Illustrative embodiments of the disclosure generally relate to systems which exploit thermal energy for various purposes. More particularly, illustrative embodiments of the disclosure relate to thermal energy recovery systems which render thermal energy available for a variety of purposes.
Thermal energy is useful in a variety of applications such as heating and cooking. In some applications, it may be desirable to exploit thermal energy which is obtained from a readily-available thermal energy source for various purposes.
Accordingly, thermal energy recovery systems which render thermal energy available for a variety of purposes may be desirable for some applications.
Illustrative embodiments of the disclosure are generally directed to thermal energy recovery systems. An illustrative embodiment of the thermal energy recovery system includes a piston assembly including a primary cylinder adapted to receive vapor and/or hot liquid in such a state or condition as to become vapor; first and second secondary cylinders extending from opposite ends of the primary cylinder; a primary piston disposed for displacement in the primary cylinder; first and second secondary pistons disposed for displacement in the first and second secondary cylinders, respectively; and a piston connecting member connecting the first and second secondary pistons to the primary piston.
Illustrative embodiments of the disclosure will now be described, by way of example, with reference to the accompanying drawings, in which:
The following detailed description is merely exemplary in nature and is not intended to limit the described embodiments or the application and uses of the described embodiments. As used herein, the word “exemplary” or “illustrative” means “serving as an example, instance, or illustration.” Any implementation described herein as “exemplary” or “illustrative” is not necessarily to be construed as preferred or advantageous over other implementations. All of the implementations described below are exemplary implementations provided to enable persons skilled in the art to practice the disclosure and are not intended to limit the scope of the appended claims. Moreover, the illustrative embodiments described herein are not exhaustive and embodiments or implementations other than those which are described herein and which fall within the scope of the appended claims are possible. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
Referring initially to
A primary piston 16 may sealingly engage the interior surface of the primary cylinder 7. The primary piston 16 may be adapted for slidable displacement between the opposite ends of the primary cylinder 7. A secondary piston 17 may sealingly and slidably engage the interior surface of the secondary cylinder 8. A secondary piston 17a may sealingly and slidably engage the interior surface of the secondary cylinder 8a. Piston connecting members 18, 18a may connect the primary piston 16 to the secondary pistons 17 and 17a, respectively.
A condenser 24 may be disposed in fluid communication with the cylinder outlet valves 12, 12a on the primary cylinder 7 of the piston assembly 6 through an exhaust manifold 20. The boiler 2 may be disposed in fluid communication with the condenser 24 through a boiler return conduit 26.
The secondary cylinder 8 may be fitted with an inlet check valve 13 and an outlet check valve 14. In like manner, the secondary cylinder 8a may be fitted with an inlet check valve 13a and an outlet check valve 14a. A pressure tank 32 may be disposed in fluid communication with the outlet check valve 14 through a pressure conduit 30 and with the outlet check valve 14a through a pressure conduit 30a. A turbine/motor 34 may be disposed in fluid communication with the pressure tank 32 through a turbine/motor inlet conduit 33. The turbine/motor 34 may be used to perform work in any of a variety of applications. A fluid reservoir 36 may be disposed in fluid communication with the turbine/motor 34 through a turbine outlet conduit 35. The inlet check valve 13 of the secondary cylinder 8 may be disposed in fluid communication with the fluid reservoir 36 through a working fluid return conduit 31. The inlet check valve 13a of the secondary cylinder 8a may be disposed in fluid communication with the fluid reservoir 36 through a working fluid return conduit 31a.
In exemplary operation of the thermal energy recovery system 1, a working fluid 44 is contained in the secondary cylinders 8, 8a of the piston assembly 6. In some applications, the working fluid 44 may be a liquid. In some applications, the working fluid 44 may be a gas. The boiler 2 heats the water or other liquid 42 which subsequently becomes vapor 40 or alternatively, receives the vapor 40 from a vapor source (not illustrated). The cylinder inlet valve and/or liquid injection system 10 and the cylinder outlet valve 12a are opened whereas the cylinder inlet valve 10a and the cylinder outlet valve 12 are closed. Accordingly, the vapor 40 and/or evaporative liquid enters the primary cylinder 7 through the cylinder inlet valve and/or liquid injection system 10 such that the vapor 40 applies differential pressure against the primary piston 16, causing movement of the piston 16 in the primary cylinder 7 to the right in
The differential or ratio of the pressure which is applied by the vapor 40 against the primary piston 16 to the pressure which is applied by the secondary piston 17a against the working fluid 44 is directly proportional to the square of the radius of the primary piston 16 and the secondary piston 17a. The pressure which the secondary piston 17a exerts against the working fluid 44 is equal to the pressure which the vapor 40 exerts against the primary piston 16 times the area of the primary piston 16 divided by the area of the secondary piston 17a. For example and without limitation, in embodiments in which the diameter of the primary piston 16 is 10 inches and the diameter of the secondary piston 17a is 1 inch, the area of the primary piston 16 (A=πr2) is 78.5 in2 less the area of the piston connecting member 18a. The area of the secondary piston 17a is 0.785 in2. Therefore, a pressure of 10 lbs/in2 applied to the primary piston 16 yields a pressure of 1,000 PSI developed by the secondary piston 17a (a ratio of 100:1). Piston sizes (primary versus secondary) can be designed so as to optimize working fluid pressures and maximize thermal efficiency.
As it moves to the right in
Referring next to
A working fluid surge reservoir 146 may be disposed in fluid communication with a first secondary cylinder 8 (
In exemplary operation of the thermal energy recovery system 101, the boiler 102 heats a liquid which subsequently becomes vapor 140 or receives the vapor 140 from a separate vapor source (not illustrated). The vapor 140 flows from the boiler 102 through the boiler outlet conduit 103 into the piston assembly 106, which functions as was heretofore described with respect to the piston assembly 6 of the thermal energy recovery system 1 in
Responsive to operation of the piston assembly 106, pressurized working fluid 144 flows through the pressure conduit 130 into the working fluid surge reservoir 146. From the working fluid surge reservoir 146, the working fluid 144 flows through the turbine inlet conduit 133 and the turbine/motor 134, respectively, rotating the turbine/motor 134. The working fluid 144 flows from the turbine/motor 134 through the turbine outlet conduit 135 and into the working fluid return reservoir 148. Finally, the working fluid return conduit 131 returns the working fluid 144 to the piston assembly 106.
Referring next to
A condenser 224 may be disposed in fluid communication with the primary cylinder 7 of the piston assembly 206 through an exhaust manifold 220. The cold liquid storage tank 260 may be disposed in fluid communication with the condenser 224 through a storage tank return conduit 263.
A radiator 270 may be disposed in fluid communication with a first secondary cylinder 8 (
In exemplary operation of the solar-powered air conditioning system 201, thermal energy 286 emitted by the Sun 284 heats the thermal energy collector 252. Liquid 242 which flows through the thermal energy collector 252 is heated to produce hot liquid 240, which flows through the collector outlet conduit 253 to the hot liquid storage tank 258. The hot liquid 240 flows from the hot liquid storage tank 258 through the storage tank outlet conduit 262 to the piston assembly 206, where the liquid becomes vapor 240 actuates the piston assembly 206 as was heretofore described with respect to the piston assembly 6 in
Responsive to flow of the vapor 240 into the piston assembly 206, the piston assembly 206 forces refrigerant gas 244 through the assembly outlet conduit 266 to the radiator 270. In the radiator 270, flowing air absorbs heat from the refrigerant gas 244, which then in a cooled state flows through the radiator outlet conduit 271 to the refrigerant storage tank 272. The refrigerant gas 244 flows through the refrigerant outlet conduit 273 to the evaporator 274, where the refrigerant gas 244 absorbs heat from flowing air and cools the air. The air which is cooled by the refrigerant gas 244 in the evaporator 274 may be distributed into an enclosed or partially enclosed space such as rooms (not illustrated) of a home or other building through ductwork or the like to cool the building typically in the same manner as a conventional air conditioning system. The refrigerant gas 244 returns to the piston assembly 206 through the assembly return conduit 275 and the process is repeated.
Referring next to
The primary cylinder 7 (
A pressurized air or other gaseous medium storage tank 332 may be disposed in fluid communication with a first secondary cylinder 8 (
In exemplary operation of the propulsion system 301, the motor 388 may be operated as the primary mover of the road or rail vehicle. Exhaust gases 302a from the motor 388 heats the boiler 302 such that liquid 342 in the boiler 302 is heated and subsequently becomes vapor 340. The vapor 340 flows through the boiler outlet conduit 303 to the piston assembly 306, which is operated in a manner similar to that heretofore described with respect to the piston assembly 6 in
Responsive to flow of the vapor 340 into the piston assembly 306, the piston assembly 306 compresses and forces air or gaseous medium 343 through the pressure conduit 330 to the pressurized air storage tank 332. The compressed gas 343 flows from the pressurized gas storage tank 332 through the turbine inlet conduit 333 to the turbine/motor 334 and drives the turbine/motor 334. In some applications, the turbine/motor 334 may drive the vehicle drive train (not illustrated) of the road or rail vehicle to augment the driving power of the motor 388. In some applications, the turbine/motor 334 may be reversible to provide regenerative braking capability according to the knowledge of those skilled in the art. In some applications, such as under circumstances in which the motor 388 is not being operated, for example, the external gas compressor 392 may be operated to force compressed gas 393 to the turbine/motor 334 through the turbine inlet conduit 333.
While exemplary embodiments of the disclosure have been described above, it will be recognized and understood that various modifications can be made in the disclosure and the appended claims are intended to cover all such modifications which may fall within the spirit and scope of the disclosure.
This application claims the benefit of U.S. provisional application No. 61/551,359, filed Oct. 25, 2012 and entitled THERMAL ENERGY RECOVERY SYSTEMS, which provisional application is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
153296 | Atkinson | Jul 1874 | A |
213615 | Blake | Mar 1879 | A |
330388 | Dow | Nov 1885 | A |
391941 | Brown | Oct 1888 | A |
969027 | Benson | Aug 1910 | A |
1437704 | Barrance | Dec 1922 | A |
1748445 | Fahdt | Nov 1927 | A |
1690126 | Nieleback | Nov 1929 | A |
1746104 | Chritiansen | Feb 1930 | A |
1962986 | Dole | Jun 1934 | A |
1979161 | Klein et al. | Oct 1934 | A |
2134466 | Lentz et al. | Oct 1938 | A |
2264518 | Foster | Jan 1941 | A |
2652034 | Baillot et al. | May 1950 | A |
3609061 | Peoples | Sep 1971 | A |
4204406 | Hopfe | May 1980 | A |
4272226 | Osborne | Jun 1981 | A |
5832728 | Buck | Nov 1998 | A |
5984642 | Danielsson | Nov 1999 | A |
6481393 | Drew | Nov 2002 | B1 |
7413418 | Lane et al. | Aug 2008 | B2 |
7472544 | Knight | Jan 2009 | B1 |
7900444 | McBride et al. | Mar 2011 | B1 |
20060174613 | Pritchard | Aug 2006 | A1 |
20080110171 | Schmeltz | May 2008 | A1 |
20110100213 | Finkenrath et al. | May 2011 | A1 |
20110308248 | Stroganov | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
2334076 | Aug 1999 | GB |
WO 2010149972 | Dec 2010 | WO |
Number | Date | Country | |
---|---|---|---|
61551359 | Oct 2011 | US |