The above, as well as other objects and advantages of the invention, will become readily apparent to those skilled in the art from reading the following detailed description of a preferred embodiment of the invention when considered in the light of the accompanying drawings in which:
The following detailed description and appended drawings describe and illustrate various exemplary embodiments of the invention. The description and drawings serve to enable one skilled in the art to make and use the invention, and are not intended to limit the scope of the invention in any manner.
Fluid communication is established between the engine 11, the radiator 12, and the heater core 20, via the three position electric solenoid actuated valve 22. The three position electric solenoid actuated valve 22 can permit or militate against the flow of fluid between each of the engine 11, the radiator 12, and the heater core 20 universally, wherein flow is permitted or militated against between all of the engine 11, the radiator 12, and the heater core 20. As used hereinafter, the term fluid can refer to liquid, vapor, steam, gas, or any combination thereof. The three position electric solenoid valve 22 can also selectively permit or militate against the flow of fluid between the engine 11, the radiator 12, and the heater core 20 separately.
Fluid communication is established between the engine 11 and the thermal energy storage reservoir 24 via the differential pressure valve 25. It will be appreciated that the various components of the system are coupled together, as illustrated, by appropriate fluid conveying conduits such as tubing and piping, for example.
The thermal energy storage reservoir 24 may be of a number of different types. The thermal energy storage reservoir 24 is capable of receiving a fluid used to convey thermal energy developed during the normal operation of the engine 11. Optionally, the thermal energy storage reservoir 24 may be a type wherein the phase of the fluid is changed such as from a liquid state to a gaseous state, for example. One example is a jar or bottle having a vacuum between an inner and outer wall, and sited to contain engine radiator coolant fluid as a primary thermal energy transfer medium. As will be explained in more detail hereinafter, the reservoir 24 can also enclose one or more sub-system reservoirs, in the range of from one to two liter capacity, to contain engine oil, transmission oil, and exhaust gas recirculator coolants. Favorable results have been realized when the thermal energy storage reservoir 24 is formed of an inner vessel and an outer housing separated by a vacuum which has been found to maintain thermal energy for a period up to seventy-two hours and having a volume of between 8 and 10 liters, for example.
During an exemplary system operations mode as illustrated in
The thermal energy of the system may be controlled by the three position electric solenoid operated valve 22 and the differential pressure valve 25 which control the rate of flow of fluid therethrough and hence through the heat exchange elements of the radiator 12, the heater core 20, and the thermal energy storage reservoir 24. Specifically, the three position electric solenoid operated valve 22 permits or militates against the flow of fluid to the engine 11, the radiator 12, and the heater core 20 based on an appropriate signal from the control unit 26. The differential pressure valve 25 permits or militates against the flow of fluid to and from the thermal energy storage reservoir 24.
The thermal energy storage reservoir 24 is utilized to store thermal energy from the engine 11 as the fluid is forced to flow through the system by the motive force produced by the electric water pump 14 and the electric vapor pump 16. The thermal energy storage reservoir 24 acts as an inherent thermal energy balance device, to either add heat energy to or remove heat energy from the thermal energy storage and management system. It will be understood that the thermal energy storage reservoir 24 is effective to efficiently retain heat energy and allow the energy transfer fluid retained therein to absorb heat energy from or release heat energy to the engine 11, the radiator 12, or the heater core 20. Due to the insulating properties of the thermal energy storage reservoir 24, the thermal energy transfer fluid flowing therethrough minimizes energy loss so that when the system 10 is shut down, the thermal energy transfer fluid within the thermal energy storage reservoir 24 will maintain the thermal energy for subsequent use. If the phase changing function is utilized by the thermal energy storage reservoir 24, fluid that enters in a liquid state can be heated and changed into a vapor or gaseous state. Energy needed to implement the phase change can be supplied by any traditional means such as a battery powered thermal electrical device, for example.
The advantages achieved by the illustrated and described thermal energy and management system 10 includes start-up efficiencies of the associated engine. Immediately upon start-up, the system 10 utilizes the stored thermal energy to heat components of the engine. Therefore, the wear on the engine during start-up is substantially reduced, resulting in increased engine durability. If desired, the passenger cabin can also be supplied with heat immediately upon start-up. Fuel efficiency is maximized and exhaust gas pollutants are minimized due to the engine more rapidly reaching a maximum operating temperature. Suitable signals from the electrical control unit 26 will effectively controls the flow of heat energy to or from the thermal energy storage reservoir 24.
In this heating operating mode, the engine 11′ is off and the electric water pump 14′ is not operating. The differential pressure valve 25′ is in an open position to allow fluid to travel therethrough. The four position electric solenoid actuated valve 32 is in an open position to allow fluid to recirculate through the heater core 20′ and in a closed position to militate against the flow of fluid to and from the radiator 12′ and the engine 11′. Heated fluid is pumped from the thermal energy storage reservoir 24′ by the electric vapor pump 16′ through the differential pressure valve 25′, the two position engine bypass valve 30, and the four position electric solenoid actuated valve 32. The heated fluid flows through and transfers thermal energy to the heater core 20′ and subsequently to the passenger cabin as actuated by a signal from the on/off switch operated by a passenger (not shown). The fluid can then flow back through the two position engine bypass valve 30 to the thermal energy storage reservoir 24′ facilitated by an appropriate signal from the electric control unit 26′. This alternate heating mode can be selectively turned on and off by a passenger and is utilized to supply thermal energy stored in the thermal energy storage reservoir 24′ directly to the heater core 20′ while by-passing the engine 11′ while the engine 11′ is off.
Fluid communication is established between the radiator 12″, the heater core 20″, and the thermal energy storage reservoir 33 via the three position electric solenoid actuated valve 22″. The three position electric solenoid actuated valve 22″ can permit or militate against the flow of fluid between each of the radiator 12″, the heater core 20″, and the thermal energy storage reservoir 33 universally, wherein flow is permitted or militated against between all of the radiator 12″, the heater core 20″, and the thermal energy storage reservoir 33. The three position electric solenoid actuated valve 22″ can also selectively permit or militate against the flow of fluid between the radiator 12″, the heater core 20″, and the thermal energy storage reservoir 33 separately. Fluid communication is further established between the three position electric solenoid actuated valve 22″ and the thermal storage reservoir 33 via the differential pressure valve 25″, which is actuated by an appropriate signal from the electric control unit 35. It will be appreciated that the various components of the system are coupled together, as illustrated, by appropriate fluid conveying conduits such as tubing and piping, for example.
The thermal energy storage reservoir 33 may be of a number of different types so long as it is capable of receiving a fluid used to convey the thermal energy developed during the normal operation of the engine 11″. Optionally, the thermal energy storage reservoir 33 may be a type that includes the ability to change the phase of the fluid, such as from a liquid state to a gaseous state, for example. One example is a jar or bottle having a vacuum between an inner and outer wall, and sited to contain engine radiator coolant fluid as a primary thermal energy transfer medium. As will be explained in more detail hereinafter, the reservoir 24 can also enclose one or more sub-system reservoirs, in the range of from one to two liter capacity, to contain engine oil, transmission oil, and exhaust gas recirculator coolants. Favorable results have been realized when the thermal energy storage reservoir 24 is formed of an inner vessel and an outer housing separated by a vacuum which has been found to maintain thermal energy for a period up to seventy-two hours and having a volume of between 8 and 10 liters, for example.
The thermal energy storage reservoir 33, in addition to housing the engine radiator coolant as the primary thermal energy transfer medium, houses subsystem reservoirs for the engine lubricating oil; the transmission oil; and the exhaust gas recirculation fluid coolants.
An engine oil reservoir 34 is disposed within the main thermal energy storage reservoir 33. Fluid communication is established between the engine 11″ and the engine oil reservoir 34 through suitable piping which typically includes a by-pass valve 36. A temperature sensor 38 monitors the temperature of the engine oil and is suitably coupled, typically electrically, with the electric control unit 35.
A transmission oil reservoir 40 is disposed within the main thermal energy storage reservoir 33. Fluid communication is established between the transmission 39 of the engine 11 and the transmission oil reservoir 40 through suitable piping which typically includes a by-pass valve 42. A temperature sensor 44 monitors the temperature of the transmission oil and is suitably coupled, typically electrically, with the electric control unit 35.
An exhaust gas recirculation reservoir 46 is disposed within the main thermal energy storage reservoir 33. Fluid communication is established between the exhaust gas cooler 48 of the exhaust gas recirculation system and the exhaust gas recirculation reservoir 46 through suitable piping which typically includes a by-pass valve 50. A temperature sensor 52 monitors the temperature of the exhaust gas recirculation coolant in the reservoir 46 and is coupled, typically electrically, with the electric control unit 35.
During a system operations mode, the three position electric solenoid operated valve 22″, the engine oil by-pass valve 36, the transmission oil by-pass valve 42, and the exhaust gas by-pass valve 50 are actuated by appropriate signals from the control unit 35 based on temperature readings supplied to the control unit 35 from the temperature sensors 38, 44, 52. The motive forces produced by the electric water pump 14″ selectively cause the fluid to be conveyed through the passageways to transfer thermal energy to the engine 11″, the radiator 12″, the heater core 20″, the thermal energy storage reservoir 33, the engine oil reservoir 34, the transmission 39, the transmission oil reservoir 40, the exhaust gas reservoir 46, and the exhaust gas cooler 48 based on appropriate electrical signals from the control unit 35. Specifically, the electric water pump 14″ causes the fluid to flow through the three position electric solenoid operated valve 22″ to the engine 11″, the radiator 12″, the heater core 20″, the thermal energy storage reservoir 33, the engine oil reservoir 34, the transmission 39, the transmission oil reservoir 40, the exhaust gas reservoir 46, and the exhaust gas cooler 48.
The thermal energy of the system may be controlled by the three position electric solenoid operated valve 22″, the differential pressure valve 25″, the engine oil by-pass valve 36, the transmission oil by-pass valve 42, and the exhaust gas by-pass valve 50, which control the rate of flow of fluid therethrough and hence through the heat exchange elements of the radiator 12″, the heater core 20″, and the thermal energy storage reservoir 33. Specifically, the three position electric solenoid operated valve 22″ permits or militates against the flow of fluid to the engine 11″, the radiator 12″, and the heater core 20″ based on an appropriate signal from the control unit 35. The differential pressure valve 25″ permits or militates against the flow of fluid from the three position electric solenoid operated valve 22″ to the thermal energy storage reservoir 33. The engine oil by-pass valve 36 permits or militates against the flow of fluid from the engine 11″ to the engine oil reservoir 34. The transmission oil by-pass valve 42 permits or militates against the flow of fluid from the transmission 39 to the transmission oil reservoir 40. The exhaust gas by-pass valve 50 permits or militates against the flow of fluid from the exhaust gas cooler 48 to the exhaust gas reservoir 46.
The thermal energy storage reservoir 33 is utilized to store thermal energy from the engine 11″ as the fluid is caused to flow through the system by the motive force produced by the electric water pump 14. The thermal energy storage reservoir 33 acts as an inherent thermal energy balance device, to either add heat energy to or remove heat energy from the thermal energy storage and management system 10″. It will be understood that the thermal energy storage reservoir 33 is effective to efficiently retain heat energy and allow the energy transfer fluid retained therein to absorb heat energy from or release heat energy to the engine oil reservoir 34, the transmission oil reservoir 40, and the exhaust gas recirculation reservoir 46. Due to the insulating properties of the thermal energy storage reservoir 33, the thermal energy transfer fluid flowing therethrough minimizes energy loss so that when the system 10″ is shut down, the thermal energy transfer fluid within the thermal energy storage reservoir 33 will maintain the thermal energy for subsequent use. If the phase changing function is utilized by the thermal storage reservoir 33, fluid that enters in a liquid state can be heated and changed into a vapor or gaseous state. Energy needed to implement the phase change can be supplied by any traditional means such as a battery powered thermal electric device, for example.
The advantages achieved by the illustrated and described thermal energy and management system 10″ includes start-up efficiencies of the associated engine. Immediately upon start-up the system 10″ utilizes the stored thermal energy to heat components of the engine 11″. Therefore, the wear on the engine 11″ during start-up is substantially reduced resulting in increased engine durability. If desired, the passenger cabin can also be supplied with heat immediately upon start-up. Fuel efficiency is maximized and exhaust gas pollutants are minimized due to the engine more rapidly reaching a maximum operating temperature. Suitable signals from the electrical control unit 35 will control the flow of heat energy to or from the thermal energy storage reservoir 33.
From the foregoing description, one ordinarily skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications to the invention to adapt it to various usages and conditions.