The present disclosure is directed in general to thermal protection of critical electronics hardware undergoing extreme heat excursions, and, more particularly, to protection of critical electronics hardware within vehicles traveling at extremely high speeds.
Aeronautical vehicles such as missiles traveling at extremely high speeds—for example, speeds at or in excess of Mach 5—generate frictional heat at the exterior surfaces due to passage through the atmospheric gases. That heat will dissipate along any temperature gradient including toward the missile interior. Conventional insulation and thermal dissipation mechanisms may be insufficient to protect thermally-sensitive equipment within the missile from the temperature excursions generated by travel at such extremely high speeds.
Thermally-sensitive hardware such as electronics, energetic devices or optical elements is at least partially enclosed within a container within which reactants for a solid-solid endothermic chemical reaction are disposed, surrounding at least a portion of the electronics hardware. The reactants are preferably selected to absorb heat from a heat source external to the container, and are preferably positioned between the heat source and the thermally-sensitive hardware. The heat source may be an exterior surface of a missile within which the container is mounted, where the missile's exterior surface experiences frictional heating due to travel through atmospheric gases at extremely high speeds at or in excess of Mach 5. In alternative embodiments, a structure between the thermally-sensitive hardware and a heat source includes the reactants, such as a surface coating on the missile configured for ablation of the chemical reaction products. The reactants are preferably selected to absorb heat of at least 5 kilo-Joules per gram (kJ/g) during the solid-solid endothermic chemical reaction, and preferably include at least a first reactant selected from the group of silicon dioxide (SiO2), aluminum oxide (Al2O3) and titanium oxide (TiO2) and a second reactant selected from the group of a carbon-containing polymer and a boron-containing polymer. Such selected reactants produce, via the endothermic solid-solid chemical reaction, one of silicon carbide (SiC), aluminum carbide (Al4C3), and titanium boride (TiB2). Insulation materials and heat dissipation structures may also be used, together with the selected reactants.
Although specific advantages have been enumerated above, various embodiments may include some, none, or all of the enumerated advantages. Additionally, other technical advantages may become readily apparent to one of ordinary skill in the art after review of the following figures and description.
For a more complete understanding of the present disclosure and its advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, in which like reference numerals represent like parts:
It should be understood at the outset that, although exemplary embodiments are illustrated in the figures and described below, the principles of the present disclosure may be implemented using any number of techniques, whether currently known or not. The present disclosure should in no way be limited to the exemplary implementations and techniques illustrated in the drawings and described below. Additionally, unless otherwise specifically noted, articles depicted in the drawings are not necessarily drawn to scale.
Desire for increased missile speed requires new and innovative forms of thermal management. Frictional heat that may adversely affect thermally-sensitive hardware (electronics, energetic devices such as initiators and gas generators, optical elements) must be controlled. Possible approaches to controlling frictional heat via engineering design include insulation, dissipation, absorption, or combinations of each.
Hypersonic missiles traveling at speeds in excess of Mach 5 generate frictional heat at levels that constitute a threat to reliable operation of thermally-sensitive hardware within the missile, such as guidance and control electronics. (As used herein, “thermally-sensitive hardware” refers to at least electronics, energetic devices, and optical elements, as well as other hardware, and to such hardware that cannot operate reliably in the presence of frictional heat generated due to travel at speeds in excess of about Mach 2.5 or Mach 3). Heating issues can be mitigated using energy absorbing solid/solid chemical reactions by manufacturing structures using the energy-absorbing reactants. In this disclosure, solid/solid chemical reactions are suggested for the absorption of heat in applications that produce high temperature excursions during operation. These endothermic solid/solid reactions employ inert reactants and produce inert products while consuming heat. In contrast, alternative approaches to protect electronic hardware during heating events (a) exclude the heat from reaching the electronics using insulating materials (insulation) and/or spacing from regions in which the heat is generated (design), (b) dump excess heat to the environment (dissipation), (c) employ phase change materials (absorption), or (d) some combination of insulation/design, dissipation, and absorption. However, insulating materials have relatively limited heat blocking capabilities, generally insufficient to adequately protect electronics at the heating levels contemplated. Effective or sufficient heat transfer by dissipation to the environment is not always possible, since a heat sink (relatively “cold” thermal region) is required and since heat dissipation may not proceed quickly enough. Phase change (e.g., from solid to liquid) absorption necessitates protection of the electronics from the resulting liquid, and generally has relatively low thermal absorption capacities requiring large quantities (and the associated weight) to adequately protect electronics at the heating levels contemplated.
The problem of thermal management for electronic hardware during extreme heating events is addressed in this disclosure at least in part by creating structures that absorb heat through solid-solid endothermic chemical reactions to provide cooling of critical hardware. Reactions involving two solids intimately mixed together can be employed to absorb heat due to an endothermic reaction between the materials. Theoretical heat absorption of greater than 5-10 kilo Joules per gram (kJ/g) are possible with this approach.
The present disclosure employs energy-absorbing solid/solid reactions for cooling, in the construction of structural parts or coatings on structural parts. These structures then become an integral part of the hardware that absorbs thermal energy, with the structures constructed from the reactants used for the energy absorption. The thermal energy absorption utilizes endothermic chemical reactions to remove heat by absorbing the heat, and in particular utilizes solid/solid endothermic chemical reactions to absorb heat. Exemplary reactions are listed in TABLE 1 below:
As apparent from TABLE 1, the reactants for the solid-solid endothermic reaction are preferably selected to absorb heat of at least 5 kilo-Joules per gram (kJ/g), and more preferably of at least 10 kJ/g, during the solid-solid endothermic chemical reaction.
Energy absorption from phase change typically involves energy from intermolecular forces, and therefore often involves phase change from solid to either liquid or gas. Although generally reversible, these reactions only absorb energy on the order of tenths or a kilo-Joule per gram or less (i.e., <1.0 kJ/g). By contrast, endothermic chemical changes involve energy from breaking or making chemical bonds and are primarily solid to solid reactions. While not reversible, these reactions absorb up to two orders of magnitude more energy (≥5-10 kJ/g).
In one embodiment, the reactants 202 include a solid such as silicon dioxide (SIO2) or aluminum oxide (Al2O3) in particulate form, together with a carbon-containing polymer. In another embodiment, the reactants 202 include a solid such as titanium dioxide (TiO2), together with a boron-containing polymer. In any of those embodiments, the polymer may be impregnated with the particulate solid reactant(s), or the particulate solid reactant(s) may simply have polymer materials interspersed therein. The particulate-impregnated polymer may be injected into spaces surrounding the thermally-sensitive hardware 101 to be protected, or the polymer may be injected into particulate-filled spaces.
In the example shown in
In the embodiment of
In the embodiment of
In operation, frictional heat generated by the missile's speed can cause the reactants to reach a reaction temperature, such as a temperature at which the carbon- or boron-containing polymer breaks down (e.g., melts) or a temperature that must be reached for the endothermic reaction to initiate. Once the reactants reach the reaction temperature, the solid-solid chemical reaction occurs, absorbing heat at the respective endothermic capacity and protecting the thermally-sensitive hardware 101 from excess heat. The gaseous products—that is, carbon monoxide (CO) or oxygen (O2) for the examples above—outgas from the particulate solid products of silicon carbide (SiC), aluminum carbide (Al4C3) or titanium boride (TiB2) but should not adversely affect the thermally-sensitive hardware. In some instances, the gaseous product may simply be retained within the container 201, 211, while in other embodiments gas in excess of a particular pressure may be vented by a release valve (not shown).
While the reactants are depicted in
Modifications, additions, or omissions may be made to the systems, apparatuses, and methods described herein without departing from the scope of the disclosure. For example, the components of the systems and apparatuses may be integrated or separated. Moreover, the operations of the systems and apparatuses disclosed herein may be performed by more, fewer, or other components and the methods described may include more, fewer, or other steps. Additionally, steps may be performed in any suitable order. As used in this document, “each” refers to each member of a set or each member of a subset of a set.
The description in the present application should not be read as implying that any particular element, step, or function is an essential or critical element which must be included in the claim scope: the scope of patented subject matter is defined only by the allowed claims. Moreover, none of these claims are intended to invoke 35 USC § 112(f) with respect to any of the appended claims or claim elements unless the exact words “means for” or “step for” are explicitly used in the particular claim, followed by a participle phrase identifying a function. Use of terms such as (but not limited to) “mechanism,” “module,” “device,” “unit,” “component,” “element,” “member,” “apparatus,” “machine,” “system,” “processor,” or “controller” within a claim is understood and intended to refer to structures known to those skilled in the relevant art, as further modified or enhanced by the features of the claims themselves, and is not intended to invoke 35 U.S.C. § 112(f).
Number | Name | Date | Kind |
---|---|---|---|
1950905 | Rubin | Mar 1934 | A |
3267857 | Lindberg, Jr. | Aug 1966 | A |
3395035 | Strauss | Jul 1968 | A |
3682100 | Lindberg, Jr. | Aug 1972 | A |
5212944 | Martin | May 1993 | A |
6004662 | Buckley | Dec 1999 | A |
6558568 | Hayes | May 2003 | B1 |
20090270260 | Tanaka | Oct 2009 | A1 |
20110048374 | McAlister | Mar 2011 | A1 |
20150361362 | Daggupati | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
S5620975 | Feb 1981 | JP |
H06174350 | Jun 1994 | JP |
Entry |
---|
Foreign Communication from Related Counterpart Application; PCT Patent Application No. PCT/US20171044125; International Search Report and Written Opinion of the International Searching Authority dated Oct. 23, 2017; 15 pages. |
Number | Date | Country | |
---|---|---|---|
20180120071 A1 | May 2018 | US |