oven chamber preferably by a pair of exhaust blowers


154


located on opposite sides of the oven, preferably on the load and unload sides


14




a


and


14




b


. As best shown in

FIGS. 7 and 9

, exhaust blowers


154


each have a pair of inlet ducts


156


, which are in fluid communication with, respectively, a pair of troughs


158


arranged on opposite sides of conveyor


94


. A detail of the air flow from oven chamber


68


to the inlet duct


156


is shown in detail in

FIG. 9

, the air flow being shown by arrows


109


.




Troughs


158


extend substantially the length of the oven chamber between pairs of top and bottom shrouds


159


and


161


which enclose the top and bottom sprockets respectively, as shown in detail in

FIG. 10

for one sprocket


106


. As shown in

FIGS. 9 and 10

, endless chains


102


travel within troughs


158


between the sprockets, and the troughs and shrouds serve to enclose these moving parts and contain any particulate contaminates generated by them. Troughs


158


have openings


160


which allow air to be drawn from the oven chamber, the troughs and shrouds being kept under negative pressure by the operation of exhaust blowers


154


. Air from the oven chamber, as well as any contaminants from the chains and sprockets, are conducted through the troughs to the inlet ducts


156


of the exhaust blowers


154


(see

FIGS. 7 and 9

) where the air and contaminants exit the oven and enter an exhaust air filter


162


(see FIGS.


4


and


5


). By substantially containing the chains and sprockets within the troughs and shrouds and drawing, he air from the oven chamber through the troughs particulates from the chains and sprockets are substantially prevented from entering the oven chamber


68


.




Exhaust air filter


162


is preferably a HEPA filter which separates particles down to about 0.3 microns in size from the exhaust air. After filtering, the exhaust air exits into the ambient through an outlet


164


. It is desirable to filter the air exhausted from the oven so as not to contaminate the area around the oven with particulates from the oven. This helps avoid contamination of lenses which are staged on the conveyors


38


and


50


and on the transfer plates


56


and


64


, as well as on the main conveyor


22


.




Exhaust blowers


154


work in conjunction with intake blower


144


not only to ensure that air pressure within the oven chamber


68


is higher than the ambient, but also to ensure that there is an adequate exchange of air between the oven and the ambient. Air exchange is desired to prevent the build-up of gaseous contaminates which result from the curing process and outgassing from the lenses. In the illustrated embodiment, the volume of the oven is 180 cubic feet, and the air is completely changed from this volume about 150 to about 210 times per hour. Air flow velocity into the oven through the intake air filter is preferably between about 60 and about 90 feet per minute.




Together, the recirculation blowers


126


, recirculation filters


140


, intake blower


144


, intake air filter


150


and exhaust blowers


154


operate to keep the level of airborne particulates within the oven chamber to: (1) fewer than about 1000 particles of about 0.5 microns or larger per cubic foot of air; or (2) fewer than about 7 particles of about 5 microns or larger, per cubic foot of air. This level of particulate control is equal to a class 1000 clean room.




To allow easy access to the various components of the oven for servicing and maintenance, conveyor


94


is designed to be easily removable from the oven chamber


68


. As shown in

FIG. 4

, side wall


76


is attached to side wall


74


by means of hinges


166


allowing side wall


76


to form an access door which can be opened to remove the conveyor


94


. Before removing the conveyor top, axle


108


is disconnected from the transmission


120


and exhaust blower inlet ducts


156


are detached from side frame members


107


. As shown in

FIG. 14

, conveyor


94


is fitted with wheels


168


which run on tracks


170


in the bottom closure panel


80


of the oven. The wheels provide mobility and allow the conveyor


94


(shown in phantom line) to be rolled out of the oven chamber once it has been disconnected as described above. Preferably, upon removal from the conveyor chamber the conveyor is placed on a dolly


172


upon which it can be further transported. With the conveyor removed from the oven, technicians can work on both the conveyor and the oven in relative comfort and safety with all components being readily accessible.




The oven operates m cooperation with the main conveyor


22


, the various robotic transfer devices, secondary conveyor


38


and return conveyor


50


under the control of the local microprocessor, which, in turn, is under the control of the MES. Referring to

FIGS. 1 and 2

and to the flow chart shown in

FIG. 3

, a carrier


20


holding a lens


18


is transported along main conveyor


22


from upstream work station


12


to transfer location


26


where robotic transfer device


32


transfers the carrier


20


to secondary conveyor


38


. Conveyor


38


moves the carrier


20


to a position adjacent to load side transfer plate


56


(FIG.


2


). These steps are repeated preferably until 24 carriers


20


and lenses are staged on conveyor


38


.




The carriers


20


are staged in two sub-groups numbering 12 carriers each. Robotic transfer device


54


, preferably a push ram device, pushes 12 carriers from conveyor


38


onto load side transfer plate


56


and then remaining 12 carriers. Thus, a group


58


of 24 carriers is formed on the load side transfer plate, as seen in FIG.


2


.




While carriers are being staged on the load side transfer plate, the oven conveyor


94


has moved its carrier bars


96


through one stepwise increment of its motion. The stepwise motion of the oven conveyor brings an empty carrier bar adjacent to load side opening


82


and a carrier bar, fully loaded with a group


60


of 24, carriers and lenses adjacent to unload side opening


88


. The lenses of group


60


have been within the oven for the requisite time to allow the coating on the lenses to cure completely. For example, for a cure time of three hours, if the carrier bars are to move one increment every 240 seconds, there must be at least 45 increments along the conveyor between the load side and the unload side openings where each carrier bar dwells for 240 seconds between loading of a new group and unloading of a cured group, i.e., each group of lenses within the oven dwells at each of 45 increments for 240 seconds for a total of 45×240=10,800 seconds (three hours).




Door


84


on the load side is opened by its actuators


86


(FIG.


7


), and robotic transfer device


44


(FIG.


2


), preferably a lifting fork, picks up all 24 carriers of group


58


from the load side transfer plate


56


and places them in the oven chamber


68


on the empty carrier bar adjacent to load side opening


82


. At about the same time, unload side door


90


(

FIG. 7

) is opened by its actuators


92


exposing load side opening


88


. Robotic transfer device


62


, preferably similar to device


44


, removes the group


60


of carriers on the carrier bar adjacent to the unload side opening


88


, placing the group onto the unload side transfer plate


64


(FIG.


2


).




Load and unload side doors close and the carriers in group


58


begin their cure process. Meanwhile, carriers continue to arrive on conveyor


38


, and yet another group is staged for loading into the oven at the end of the next desired time period, for example the next 240 sec. period. Also, robotic transfer device


66


, again, preferably a push ram device, moves carriers from group


60


from the unload side transfer plate


64


onto return conveyor


50


in two groups of 12. The 24 carriers of group


60


are transported on return conveyor


50


to main conveyor


22


at transfer location


26


(

FIG. 1

) where robotic transfer device


32


transfers one carrier from return conveyor


50


to main conveyor


22


every several seconds, for example every 10 sec. Main conveyor


22


transports the carrier to transfer location


28


where the carrier can be again transferred to another work station


16


, for example, for lens finishing.




During the desired time period, such as every 240 seconds, group


58


moves another increment along the runs of conveyor


94


, and a new group is loaded into the oven and another group is unloaded from the oven. While the groups are proceeding through the oven chamber, temperature sensors


124


(

FIG. 6

) are reporting the temperature to the local microprocessor


15


that is adjusting the heating elements


122


to maintain the temperature within the oven at the required temperature for curing the coating on the lenses. Recirculation blowers


126


continue to draw air across the carrier bars


96


, sending the recirculating air through supply ducts


132


and


134


and into plenum


136


(FIG.


8


). The recirculation air passes through filters


140


before again entering oven chamber


68


to provide heat to cure the lenses.




Intake blower


144


is also operating, drawing in ambient air, filtering the air at intake air filter


150


and sending the filtered air into the oven chamber


68


where it becomes entrained with the recirculating air therein. Exhaust blowers


154


(

FIGS. 4 and 5

) help to effect the required air exchange between oven chamber


68


and the ambient by drawing air from the oven chamber through troughs


158


and filtering the air at exhaust filters


162


before discharging the air back to the ambient.




It is understood that the foregoing description is intended to describe certain embodiments of the present invention, and is not intended to limit it in any way. This invention is to be read as limited by its claims only.



Claims
  • 1. An oven for heating a plurality of items in an atmosphere substantially free of particulate contaminants, said oven comprising:a plurality of side walls defining an enclosed oven chamber; a heating element for heating the air within said oven chamber; an intake blower configured to receive air from the ambient and force ambient air into said oven chamber and maintain the air pressure therein at a relatively higher pressure than the pressure of the ambient air; a first filter operatively associated with said intake blower to filter the air forced into said oven chamber; an exhaust blower configured to draw air from said oven chamber and exhaust said air to the ambient; a closeable entrance arranged in one of said side walls for admitting said items to said oven chamber; a closeable exit arranged in one of said side walls for releasing said items from said oven chamber; a conveyor located within said oven chamber and adapted to carry said items, said items being movable on said conveyor throughout said oven chamber from a first position adjacent to said entrance to a second position adjacent to said exit and through a plurality of intermediate positions therebetween, said conveyor capable of carrying at least one of said items; and a controller for controlling the motion of said conveyor, said entrance and exit openings said first and second blowers and said heating element.
  • 2. An oven according to claim 1, wherein said conveyor comprises:a flexible mechanical element housed within an elongated trough, said trough having a ventilation aperture in communication with the air in said oven chamber, said trough being in fluid communication with said exhaust blower such that said exhaust blower draws air from said oven chamber through said trough and exhausts said air to the ambient; and a plurality of carrier bars supported by at least said flexible mechanical element in spaced relation to one another, each of said carrier bars being adapted to support at least one of said items thereon, said flexible mechanical element moving said carrier bars throughout said oven chamber to move said items between said entrance, through said intermediate positions, and to said exit.
  • 3. An oven according to claim 2, wherein said flexible mechanical element comprises a chain.
  • 4. An oven according to claim 1, wherein said conveyor comprises:a pair of endless chains oppositely disposed in spaced relation, each of said chains being housed within a respective elongated trough, each of said troughs having a plurality of ventilation apertures therein in fluid communication with said oven chamber, said trough being in fluid communication with said exhaust blower, said exhaust blower drawing air from said oven chamber through said troughs and exhausting said air to the ambient; and a plurality of carrier bars suspended between said chains in spaced relation to one another, each of said carrier bars capable of supporting at least one of said items thereon, said chains moving said carrier bars throughout said oven chamber to move said items between said entrance, through said intermediate positions, and to said exit.
  • 5. An oven according to claim 2, wherein said conveyor and said troughs are substantially vertically oriented.
  • 6. An oven according to claim 2, wherein said entrance and said exit are positioned in opposite side walls.
  • 7. An oven according to claim 1, further comprising:a recirculation blower having an inlet and an outlet, said inlet being in fluid communication with said oven chamber; a plenum positioned adjacent to and in fluid communication with said oven chamber; a supply duct extending from said recirculation blower outlet to said plenum; a recirculation filter operatively associated with said recirculation blower to filter the air recirculated within said oven, said recirculation blower drawing air from said oven chamber and forcing said air through said supply duct, into said plenum, and through said recirculation filter back into said oven chamber, said air thereby being filtered and recirculated within said oven.
  • 8. An oven according to claim 7, wherein said recirculation blower inlet is positioned on one side of said conveyor and said plenum is positioned on an opposite side of said conveyor, said air being recirculated across said conveyor.
  • 9. An oven according to claim 7, wherein said outlet of said intake blower is in fluid communication with said inlet of said recirculation blower.
  • 10. An oven according to claim 7, wherein said heating element is positioned adjacent to said inlet of said recirculation blower.
  • 11. An oven according to claim 1, further comprising a filter in fluid communication with said exhaust blower outlet, said filter filtering the air exhausted from said oven chamber.
  • 12. An oven according to claim 1, further comprising:a framework positioned within said oven chamber and supporting said conveyor, said framework being supported by a plurality of wheels, said framework being movable on said wheels; one of said side walls being hingedly mounted on an adjacent side wall thereby forming a door to said oven chamber, said framework being movable on said wheels out of said oven chamber through said door.
  • 13. A process for manufacturing a multiplicity of items, said items being moved one item at a time substantially simultaneously through a plurality of respective work stations at which respective manufacturing steps are effected on each said item, said process including at least one work station through which a plurality of said items moves together as a group, said process comprising the steps of:moving a plurality of said items to said one work station one item at a time; accumulating said plurality of items at said one work station to form a group comprising said plurality of items; admitting said group to said one work station; performing a manufacturing step on said items of said group at said one work station; discharging said group from said one work station; and moving said plurality of items comprising said group one item at a time to another of said stations.
  • 14. A process according to claim 13, further comprising the step of moving a plurality of groups through said one work station substantially simultaneously, one group of said plurality being discharged from said one work station as another group of said plurality is admitted to said one work station.
  • 15. A process according to claim 14, wherein said groups are moved through said one work station from a first position wherein each of said groups is admitted to said one work station, through a plurality of intermediate positions, to a second position wherein each of said groups is discharged from said one work station.
  • 16. A process according to claim 15, wherein said groups are moved a stepwise manner between said positions.
  • 17. A process according to claim 16, wherein said items comprise ophthalmic lenses.
  • 18. A process according to claim 17, wherein said manufacturing step at said one work station comprises heating said lenses.
  • 19. A process according to claim 18, wherein said one work station comprises an oven for heating said lenses.
  • 20. A method of heating pluralities of items while maintaining a surface of said items substantially contaminant free, said method comprising the steps of:(a) providing an oven having an oven chamber adapted to receive said pluralities of said items, said oven chamber having a closeable entrance and a closeable exit; (b) providing a conveyor located within said oven chamber and capable of transporting said pluralities of items between said entrance and said exit, and through an intermediate position between said entrance and said exit within said oven chamber; (c) heating the air within said oven chamber; (d) forcing ambient air into said oven chamber under pressure at a first rate; (e) filtering the ambient air forced into said oven chamber; (f) exhausting air from said oven chamber at a second rate lower than said first rate, thereby maintaining the air pressure within said oven chamber at a relatively higher pressure than the ambient air; (g) opening said entrance; (h) placing a first plurality of said items onto said conveyor at said first position; (i) closing said entrance; (j) transporting said first plurality to said intermediate position on said conveyor; (k) repeating steps (g) though (j) for a second plurality of said items; (l) transporting said first plurality of items to said second position and said second plurality of items to said intermediate position; (m) repeating steps (g) through (j) for a third plurality of said items; (n) opening said exit; (o) removing said first plurality of items from said oven chamber; (p) closing said exit; and steps (c) through (f) being performed simultaneously with one another and with steps (g) through (p).
  • 21. A method of heating an item according to claim 20, wherein said steps (j) and (l) are performed in a stepwise manner between said positions.
  • 22. A method of heating an item according to claim 20, further comprising the step of filtering the air exhausted from said oven chamber.
  • 23. A method of heating an item according to claim 20, further comprising the steps of:(q) drawing air from said oven chamber; (r) filtering said air drawn from said oven chamber; (s) returning said air to said oven chamber; and (t) repeating steps (q) through (s).
  • 24. A method of heating an item according to claim 23, further comprising the step of forcing said ambient air through said recirculation filter before forcing said ambient air through said oven chamber.
US Referenced Citations (3)
Number Name Date Kind
5421320 Brown Jun 1995
5875705 Knost Mar 1999
6062850 Ino et al. May 2000