Exemplary embodiments of this disclosure relates to aircraft environmental control systems, and more specifically, to cooling of a cabin air compressor motor for an environmental control system.
Environmental control systems (ECS) are utilized on various types of aircrafts for several purposes, such as in cooling systems for the aircraft. For example, components of the ECS may be utilized to remove heat from various aircraft lubrication and electrical systems and/or used to condition aircraft cabin air. A cabin air conditioner includes one or more cabin air compressors (CAC) which compress air entering the system, from an outside source or from a ram air system. The compressed air is delivered to an environmental control system to bring it to a desired temperature then delivered to the aircraft cabin. After passing through the cabin, a portion of the air is typically exhausted to the outside. The CACs are typically driven by air-cooled electric motors, which are cooled by a flow of cooling air typically drawn in by a ram air system.
The flow of cooling air and thus the performance of the electric motor and CAC is typically limited by the pressure drop from the CAC inlet to a downstream heat exchanger. Such a limitation may result in reduced performance of the CAC. In addition, air from the CAC may additionally leak into the motor cavity, which increases the pressure drop in cooling duct and resulting in significantly reduced cooling air flow and an increased motor temperature.
According to one embodiment of the invention, a cabin air compressor assembly includes a cabin air compressor, and a cabin air compressor motor operably connected to the cabin air compressor. The cabin air compressor motor includes a rotor and a stator having a plurality of end windings. A cabin air compressor housing includes at least one cooling airflow hole formed therein. A motor cooling flow is movable across a portion of the cabin air compressor motor to cool the stator and the end windings. A duct extends from the cabin air compressor housing to an adjacent end winding such that a cooling outlet flow provided via the at least one cooling air flow hole is arranged in fluid communication with the end winding.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
a are front and side views of an annular duct for use with an end winding of a CAC motor according to an embodiment of the invention; and
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
A schematic diagram illustrating a relevant portion of an environmental control system (ECS) 10 is shown in
Referring now to
To prevent overheating of the CAC motor 28, particularly of the stator windings 38 and the bearings 40, a cooling flow is drawn across the CAC motor 28. The cooling flow is driven generally by a pressure drop from the compressor inlet 16 to the heat exchanger 22 (
The motor cooling flow 44 is drawn from the compressor inlet 16, enters at a motor inlet 65 and proceeds toward the first end 48 via a cooling conduit 67. The motor cooling flow splits into two portions travelling from a first end to a second end removing thermal energy from the stator windings and other components of the CAC motor 28. As shown, a first portion of the motor cooling flow 44 passes about the outer diameter of the stator 36 and the exposed stator windings 38, and a second portion of the motor cooling flow 44 proceeds through the gap formed between the rotor 32 and the stator 36. Adjacent the stator windings 38 arranged near the second end 50 of the motor 28, the motor cooling flow 44 is directed at an angle towards a cooling flow exit 64.
As shown, a compressor rotor 62 is operably connected to the CAC shaft 30 and rotates about an axis X driven by the CAC motor 28. The compressor rotor 62 compresses the air flow 14 to provide a compressed flow 80 in volute 66 of a cabin air compressor housing 68 and directed to a compressor outlet 78. A portion of the air flow 74 may leak into the mixing chamber 58 where the air is mixed with the bearing cooling flow 42. Cooling airflow holes 60 are sized and distributed at an interior portion of the cabin air compressor housing 68 between a journal bearing support 45 and the compressor volute 66 of the CAC housing 68. A cooling outlet flow 90 is urged from mixing chamber 58 through the cooling airflow holes 60.
Referring now to
In addition, the stator end winding 38 may include at least one heat transfer enhancement 110 configured to improve the heat transfer between the stator end winding 38 and the cooling outlet flow 90 within the duct 100. In one embodiment, the heat transfer enhancement 110 includes a plurality of heat transfer fins, such as pin fins for example. The fins 110 may be substantially identical, or alternatively, may be different to address various cooling needs at different positions of the end winding 38. Also, the fins 110 may be coupled to the end windings 38, or may be integrally formed with the end windings 38, such as by embedding the fins 110 within the turns of the end windings 38, as shown in
Inclusion of the duct 100 and at least one heat transfer enhancement 110 significantly reduces the temperature of motor stator 36 and end windings 38. This decreased temperature will result in an increased reliability of the CAC motor 28.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1114727 | Breeze | Oct 1914 | A |
2301063 | McConaghy | Nov 1942 | A |
2722616 | Moses | Nov 1955 | A |
2873393 | Baudryrenea | Feb 1959 | A |
3801843 | Corman | Apr 1974 | A |
4268772 | Workman | May 1981 | A |
5331238 | Johnsen | Jul 1994 | A |
6009722 | Choi et al. | Jan 2000 | A |
6102672 | Woollenweber | Aug 2000 | A |
6288460 | Fakult | Sep 2001 | B1 |
7181928 | de Larminat | Feb 2007 | B2 |
7439702 | Smith | Oct 2008 | B2 |
7575421 | McAuliffe | Aug 2009 | B2 |
20040261428 | Murry | Dec 2004 | A1 |
20070271956 | Smith et al. | Nov 2007 | A1 |
20100013419 | White | Jan 2010 | A1 |
20100215526 | Saari | Aug 2010 | A1 |
20120011878 | Hipsky | Jan 2012 | A1 |
20120242176 | Pal | Sep 2012 | A1 |
20140030070 | Beers | Jan 2014 | A1 |
20140357176 | Beers | Dec 2014 | A1 |
Entry |
---|
Extended European Search Report for EP Application No. 16205073.6; Report dated May 16, 2017 (7 pages). |
Number | Date | Country | |
---|---|---|---|
20170175748 A1 | Jun 2017 | US |