The present invention relates to a method of producing an extract by thermal extraction, and a thermal extraction product.
Extraction of a desired compound from a source is commonly performed by solvent extraction methods.
Solvent extraction is used today on a number of starting materials, including biomass, to extract desired components. A good example of this is the extraction of taxanes from biomass.
Taxanes are a group of diterpenoid compounds, some of which have been demonstrated to be useful in the treatment of cancer and other serious diseases, such as multiple sclerosis and kidney disease. In particular, the taxane compounds paclitaxel, docetaxel, Baccatin III, 10-O-deacetylbaccatin III (10-DAB or DAB), 13-acetyl-9-dihydrobaccatin III (DHB), cephalomannine, and prostratin have been identified as useful in pharmaceutical applications. For instance, paclitaxel, is currently being used in cancer treatment (marketed as TAXOL® by Bristol-Myers Squibb). Certain taxanes, such as paclitaxel and docetaxel, can be used directly in pharmaceutical applications, without additional chemical modification, while other taxanes (DAB and DHB, for example) are viewed as precursors for the production of other taxanes such as paclitaxel and docetaxel.
The major sources of taxanes are the bark, needles and clippings of the yew (hemlock) tree, which belongs to the genus Taxus. Unfortunately, even though taxanes are more concentrated in yew than in other species of trees, the absolute concentrations are very low. For example, it has been reported that in a typical sample, yields of only 0.01% of paclitaxel are obtained from the bark of the yew tree, and in the range of from 0.003 to 0.015 percent (dry basis) of paclitaxel from the clippings and needles (Huang et al., J. Nat. Prod., 49:665, 1986.) where the first extraction is a solvent extraction. Furthermore, the yew tree is relatively rare and grows quite slowly, raising valid concerns that reforestation and resource management cannot keep up with the demand. Although synthetic and semi-synthetic pathways for producing paclitaxel have been devised, they are extremely complex and generally too costly for commercial production. Semi-synthetic processes have also been devised for producing docetaxel.
Current methods of commercial paclitaxel and other taxane production are complex and costly. The unit operations are predominantly physical methods involving: harvesting/collection, grinding, mulching, preliminary solvent extraction and separation to get a crude taxane product. Once the crude taxane product is produced, paclitaxel may be recovered and purified in additional solvent extractions and other refining steps. In many cases, the other natural taxanes are chemically converted to additional yields of paclitaxel or to docetaxel.
Current methods for isolating other compounds from starting materials also often include an initial step of solvent extraction, which removes a large amount of impurities together with the desired compounds. As a result, one or more liquid partitioning steps to enrich the concentrations of desired compounds in the extracts are often performed, followed in some cases by several chromatography steps.
A drawback of these methods is that they require large amounts of costly and, sometimes, toxic organic solvents for the extraction and partitioning steps. Commercially, this translates to very high capital and operating costs for materials, qualified expertise, qualified technical staffing, and infrastructure.
There is therefore a need for a method of isolating compounds, which method would reduce or eliminate the requirement of large amounts of toxic and costly organic solvents.
According to one broad aspect of the invention, there is provided a method for producing a thermal extract by thermal extraction of a starting material, comprising: heating the starting material to a temperature and for a time sufficient to extract an amount of a desired compound from the starting material, without conversion of the desired compound into one or more other compounds in a substantial amount.
According to a further aspect of the invention, there is provided a method for obtaining a taxane-rich extract by thermal extraction.
In one exemplary embodiment of the invention, there is provided a method for producing a taxane-rich thermal extract from a diterpenoid-containing biomass starting material by thermal extraction of the biomass starting material, comprising: heating the biomass starting material to a temperature and for a time sufficient to extract an amount of taxanes, without conversion thereof into one or more other compounds in a substantial amount.
In an exemplary embodiment of the invention, there is provided a method for producing a thermal extract comprising a desired compound, comprising: introducing a starting material into a thermal extraction system comprising a contained vessel, a heat source, and at least one recovery unit; heating the starting material in the thermal extraction system to a temperature and for a time sufficient to produce a product stream comprising an amount of the desired compound, without conversion of the desired chemical compound into one or more other compounds in a substantial amount; and collecting at least one fraction from the product stream enriched in the desired compound in at least one of the at least one recovery units to obtain the thermal extract.
In a further exemplary embodiment of the invention, there is provided a method for producing a taxane-rich thermal extract from a diterpenoid-containing biomass starting material comprising: introducing the biomass starting material into a thermal extraction system comprising a contained vessel, a heat source, and at least one recovery unit; heating the biomass starting material in the thermal extraction system to a temperature and for a time sufficient to produce a product stream comprising an amount of taxanes, without conversion thereof into one or more other compounds in a substantial amount; and collecting at least one taxane-containing fraction from the product stream in at least one of the at least one recovery units to obtain the taxane-rich thermal extract.
According to another exemplary embodiment of the invention, there is provided a taxane-rich extract.
According to another exemplary embodiment of the invention, there is provided a terpene or terpenoid-rich thermal extract obtained by a method of the invention.
According to a still further exemplary embodiment of the invention, there is provided a taxane-rich thermal extract obtained by a method of the invention.
According to a further exemplary embodiment of the invention, there is provided a flavonoid-rich thermal extract obtained by a method of the invention.
According to another exemplary embodiment of the invention, there is provided an epicatechin-rich thermal extract obtained by a method of the invention.
According to another exemplary embodiment of the invention, there is provided a catechin-rich thermal extract obtained by a method of the invention.
According to another exemplary embodiment of the invention, there is provided a caffeine-rich thermal extract obtained by a method of the invention.
According to another exemplary embodiment of the invention, there is provided a vanillin-rich thermal extract obtained by a method of the invention.
According to another exemplary embodiment of the invention, there is provided a beta-sitosterol-rich thermal extract obtained by a method of the invention.
According to a yet further exemplary embodiment of the invention, there is provided an extract comprising paclitaxel and 10-O-deacetylbaccatin III, wherein the 10-O-deacetylbaccatin III is present in the extract in an amount that is approximately 10 times greater than an amount of the paclitaxel on a weight per weight basis.
According to a yet further exemplary embodiment of the invention, there is provided an extract comprising paclitaxel and 13-acetyl-9-dihydrobaccatin III, wherein the 13-acetyl-9-dihydrobaccatin III is present in the extract in an amount that is approximately 10 times greater than the amount of paclitaxel on a weight per weight basis.
According to a yet further exemplary embodiment of the invention, there is provided an extract comprising paclitaxel and 7-epi-taxol, wherein the 7-epi-taxol is present in the extract in an amount that is approximately 10 times greater than the paclitaxel on a weight per weight basis.
It has been observed that thermal extraction can be used as an alternate means of extraction to solvent extraction.
An implication of thermal extraction is that the initial step of solvent extraction of a feedstock, as presently associated with solvent extraction methods, is not required.
By “thermal extraction” (which may also be referred to as “thermal distillation” or “rapid thermal distillation”), as used herein is meant an extraction method where heat is used to separate one or more desired compounds from suitable starting materials. By applying heat to suitable starting materials in a controlled manner in a contained (i.e., enclosed) environment, one or more desired compounds can be liberated, preserved, recovered, and left substantially undestroyed. Thermal extraction may therefore be used to extract a naturally occurring desired compound from a starting material, which naturally occurring compound was found in the starting material, without chemical conversion. While thermal extraction may destroy or chemically convert some compounds in the starting material, a substantial amount of the desired compound is not degraded or otherwise chemically altered. By “naturally occurring desired compound” or “desired compound” obtained by thermal extraction is meant a compound present in the starting material and where a substantial amount of this compound is not degraded or otherwise chemically converted into another compound by the thermal extraction method of the present invention.
The material that may be used in the present invention is not particularly limited, providing that it provides a source of the one or more desired compounds and it can be subjected to thermal extraction. For example, biomass is a common starting material for solvent extraction methods, and it may also be a suitable starting material for the methods of the present invention. The biomass may be, for example, derived from a plant. Any part of the plant may be suitable for thermal extraction, including the bark, needles, stems, roots, leaves, seeds, plant cells in culture, etc.; or a mixture thereof. Plant derived biomass material that is used in the present invention may be in, for example, a freshly harvested state, a dry state, or a hydrated state.
If one or more taxanes are the desired compounds, then diterpenoid-containing biomass materials such as those derived from the yew tree are generally considered an excellent source of taxanes. For example, all or various components of a species of the genus Taxus or Austrotaxus may be used as a taxanes source.
In another invention embodiment, thermal extraction may be used to extract flavonoids from suitable starting materials. Over five thousand naturally occurring flavonoids (including isoflavonoids and neoflavonoids) have been characterized from various plants. The thermal extraction method of the present invention can be used to extract some of these compounds from these biomass materials. Some of these compounds include, without limitation, quercetin, epicatechin, proanthocyanidins, citrus bioflavonoids, catechins, resveratrol, kaempferol vanillin and beta-sitosterol. In one embodiment of the present invention, epicatechin is extracted from cocoa or a cocoa containing starting material, for example. Flavonoids may be used, for instance, as antioxidants, as well as other uses, such as in treating or preventing cancer, heart disease, etc. Another source of flavonoids is, for example and without limitation, flax or a flax containing starting material. Flax may be used to obtain a thermal extract according to the invention comprising one or more flavonoids including catechins and epicatechin. Other natural products extracted from biomass might also be obtained by using thermal extraction, and used as medicines, natural supplements, etc. By way of another non-limiting example, a starting material comprising coffee could be used to obtain a thermal extract comprising caffeine.
It will be apparent to a person skilled in the art that any number of other materials may be suitable starting materials for obtaining a thermal extract comprising one or more desired compounds.
The starting material used in the present invention may also be reduced in size. For example, it may be shredded or ground by methods known in the art, prior to thermal extraction.
In one exemplary embodiment of the present invention, the material that is to be subjected to thermal extraction is first reduced in size to having an average diameter of less than about 2 cm in its smallest dimension. In another exemplary embodiment of the present invention, the starting material is first reduced in size to having an average diameter of less than about 1 cm in its smallest dimension.
Thermal extraction according to the invention may be carried out in a thermal extraction system, which system is not particularly limited. In a thermal extraction of the invention, all or a portion of the starting material may be exposed to heat in a controlled and contained environment. For instance, if the starting material is a biomass material, ligninic, cellulosic, or hemicellulosic fractions, or combinations thereof, could be used. By a controlled environment is meant an environment where heat is applied in such a manner as to cause a phase change or chemical conversion of the starting material but not in a manner that would cause a substantial amount of the desired compound present in the starting material to be adversely altered, degraded, destroyed, etc. For example, in one embodiment, the thermal extract comprises from about 0 to 10% w/w (or any sub-range thereof) of impurities resulting from chemical or other conversion of the desired compound into another compound.
In one exemplary embodiment of the invention, the thermal extraction is carried out in a thermal extraction system comprising a contained vessel, a heat source and one or more recovery units. Thermal extraction may then be achieved by heat transfer to the starting material and any resulting intermediate product. The starting material and any resulting intermediate product may thus be heated to a sufficient temperature for a sufficient period of time to produce a product stream, fractions of which may then be recovered in the one or more recovery units, and collected to obtain an extract.
By way of example, the thermal extraction system may comprise a standard retort system (i.e., a fixed or moving bed either under vacuum or at pressure), a bubbling fluid bed, an upflow thermal extraction unit, a circulating fluid bed, a transported bed, an ablative thermal extraction unit, an entrained flow thermal extraction unit, a rotary kiln or a mechanical transport thermal extraction unit (e.g., heated auger system).
Any device that collects product vapours and liquids produced during thermal extraction may be used as a recovery unit. A recovery unit may include a condenser. The condenser may be a contact or surface condenser that cools and collects a liquid product from a vapour, or a liquid quench that may also cool and collect a liquid product from a vapour. A recovery unit may also include demisters, fiber filter beds, or other devices used within the art to collect a liquid product from a vapour stream. A recovery unit may comprise one or more components, for example, one or more condensers, which may be linked in series.
In one exemplary embodiment of the invention, sufficient heat is supplied in the thermal extraction system to produce a temperature in the range of from about 250° C. to about 650° C., or any subrange thereof, including, for example, from about 300° C. to about 550° C., or from about 320° C. to about 400° C. A total residence time of the material in the thermal extraction system may be, for example, less than about 30 seconds, for example, in the range of from about 0.1 to about 30 seconds, or any subrange thereof. For instance, in an exemplary embodiment, the total residence time is from about 0.2 to about 5 seconds. In another exemplary embodiment, the total residence time is about 2 seconds, or less. The residence time of the material in the thermal extraction system is measured as the time interval from the heating up of the starting material in the thermal extraction system to quenching (for example, cooling).
Thermal extraction can produce a product stream comprising solid, liquid and/or vapour. The product stream may be fractionated to obtain fractions, which may be collected to obtain one or more extracts. Fractions may be a solid, e.g., a char, a liquid and/or a vapour, or a combination thereof. Fractions or combinations thereof may be obtained comprising a concentrated extract of the desired compound.
Liquid and/or vapour fractions will generally comprise a higher concentration of desired compounds than a solid fraction. However, a solid fraction may also be obtained. For example, during thermal extraction of yew biomass, taxanes may collect and concentrate on the surface, matrices or pores of any solid by-products, such as carbon by-products, which may result in a taxane-rich solid fraction, that can be collected to obtain a taxane-rich extract of the invention.
In one embodiment of the invention, a liquid fraction is obtained by condensing vapours obtained according to the thermal extraction method of the invention. A liquid fraction may also be obtained following removal of solids, such as char, from the liquid and collecting the liquid to obtain an extract according to the invention. A liquid fraction obtained following extraction of plant based biomass material may be, for example, a tar, a pitch, a pyroligneous acid mixture, etc.
In the thermal extraction method of the invention, the liquid and/or vapour fractions may be further fractionated. Each further fraction thus produced may be individually collected to obtain multiple extracts, or collected and combined into one or more extracts. Fractionation may also be used to selectively produce extracts rich in selected compounds, such as selected taxanes.
The extract of the invention (also referred to herein as a “thermal extract”) may be the collected solid, liquid or vapour fractions, or any combination thereof. It may also be a fraction of the collected solid, liquid and/or vapour fractions, or a combination of selected collected fractions. A single extract may be obtained by collecting a single fraction or collecting and combining multiple fractions. Multiple extracts may also be obtained by collecting multiple fractions or by collecting multiple combined fractions. Also, the extract may comprise a phase change from the starting material (e.g., solid to liquid, etc.), or not.
It has been observed that thermal extraction can provide higher yields of extracted compounds than yields reported in the literature for other methods, including conventional solvent-recovery extraction and purification methods and other non-solvent methods.
For instance, it has been observed that higher yields of total and specific taxanes, including paclitaxel, may be obtained by thermal extraction. It has further been observed that the taxane-rich extract obtained by thermal extraction has a higher concentration of taxanes in a given volume than in an equivalent volume of Taxus or Austrotaxus solid biomass starting material or in an equivalent volume of the initial (first-stage) solvent-extract of the Taxus or Austrotaxus biomass material.
One implication of a more concentrated extract is that, to achieve a comparable amount of finished product, a smaller volume of material is required to be processed in subsequent purification, isolation and recovery steps, than is the case with solid feedstock material or an extract obtained from conventional solvent recovery processes. It has been observed that the initial volume of an enriched extract of the invention to be processed in subsequent purification steps can be lower, for example, an order of magnitude lower, than the volume of initial material required to be processed in a conventional solvent extraction method in order to obtain comparable yields. For instance, for taxanes extraction, thermal extraction may produce a volume of taxane-rich extract that is reduced by factors of, for example, 10, 15, 25 or 50, or greater, or factors in between, when compared to the volume of initial biomass material required to be processed in conventional solvent-extraction methods to obtain comparable yields of purified taxanes.
Taxanes that may be present in a taxane-rich extract of the present invention include one or more than one of the following taxane compounds: paclitaxel, cephalomannine, baccatin III, 10-deacetyltaxol, 10-deacetylcephalomannine, 10-deacetylbaccatin III (also known as 10-DAB or DAB), 13-acetyl-9-dihydrobaccatin III (also known as DHB), 7-xylosyltaxol, 7-xylosylcephalonammine, 7-xylosylbaccatin III, and derivatives and analogs thereof. This listing is not intended to be exhaustive. Other taxanes may also be present in the taxane-rich extract of the present invention.
The fractions produced by thermal extraction, and the taxane-rich extract, may also comprise, in addition to one more taxane compounds, a number of other components, including depolymerized lignin, fragmented cellulose- and hemicellulose-derived products, and other reactive components including phenolics, as well as a number of other components.
It has been observed that thermal extraction gives a higher overall yield of taxanes, and higher yields of taxanes that are of present commercial value, than known methods of taxane recovery or production. The observed “fingerprint” or relative distribution of the predominant taxane components in the extract, and the concentration of taxanes in the extract obtained by thermal extraction is also different than extracts obtained by current methods. For example, it has been observed that paclitaxel yields can be increased by a factor of about 3 to about 5 (i.e., about 300 to about 500%), DHB yields can be increased by a factor of about 2 to about 3 (i.e., about 200 to about 300%), DAB yields increased by a factor of about 8 (i.e., about 800%) and overall taxane yields can be increased by a factor of about 20 (i.e., about 2000%), compared to average yields obtained from solvent extraction of yew needles and clippings, as reported in the literature.
According to one theory of the invention, which is not to be considered limiting on the scope of the invention, thermal extraction is believed to liberate compounds that may be either chemically bound or physically isolated (e.g., in cellular structures) and therefore not as available for recovery by solvent methods. In these cases, the thermal extraction of the present invention, while extracting free and available desired compounds, may simultaneously free and extract bound or isolated compounds by rupturing weak chemical bonds and/or rupturing any physical structures which may isolate or inhibit extraction by conventional means. For instance, where the starting material is a biomass, desired compounds may be contained in vacuoles that can be disrupted by thermal extraction to liberate the whole of the contents, which disruption and liberation would not normally occur by using conventional methods of extraction.
Extracts of the invention, including, but not limited to, liquids, liquid fractions, solids and solid fractions may be further processed by various methods known to those skilled in the art to purify, isolate and recover the desired compounds for commercial use.
For instance, where taxanes are recovered, the method of the present invention may further comprise a step of contacting taxane-rich extracts obtained, including, for example, the whole extract obtained by combining all of the fractions collected, selected liquid fractions collected, and solid carbon fractions collected, with water or some other appropriate partitioning solvent to further separate, isolate and concentrate the taxane components. The addition of water or some other appropriate partitioning solvent may occur directly in the thermal extraction system (i.e., in situ), particularly in product recovery units, during processing of the biomass, or as a separate step, or steps, after the product is recovered from the thermal extraction process.
Furthermore, the thermal extraction method of the present invention may further comprise a step of fractionation for the purpose of isolating and concentrating certain desired compounds fractions from other less desirable components. (For instance, where taxanes are extracted certain desired taxanes could be separated from less desirable taxanes, phenolics, lignocellulosics, inhibitors, and other contaminants.) The removal of non-desirable components may be carried out to simplify subsequent purification steps or to increase the intermediate economic value.
The isolated yield of paclitaxel obtained by current organic solvent extraction techniques from the bark of Taxus is typically in the order of 0.01%, and from clipping and needles, about 0.003 to about 0.015%. However, with the methods of the present invention, isolated yields of about 0.031 to 0.049% have been obtained. The isolated yield of DHB from clippings and needles, as obtained by current organic solvent extraction techniques, is typically on the order of 0.04%. However, with the methods of the present invention, isolated DHB yields of between 0.08 and 0.12% have been obtained. The isolated yield of DAB from clippings and needles, as obtained by current organic solvent extraction techniques, is typically on the order of 0.06%. However, with the methods of the present invention, isolated DAB yields of between 0.46 and 0.53% have been obtained. The yield of total taxanes recovered from clippings and needles, as obtained by current organic solvent extraction techniques, is typically on the order of 0.25%. However, with the methods of the present invention, total taxane yields of between 5 and 7% have been measured.
Thermal extraction can also be used on a starting material, which may have been initially processed, including by solvent extraction. It has been observed, for example, that caffeine can be thermally extracted from a fresh source, or following a solvent extraction.
An example of a thermal extraction system suitable for preparing an extract or extracts according to the present invention is described in U.S. Pat. No. 6,844,420 (Freel and Graham); the disclosure of which is incorporated herein by reference, and is diagrammatically presented in
The recovery unit system used within the thermal extraction reactor system, outlined in
Taxus Canadensis Marsh, Canada yew, ground hemlock shrubs were collected in July-September 2004 from Sault Ste. Marie surrounding area, Ontario, Canada (lat. 46.34 N, long. 84.17 W). Pressed voucher specimens are deposited in the Canadian Forest Service-Sault Ste. Marie herbarium as Taxus canadensis Marsh (2004—4001-10 CFS-SSM #s), Taxaceae—yew family. The fresh T. Canadensis needles and twigs were air dried at room temperature 22-24° C. The dried sample was ground to ˜0.5 mm particle size in a Thomas-Wiley Laboratory mill, Model 4 (Thomas Scientific, USA).
Analysis of Taxane Products:
High performance liquid chromatography was performed using a Waters Delta Prep 4000 Liquid Chromatograph equipped with a computer and Empower software, a Waters® 996 autoscan photodiode array spectrophotometric detector; and an analytical column. The analytical column used in the experiments described below was a Curosil-PFP Phenomenox (250×4.60 mm i.d.). A modified gradient chromatographic technique (Phenomenex) was used at room temperature using an acetonitrile/water solvent system. However, other solvent systems were also used. Samples were eluted using an appropriate gradient, for example, a 25/75 to 65/35 gradient of acetonitrile/water over a 40 minute period with a flow rate of 1.0 ml/min. Compounds were detected at a wavelength of 228 nm and resolved peaks were scanned by the photodiode array detector from 200 to 400 nm.
A dilute solution (10 mg/mL) of extract was filtered through 13 mm GHP 0.45 μm Minispike (Waters, EDGE) and 10 μL was injected onto an HPLC column with and without spiking with standards. Peaks were identified on the basis of retention times and UV spectra. Peak heights, measured as absorbance at 228 nm, were converted to mg/ml using conversion factors obtained for commercial taxane standards. Such HPLC analyses were performed in triplicate.
UV spectra were recorded on a UV-Vis. Beckman DU series 640 spectrophotometer. Taxanes were identified by co-chromatography with authentic samples (ChromaDex, Santa Ana, Calif., USA) using TLC and HPLC.
A hemlock feedstock, prepared according to the procedure described above, was processed in a thermal extraction system essentially as described in U.S. Pat. No. 6,844,420 (the disclosure of which is incorporated herein by reference). In the thermal extraction system, a char product is rapidly separated from the product vapor/gas stream, and the product vapor and liberated liquids are rapidly quenched within a primary recovery unit using, a direct liquid contact condenser, or a liquid quench, as described below. The compounds remaining within the product vapor are transferred to a secondary recovery unit linked to the primary recovery unit in series. The product vapor is then quenched within the secondary recovery unit using, a direct liquid contact condenser, or a liquid quench, and the condensed product collected. Any remaining product within the product vapor is collected within the demister and filter bed (see
A hemlock feedstock (4,715 g) containing 2.52 wt % ash and 8.73 wt % moisture was thermally extracted in an upflow reactor (See
A hemlock feedstock (7,996 g) containing 1.80 wt % ash and 5.20 wt % moisture was thermally extracted in an upflow reactor (See
Samples of the taxane-containing thermal extract products were taken and submitted for taxane analysis.
In this example, the volume of the thermal extract is reduced by a factor of about 25 (without the requirement for any initial solvent extraction of the solid biomass) when compared to the initial volume of biomass from which the extract was produced.
A hemlock feedstock (5,641 g) containing 1.80 wt % ash and 5.20 wt % moisture was thermally extracted in an upflow reactor (See
Samples of the taxane-containing thermal extraction products were taken and submitted for taxane analysis.
In this example, the volume of the thermal extract is reduced by a factor of about 50 (without the requirement for any initial solvent extraction of the solid biomass) when compared to the initial volume of biomass from which the extract was produced.
An example of the selective fractionation and concentration of taxanes in the recovery train is demonstrated in the thermal extraction example described in 1B. In this example, approximately 50% of the identifiable taxane content was detected in the fraction of the thermal extract that was recovered from the fiber bed filter recovery unit, even though this fraction represented only 22% of the total thermal extract produced during Thermal Extraction Run 2.
An example of further selective fractionation and concentration through the addition of water or other partitioning solvent is demonstrated in the thermal extraction example described in 1C. In this example, water was added in situ in the recovery train, and in the result, approximately 67% of the identifiable taxane content was detected in the fraction of the thermal extract that was recovered from the fiber bed filter recovery unit, even though this fraction represented only 24% of the total thermal extract produced during Thermal Extraction Run 3. Other than the addition of water and direct condensation of the thermal extract products, the thermal extraction conditions of Run 3 were similar to those of Run 2 with respect to temperature and processing time. The selective fractionation of taxanes using water portioning was therefore demonstrated to be more effective in Run 3 when compared to the selective fractionation of taxanes without water partitioning as was the case in Run 2.
Thin-layer chromatography (TLC) of the thermal extract using silica gel and methylene chloride:MeOH 95:5 as a solvent was used and proved beneficial in obtaining qualitative analysis of the taxanes (i.e., confirmation of the presence of taxanes in the samples). The results of the TLC analysis are presented in the last column of Table 1 (i.e, taxanes are reported as “detected” or “not detected”).
Isolation Method 1:
Thermal extract samples (1 g) obtained as outlined in Examples 1A, 1B and 1C were mixed and adsorbed onto 1 g of Polyvinylpolypyrrolidone, PVPP (Sigma Chemical Co., P-6755 [25249-54-1]) and applied to strata-X 33 μm Polymeric Sorbent 1 g/20 ml Giga Tubes (Phenomenex, 8B-5100-JEG). The strata-X was conditioned with 20 mL methanol and equilibrated with 20 mL D.I. water before loading the above-mentioned sample. Elution was carried out at a slow rate using the following solvent systems:
a) methanol—D.I. water (7:3) [5×12 mL],
b) methanol:acetonitrile:D.I. water (6:3:1), (6:2:2) or (5:2:3) [5×12 mL], and
c) methanol:acetonitrile (1:1) [5×12 mL].
The taxane enriched fractions were analyzed chromatographically by TLC and HPLC. TLC was used for qualitative analysis (Table 1) and HPLC was used for quantitative analysis to determine the yields of total and individual taxanes (Tables 1, 2 and 3). Solvent system “b” (6:3:1) was selected as effective for the quantitative determination of taxane yields, and the yields reported in the Tables were determined using this solvent system.
The yield of total taxanes and individual taxane components, as produced via thermal extraction and as recovered using Isolation Method 1, are reported in Tables 2 and 3, respectively. A comparison of total “Isolation Method 1” taxane yields with those reported in the literature for conventional solvent recovery processes (e.g. Daoust, G and Sirois, G., 2003, and “Canada Yew (Taxus canadensis Marsh.) and Taxanes: A Perfect Species for Filed Production and improvement Through Genetic Selection” Natural Resources Canada, Canadian Forest Service, Sainte-Foy, Quebec), is also given in Table 2. A comparison of the “Isolation Method 1” yields of individual representative taxanes with the solvent control test yields is also given in Table 3.
As can be observed from the data in Tables 2 and 3, the yields of total taxanes and individual representative taxanes are higher using the methods of the present invention than yields that have been obtained using conventional solvent extraction methods.
Isolation Method 2:
Liquid thermal extract samples (1 g) obtained as outlined in Examples 1A, 1B and 1C were mixed and adsorbed onto 1 g of Polyvinylpolypyrrolidone, PVPP (Sigma Chemical Co., P-6755 [25249-54-1]) and applied to strata-X 33 μm Polymeric Sorbent 1 g/20 ml Giga Tubes (Phenomenex, 8B-S100-JEG). The strata-X was conditioned with 20 mL methanol and equilibrated with 20 mL D.I. water before loading the above-mentioned sample. Elution was carried out at a slow rate using 20 mL of water followed by 20 mL aliquots of increasing concentrations (20, 50, 70, 100%) of methanol. All fractions were analyzed chromatographically with maximum concentration found in the fraction eluting with 50-70% methanol.
Solvent Extraction of Taxanes (Non-Pyrolytic Control Test)
Fresh Taxus canadensis Marsh needles (4417.13 g fr. wt.) were extracted at room temperature in two steps: first, by steeping for 24 h in 100% MeOH (1 g fr. wt/10 ml solvent), followed by chopping in a commercial Waring blender and decanting the solvent; second, by steeping the chopped residue for an additional 24 h in 60% aqueous MeOH. The combined methanolic extracts were evaporated under reduced pressure until most or all of the MeOH had been removed. The residue was freeze-dried to obtain 713.88 g of crude extract. Thus from each g fresh weight of needles, 162 mg of T. canadensis crude extract was obtained. Results of this test are presented in Table 3 as “solvent control”.
A post-solvent coffee feedstock was thermally extracted in an upflow reactor (See
A sample of the caffeine-containing thermal extraction products were taken and submitted for caffeine analysis using an Agilent Technologies 1200 Liquid Chromatograph equipped with a computer and Chem. Station software (Chem. 32), a Binary pump SL (G1312B), a high performance autosample SL (G1367C) and an autoscan photodiode array spectrophotometer detector Agilent Technologies (G1315C).
Results:
A flax shive feedstock was thermally extracted in an upflow reactor (See
Samples of the collected liquid thermal extract products were taken and submitted for epicatechin and catechin analysis using an Agilent Technologies Eclipse Plus C-18 5 μm (4.6×150 mm i.d.) reverse-phase analytical column. A gradient chromatographic technique was used at room temp: solvent A=MeOH/Acetonitrile (95:5); solvent B=0.05% aq. HCOOH; with the flow rate set at 0.9 ml/min. Three fixed detection wavelengths were used: 270 nm, 280 nm and 350 nm and resolved peaks were scanned by the photodiode array detector from 250 to 400 nm.
Results:
Although the foregoing invention has been described in some detail by way of illustration and example, and with regard to one or more embodiments, for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes, variations and modifications may be made thereto without departing from the spirit or scope of the invention as described in the appended claims.
It must be noted that as used in the specification and the appended claims, the singular forms of “a”, “an” and “the” include plural reference unless the context clearly indicates otherwise.
Unless defined otherwise all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs.
All publications, patents and patent applications cited in this specification are incorporated herein by reference as if each individual publication, patent or patent application were specifically and individually indicated to be incorporated by reference. The citation of any publication, patent or patent application in this specification is not an admission that the publication, patent or patent application is prior art.
This application is a continuation of U.S. patent application Ser. No. 12/295,916, which is the U.S. National Phase of International Application No. PCT/CA2007/000535, filed Apr. 2, 2007, which was published in English, and which further claims the benefit of priority from U.S. Provisional Application No. 60/788,045, filed Apr. 3, 2006. The foregoing related applications, in their entirety, are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1252072 | Abbot | Jan 1918 | A |
2205757 | Wheat | Jun 1940 | A |
2318555 | Ruthruff | May 1943 | A |
2326525 | Diwoky | Aug 1943 | A |
2328202 | Doerner | Aug 1943 | A |
2380098 | Doerner | Jul 1945 | A |
2492948 | Berger | Jan 1950 | A |
2566353 | Mills | Sep 1951 | A |
2696979 | Berge | Dec 1954 | A |
2884303 | William | Apr 1959 | A |
3130007 | Breck | Apr 1964 | A |
3309356 | Esterer | Mar 1967 | A |
3313726 | Campbell et al. | Apr 1967 | A |
3445549 | Hakulin | May 1969 | A |
3467502 | Davis | Sep 1969 | A |
3694346 | Blaser et al. | Sep 1972 | A |
3696022 | Hutchings | Oct 1972 | A |
3760870 | Guetlhuber | Sep 1973 | A |
3776533 | Vlnaty | Dec 1973 | A |
3814176 | Seth | Jun 1974 | A |
3853498 | Bailie | Dec 1974 | A |
3876533 | Myers | Apr 1975 | A |
3890111 | Knudsen | Jun 1975 | A |
3907661 | Gwyn et al. | Sep 1975 | A |
3925024 | Hollingsworth et al. | Dec 1975 | A |
3927996 | Knudsen et al. | Dec 1975 | A |
3959420 | Geddes et al. | May 1976 | A |
4003829 | Burger et al. | Jan 1977 | A |
4032305 | Squires | Jun 1977 | A |
4039290 | Inada et al. | Aug 1977 | A |
4052265 | Kemp | Oct 1977 | A |
4064018 | Choi | Dec 1977 | A |
4064043 | Kollman | Dec 1977 | A |
4085030 | Green et al. | Apr 1978 | A |
4101414 | Kim et al. | Jul 1978 | A |
4102773 | Green et al. | Jul 1978 | A |
4103902 | Steiner et al. | Aug 1978 | A |
4138020 | Steiner et al. | Feb 1979 | A |
4145274 | Green et al. | Mar 1979 | A |
4153514 | Garrett et al. | May 1979 | A |
4157245 | Mitchell et al. | Jun 1979 | A |
4165717 | Reh et al. | Aug 1979 | A |
4204915 | Kurata et al. | May 1980 | A |
4210492 | Roberts | Jul 1980 | A |
4219537 | Steiner | Aug 1980 | A |
4225415 | Mirza et al. | Sep 1980 | A |
4233119 | Meyers et al. | Nov 1980 | A |
4245693 | Cheng | Jan 1981 | A |
4272402 | Mayes | Jun 1981 | A |
4284616 | Solbakken et al. | Aug 1981 | A |
4298453 | Schoennagel et al. | Nov 1981 | A |
4300009 | Haag et al. | Nov 1981 | A |
4301771 | Jukkola et al. | Nov 1981 | A |
4306619 | Trojani | Dec 1981 | A |
4308411 | Frankiewicz | Dec 1981 | A |
4311670 | Nieminen et al. | Jan 1982 | A |
4317703 | Bowen et al. | Mar 1982 | A |
4321096 | Dobbin | Mar 1982 | A |
4324637 | Durai-swamy | Apr 1982 | A |
4324641 | Durai-Swamy | Apr 1982 | A |
4324642 | Durai-swamy | Apr 1982 | A |
4324644 | Durai-swamy | Apr 1982 | A |
4325327 | Kantesaria et al. | Apr 1982 | A |
4334893 | Lang | Jun 1982 | A |
4336128 | Tamm | Jun 1982 | A |
4341598 | Green | Jul 1982 | A |
4344770 | Capener et al. | Aug 1982 | A |
4364796 | Ishii et al. | Dec 1982 | A |
4373994 | Lee | Feb 1983 | A |
4415434 | Hargreaves et al. | Nov 1983 | A |
4422927 | Kowalczyk | Dec 1983 | A |
4434726 | Jones | Mar 1984 | A |
4443229 | Sageman et al. | Apr 1984 | A |
4456504 | Spars et al. | Jun 1984 | A |
4482451 | Kemp | Nov 1984 | A |
4495056 | Venardos et al. | Jan 1985 | A |
4504379 | Stuntz et al. | Mar 1985 | A |
4537571 | Buxel et al. | Aug 1985 | A |
4548615 | Lonchamp et al. | Oct 1985 | A |
4552203 | Chrysostome et al. | Nov 1985 | A |
4574743 | Claus | Mar 1986 | A |
4584064 | Ciais et al. | Apr 1986 | A |
4584947 | Chittick | Apr 1986 | A |
4595567 | Hedrick | Jun 1986 | A |
4615870 | Armstrong et al. | Oct 1986 | A |
4617693 | Meyer et al. | Oct 1986 | A |
4645568 | Kurps et al. | Feb 1987 | A |
4668243 | Schulz | May 1987 | A |
4678860 | Kuester | Jul 1987 | A |
4684375 | Morin et al. | Aug 1987 | A |
4710357 | Cetinkaya et al. | Dec 1987 | A |
4714109 | Tsao | Dec 1987 | A |
4732091 | Gould | Mar 1988 | A |
4796546 | Herstad et al. | Jan 1989 | A |
4823712 | Wormer | Apr 1989 | A |
4828581 | Feldmann et al. | May 1989 | A |
4849091 | Cabrera et al. | Jul 1989 | A |
4880473 | Scott et al. | Nov 1989 | A |
4881592 | Cetinkaya | Nov 1989 | A |
4891459 | Knight et al. | Jan 1990 | A |
4897178 | Best et al. | Jan 1990 | A |
4931171 | Piotter | Jun 1990 | A |
4940007 | Hiltunen et al. | Jul 1990 | A |
4942269 | Chum et al. | Jul 1990 | A |
4968325 | Black et al. | Nov 1990 | A |
4983278 | Cha et al. | Jan 1991 | A |
4987178 | Shibata et al. | Jan 1991 | A |
4988430 | Sechrist et al. | Jan 1991 | A |
4992605 | Craig et al. | Feb 1991 | A |
5009770 | Miller et al. | Apr 1991 | A |
5011592 | Owen et al. | Apr 1991 | A |
5018458 | Mcintyre et al. | May 1991 | A |
5041209 | Cha et al. | Aug 1991 | A |
5059404 | Mansour et al. | Oct 1991 | A |
5077252 | Owen et al. | Dec 1991 | A |
5093085 | Engstrom et al. | Mar 1992 | A |
5136117 | Paisley et al. | Aug 1992 | A |
5212129 | Lomas | May 1993 | A |
5225044 | Breu | Jul 1993 | A |
5236688 | Watanabe et al. | Aug 1993 | A |
5239946 | Garcia-mallol | Aug 1993 | A |
5243922 | Rehmat et al. | Sep 1993 | A |
5281727 | Carver et al. | Jan 1994 | A |
5306481 | Mansour et al. | Apr 1994 | A |
5326919 | Paisley et al. | Jul 1994 | A |
5343939 | Cetinkaya | Sep 1994 | A |
5371212 | Moens | Dec 1994 | A |
5376340 | Bayer et al. | Dec 1994 | A |
5380916 | Rao | Jan 1995 | A |
5395455 | Scott et al. | Mar 1995 | A |
5402548 | Adair et al. | Apr 1995 | A |
5407674 | Gabetta et al. | Apr 1995 | A |
5423891 | Taylor | Jun 1995 | A |
5426807 | Grimsley et al. | Jun 1995 | A |
5478736 | Nair | Dec 1995 | A |
5494653 | Paisley | Feb 1996 | A |
5520722 | Hershkowitz et al. | May 1996 | A |
5536488 | Mansour et al. | Jul 1996 | A |
5578092 | Collin | Nov 1996 | A |
5584985 | Lomas | Dec 1996 | A |
5605551 | Scott et al. | Feb 1997 | A |
5637192 | Mansour et al. | Jun 1997 | A |
5654448 | Pandey et al. | Aug 1997 | A |
5662050 | Angelo et al. | Sep 1997 | A |
5686049 | Bonifay et al. | Nov 1997 | A |
5703299 | Carleton et al. | Dec 1997 | A |
5713977 | Kobayashi | Feb 1998 | A |
5725738 | Brioni et al. | Mar 1998 | A |
5728271 | Piskorz et al. | Mar 1998 | A |
5744333 | Cociancich et al. | Apr 1998 | A |
5788784 | Koppenhoefer et al. | Aug 1998 | A |
5792340 | Freel et al. | Aug 1998 | A |
5853548 | Piskorz et al. | Dec 1998 | A |
5879079 | Hohmann et al. | Mar 1999 | A |
5879642 | Trimble et al. | Mar 1999 | A |
5879650 | Kaul et al. | Mar 1999 | A |
5904838 | Kalnes et al. | May 1999 | A |
5915311 | Muller et al. | Jun 1999 | A |
5961786 | Freel et al. | Oct 1999 | A |
5969165 | Liu | Oct 1999 | A |
6002025 | Page et al. | Dec 1999 | A |
6011187 | Horizoe et al. | Jan 2000 | A |
6033555 | Chen et al. | Mar 2000 | A |
6106702 | Sohn et al. | Aug 2000 | A |
6113862 | Jorgensen et al. | Sep 2000 | A |
6133499 | Horizoe et al. | Oct 2000 | A |
6149765 | Mansour et al. | Nov 2000 | A |
6190542 | Comolli et al. | Feb 2001 | B1 |
6193837 | Agblevor et al. | Feb 2001 | B1 |
6237541 | Alliston et al. | May 2001 | B1 |
6339182 | Munson et al. | Jan 2002 | B1 |
6398921 | Moraski | Jun 2002 | B1 |
6452024 | Bui-Khac et al. | Sep 2002 | B1 |
6455015 | Kilroy | Sep 2002 | B1 |
6485841 | Freel et al. | Nov 2002 | B1 |
6497199 | Yamada et al. | Dec 2002 | B2 |
6547957 | Sudhakar et al. | Apr 2003 | B1 |
6555649 | Giroux et al. | Apr 2003 | B2 |
6656342 | Smith et al. | Dec 2003 | B2 |
6660157 | Que et al. | Dec 2003 | B2 |
6676828 | Arreaza et al. | Jan 2004 | B1 |
6680137 | Paisley | Jan 2004 | B2 |
6743746 | Prilutsky et al. | Jun 2004 | B1 |
6759562 | Gartside et al. | Jul 2004 | B2 |
6768036 | Lattner et al. | Jul 2004 | B2 |
6776607 | Nahas et al. | Aug 2004 | B2 |
6808390 | Fung | Oct 2004 | B1 |
6814940 | Hiltunen et al. | Nov 2004 | B1 |
6844420 | Freel et al. | Jan 2005 | B1 |
6875341 | Bunger et al. | Apr 2005 | B1 |
6960325 | Kao et al. | Nov 2005 | B2 |
6962676 | Hyppaenen | Nov 2005 | B1 |
6988453 | Cole et al. | Jan 2006 | B2 |
7004999 | Johnson et al. | Feb 2006 | B2 |
7022741 | Jiang et al. | Apr 2006 | B2 |
7026262 | Palmas et al. | Apr 2006 | B1 |
7202389 | Brem | Apr 2007 | B1 |
7214252 | Krumm et al. | May 2007 | B1 |
7226954 | Tavasoli et al. | Jun 2007 | B2 |
7240639 | Hyppaenen et al. | Jul 2007 | B2 |
7247233 | Hedrick et al. | Jul 2007 | B1 |
7262331 | van de Beld et al. | Aug 2007 | B2 |
7263934 | Copeland et al. | Sep 2007 | B2 |
7285186 | Tokarz | Oct 2007 | B2 |
7319168 | Sanada | Jan 2008 | B2 |
7473349 | Keckler et al. | Jan 2009 | B2 |
7476774 | Umansky et al. | Jan 2009 | B2 |
7479217 | Pinault et al. | Jan 2009 | B2 |
7491317 | Meier et al. | Feb 2009 | B2 |
7563345 | Tokarz | Jul 2009 | B2 |
7572362 | Freel et al. | Aug 2009 | B2 |
7572365 | Freel et al. | Aug 2009 | B2 |
7578927 | Marker et al. | Aug 2009 | B2 |
7625432 | Gouman et al. | Dec 2009 | B2 |
7811340 | Bayle et al. | Oct 2010 | B2 |
7897124 | Gunnerman et al. | Mar 2011 | B2 |
7905990 | Freel | Mar 2011 | B2 |
7943014 | Berruti et al. | May 2011 | B2 |
7956224 | Elliott et al. | Jun 2011 | B2 |
7960598 | Spilker et al. | Jun 2011 | B2 |
7982075 | Marker et al. | Jul 2011 | B2 |
7998315 | Bridgwater et al. | Aug 2011 | B2 |
7998455 | Abbas et al. | Aug 2011 | B2 |
7999142 | Kalnes et al. | Aug 2011 | B2 |
7999143 | Marker et al. | Aug 2011 | B2 |
8043391 | Dinjus et al. | Oct 2011 | B2 |
8057641 | Bartek et al. | Nov 2011 | B2 |
8097090 | Freel et al. | Jan 2012 | B2 |
8097216 | Beech et al. | Jan 2012 | B2 |
8147766 | Spilker et al. | Apr 2012 | B2 |
8153850 | Hall et al. | Apr 2012 | B2 |
8202332 | Agblevor | Jun 2012 | B2 |
8207385 | O'Connor et al. | Jun 2012 | B2 |
8217211 | Agrawal et al. | Jul 2012 | B2 |
8277643 | Huber et al. | Oct 2012 | B2 |
8288600 | Bartek et al. | Oct 2012 | B2 |
8304592 | Luebke | Nov 2012 | B2 |
8314275 | Brandvold | Nov 2012 | B2 |
8329967 | Brandvold et al. | Dec 2012 | B2 |
8404910 | Kocal et al. | Mar 2013 | B2 |
8499702 | Palmas et al. | Aug 2013 | B2 |
8519203 | Marinangeli et al. | Aug 2013 | B2 |
8519205 | Frey et al. | Aug 2013 | B2 |
8524087 | Frey et al. | Sep 2013 | B2 |
8575408 | Marker et al. | Nov 2013 | B2 |
8715490 | Brandvold et al. | May 2014 | B2 |
8726443 | Freel et al. | May 2014 | B2 |
9044727 | Kulprathipanja et al. | Jun 2015 | B2 |
9127208 | Boulard | Sep 2015 | B2 |
20020014033 | Langer et al. | Feb 2002 | A1 |
20020100711 | Freel et al. | Aug 2002 | A1 |
20020146358 | Smith et al. | Oct 2002 | A1 |
20030049854 | Rhodes | Mar 2003 | A1 |
20030202912 | Myohanen et al. | Oct 2003 | A1 |
20040069682 | Freel et al. | Apr 2004 | A1 |
20040182003 | Bayle et al. | Sep 2004 | A1 |
20040200204 | Dries et al. | Oct 2004 | A1 |
20050167337 | Bunger et al. | Aug 2005 | A1 |
20050209328 | Allgood et al. | Sep 2005 | A1 |
20060010714 | Carin et al. | Jan 2006 | A1 |
20060016723 | Tang et al. | Jan 2006 | A1 |
20060070362 | Dewitz et al. | Apr 2006 | A1 |
20060074254 | Zhang et al. | Apr 2006 | A1 |
20060101665 | Carin et al. | May 2006 | A1 |
20060163053 | Ershag | Jul 2006 | A1 |
20060180060 | Crafton et al. | Aug 2006 | A1 |
20060185245 | Serio et al. | Aug 2006 | A1 |
20060201024 | Carin et al. | Sep 2006 | A1 |
20060254081 | Carin et al. | Nov 2006 | A1 |
20060264684 | Petri et al. | Nov 2006 | A1 |
20070000809 | Lin et al. | Jan 2007 | A1 |
20070010588 | Pearson | Jan 2007 | A1 |
20070141222 | Binder et al. | Jun 2007 | A1 |
20070205139 | Kulprathipanja et al. | Sep 2007 | A1 |
20070272538 | Satchell | Nov 2007 | A1 |
20080006519 | Badger | Jan 2008 | A1 |
20080006520 | Badger | Jan 2008 | A1 |
20080029437 | Umansky et al. | Feb 2008 | A1 |
20080035526 | Hedrick et al. | Feb 2008 | A1 |
20080035528 | Marker | Feb 2008 | A1 |
20080050792 | Zmierczak et al. | Feb 2008 | A1 |
20080051619 | Kulprathipanja et al. | Feb 2008 | A1 |
20080081006 | Myers et al. | Apr 2008 | A1 |
20080086937 | Hazlebeck et al. | Apr 2008 | A1 |
20080161615 | Chapus et al. | Jul 2008 | A1 |
20080171649 | Jan et al. | Jul 2008 | A1 |
20080185112 | Argyropoulos | Aug 2008 | A1 |
20080189979 | Carin et al. | Aug 2008 | A1 |
20080193345 | Lott et al. | Aug 2008 | A1 |
20080194896 | Brown et al. | Aug 2008 | A1 |
20080199821 | Nyberg et al. | Aug 2008 | A1 |
20080230440 | Graham et al. | Sep 2008 | A1 |
20080236043 | Dinjus et al. | Oct 2008 | A1 |
20080264771 | Dam-Johansen et al. | Oct 2008 | A1 |
20080274017 | Boykin et al. | Nov 2008 | A1 |
20080274022 | Boykin et al. | Nov 2008 | A1 |
20080282606 | Plaza et al. | Nov 2008 | A1 |
20080312476 | McCall | Dec 2008 | A1 |
20080318763 | Anderson | Dec 2008 | A1 |
20090008292 | Keusenkothen et al. | Jan 2009 | A1 |
20090008296 | Sappok et al. | Jan 2009 | A1 |
20090077867 | Marker et al. | Mar 2009 | A1 |
20090077868 | Brady et al. | Mar 2009 | A1 |
20090078557 | Tokarz | Mar 2009 | A1 |
20090078611 | Marker et al. | Mar 2009 | A1 |
20090082603 | Kalnes et al. | Mar 2009 | A1 |
20090082604 | Agrawal et al. | Mar 2009 | A1 |
20090084666 | Agrawal et al. | Apr 2009 | A1 |
20090090046 | O'Connor et al. | Apr 2009 | A1 |
20090090058 | Dam-Johansen et al. | Apr 2009 | A1 |
20090113787 | Elliott et al. | May 2009 | A1 |
20090139851 | Freel | Jun 2009 | A1 |
20090165378 | Agblevor | Jul 2009 | A1 |
20090183424 | Gorbell et al. | Jul 2009 | A1 |
20090188158 | Morgan | Jul 2009 | A1 |
20090193709 | Marker et al. | Aug 2009 | A1 |
20090208402 | Rossi | Aug 2009 | A1 |
20090227823 | Huber et al. | Sep 2009 | A1 |
20090242377 | Honkola et al. | Oct 2009 | A1 |
20090250376 | Brandvold et al. | Oct 2009 | A1 |
20090253947 | Brandvold et al. | Oct 2009 | A1 |
20090253948 | McCall et al. | Oct 2009 | A1 |
20090255144 | Gorbell et al. | Oct 2009 | A1 |
20090259076 | Simmons et al. | Oct 2009 | A1 |
20090259082 | Deluga et al. | Oct 2009 | A1 |
20090274600 | Jain et al. | Nov 2009 | A1 |
20090283442 | McCall et al. | Nov 2009 | A1 |
20090287029 | Anumakonda et al. | Nov 2009 | A1 |
20090293344 | O'Brien et al. | Dec 2009 | A1 |
20090293359 | Simmons et al. | Dec 2009 | A1 |
20090294324 | Brandvold et al. | Dec 2009 | A1 |
20090301930 | Brandvold et al. | Dec 2009 | A1 |
20090308787 | O'Connor et al. | Dec 2009 | A1 |
20090318737 | Luebke | Dec 2009 | A1 |
20090321311 | Marker et al. | Dec 2009 | A1 |
20100043634 | Shulfer et al. | Feb 2010 | A1 |
20100083566 | Frederiksen et al. | Apr 2010 | A1 |
20100133144 | Kokayeff et al. | Jun 2010 | A1 |
20100147743 | MacArthur et al. | Jun 2010 | A1 |
20100148122 | Breton et al. | Jun 2010 | A1 |
20100151550 | Nunez et al. | Jun 2010 | A1 |
20100158767 | Mehlberg et al. | Jun 2010 | A1 |
20100162625 | Mills | Jul 2010 | A1 |
20100163395 | Henrich et al. | Jul 2010 | A1 |
20100222620 | O'Connor et al. | Sep 2010 | A1 |
20100266464 | Sipil et al. | Oct 2010 | A1 |
20100325954 | Tiwari et al. | Dec 2010 | A1 |
20110017443 | Collins | Jan 2011 | A1 |
20110067438 | Bernasconi | Mar 2011 | A1 |
20110068585 | Dube et al. | Mar 2011 | A1 |
20110113675 | Fujiyama et al. | May 2011 | A1 |
20110123407 | Freel | May 2011 | A1 |
20110132737 | Jadhav | Jun 2011 | A1 |
20110139597 | Lin | Jun 2011 | A1 |
20110146135 | Brandvold | Jun 2011 | A1 |
20110146140 | Brandvold et al. | Jun 2011 | A1 |
20110146141 | Frey et al. | Jun 2011 | A1 |
20110146145 | Brandvold et al. | Jun 2011 | A1 |
20110160505 | McCall | Jun 2011 | A1 |
20110182778 | Breton et al. | Jul 2011 | A1 |
20110201854 | Kocal et al. | Aug 2011 | A1 |
20110224471 | Wormsbecher et al. | Sep 2011 | A1 |
20110239530 | Marinangeli et al. | Oct 2011 | A1 |
20110253600 | Niccum | Oct 2011 | A1 |
20110258914 | Banasiak et al. | Oct 2011 | A1 |
20110284359 | Sechrist et al. | Nov 2011 | A1 |
20120012039 | Palmas et al. | Jan 2012 | A1 |
20120017493 | Traynor et al. | Jan 2012 | A1 |
20120022171 | Frey | Jan 2012 | A1 |
20120023809 | Koch et al. | Feb 2012 | A1 |
20120047794 | Bartek et al. | Mar 2012 | A1 |
20120137939 | Kulprathipanja | Jun 2012 | A1 |
20120160741 | Gong et al. | Jun 2012 | A1 |
20120167454 | Brandvold et al. | Jul 2012 | A1 |
20120172622 | Kocal | Jul 2012 | A1 |
20120205289 | Joshi | Aug 2012 | A1 |
20120214114 | Kim et al. | Aug 2012 | A1 |
20120216448 | Ramirez Corredores et al. | Aug 2012 | A1 |
20120279825 | Freel et al. | Nov 2012 | A1 |
20120317871 | Frey et al. | Dec 2012 | A1 |
20130029168 | Trewella et al. | Jan 2013 | A1 |
20130062184 | Kulprathipanja et al. | Mar 2013 | A1 |
20130067803 | Kalakkunnath et al. | Mar 2013 | A1 |
20130075072 | Kulprathipanja et al. | Mar 2013 | A1 |
20130078581 | Kulprathipanja et al. | Mar 2013 | A1 |
20130105356 | Dijs et al. | May 2013 | A1 |
20130109765 | Jiang et al. | May 2013 | A1 |
20130118059 | Lange et al. | May 2013 | A1 |
20130150637 | Borremans et al. | Jun 2013 | A1 |
20130152453 | Baird et al. | Jun 2013 | A1 |
20130152454 | Baird et al. | Jun 2013 | A1 |
20130152455 | Baird et al. | Jun 2013 | A1 |
20130195727 | Bull et al. | Aug 2013 | A1 |
20130212930 | Naae et al. | Aug 2013 | A1 |
20130267743 | Brandvold et al. | Oct 2013 | A1 |
20140001026 | Baird et al. | Jan 2014 | A1 |
20140140895 | Davydov et al. | May 2014 | A1 |
20140142362 | Davydov et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
8304158 | Jul 1984 | BR |
8304794 | Apr 1985 | BR |
1312497 | Jan 1993 | CA |
2091373 | Sep 1997 | CA |
2299149 | Dec 2000 | CA |
2521829 | Mar 2006 | CA |
1377938 | Nov 2002 | CN |
1730177 | Feb 2006 | CN |
101045524 | Oct 2007 | CN |
101238197 | Aug 2008 | CN |
101294085 | Oct 2008 | CN |
101318622 | Dec 2008 | CN |
101353582 | Jan 2009 | CN |
101365770 | Feb 2009 | CN |
101381611 | Mar 2009 | CN |
101544901 | Sep 2009 | CN |
101550347 | Oct 2009 | CN |
101745349 | Jun 2010 | CN |
101993712 | Mar 2011 | CN |
105980 | Jan 1986 | EP |
578503 | Jan 1994 | EP |
676023 | Jul 1998 | EP |
718392 | Sep 1999 | EP |
787946 | Jun 2000 | EP |
1420058 | May 2004 | EP |
2325281 | May 2011 | EP |
117512 | Nov 2005 | FI |
879606 | Mar 1943 | FR |
1019133 | Feb 1966 | GB |
1300966 | Dec 1972 | GB |
58150793 | Sep 1983 | JP |
1277196 | Nov 1989 | JP |
11148625 | Jun 1999 | JP |
2001131560 | May 2001 | JP |
2007229548 | Sep 2007 | JP |
9903742-6 | Jan 2004 | SE |
8101713 | Jun 1981 | WO |
9111499 | Aug 1991 | WO |
9207842 | May 1992 | WO |
9218492 | Oct 1992 | WO |
9413827 | Jun 1994 | WO |
9744410 | Nov 1997 | WO |
0109243 | Feb 2001 | WO |
0183645 | Nov 2001 | WO |
0249735 | Jun 2002 | WO |
2006071109 | Jul 2006 | WO |
2007017005 | Feb 2007 | WO |
2007045093 | Apr 2007 | WO |
2007050030 | May 2007 | WO |
2007112570 | Oct 2007 | WO |
2007128798 | Nov 2007 | WO |
2008009643 | Jan 2008 | WO |
2008020167 | Feb 2008 | WO |
2008092557 | Aug 2008 | WO |
2009019520 | Feb 2009 | WO |
2009047387 | Apr 2009 | WO |
2009047392 | Apr 2009 | WO |
2009067350 | May 2009 | WO |
2009099684 | Aug 2009 | WO |
2009118357 | Oct 2009 | WO |
2009118363 | Oct 2009 | WO |
2009126508 | Oct 2009 | WO |
2009131757 | Oct 2009 | WO |
2010002792 | Jan 2010 | WO |
2011146262 | Nov 2011 | WO |
2012009207 | Jan 2012 | WO |
2012012260 | Jan 2012 | WO |
2012062924 | May 2012 | WO |
2012078422 | Jun 2012 | WO |
2012088546 | Jun 2012 | WO |
2012115754 | Aug 2012 | WO |
2013043485 | Mar 2013 | WO |
2013090229 | Jun 2013 | WO |
2014031965 | Feb 2014 | WO |
2014210150 | Dec 2014 | WO |
Entry |
---|
Scott, D. S.,“Fast Pyrolysis of Biomass for Recovery of Specialty Chemicals.” Developments in thermochemical biomass conversion. Springer Netherlands, 1997. 523-535. |
Nikolakakis, A.,“Taxus canadensis abundant taxane: conversion to paclitaxel and rearrangements.” Bioorganic & medicinal chemistry 8.6 (2000): 1269-1280. |
Cass et al. “Challenges in the Isolation of Taxanes from Taxus canadensis by Fast Pyrolysis,”J Analytical and Applied Pyrolysis 57 (2001) 275-285. |
Cragg et al. “The Search for New Pharmaceutical Crops: Drug Discovery and Development at the National Cancer Institute,” in Janick, J. and Simon, J.E. (eds) New Crops, Wiley, New York (1993) 161-167. |
Daoust et al. “Canada Yew (Taxus canadensis Marsh.) and Taxanes: a Perfect Species for Field Production and Improvement through Genetic Selection,” Natural Resources Canada, Canadian Forest Service, Sainte-Fov, Quebec (2003). |
Holton et al. “First Total Synthesis of Taxol. 2. Completion of the C and D Rings,” J Am Chem Soc, 116 (1994) 1599-1600. |
Huang et al. “New Taxanes from Taxus brevifolia,” J of Natural Products, 49 (1986) 665-669. |
Huie, C. W. “A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants,” Anal Bioanal Chem, 373 (2002) 23-30. |
Kingston et al. “New Taxanes from Taxus brevifolia,” J of Natural Products, 45 (1982) 466-470. |
McLaughlin et al. 19-Hydroxybaccatin III, 10-Deacetylcephalo-Mannine, and 10-Deacetyltaxol: New Anti-Tumor Taxanes from Taxus wallichiana, J of Natural Products, 44 (1981) 312-319. |
McNeil “Semisynthetic Taxol Goes on Market Amid Ongoing Quest for New Versions,” J of the National Cancer Institute, 87:15 (1995) 1106-1108. |
Miller et al. “Antileukemic Alkaloids from Taxus wallichiana Zucc,” J Org Chem, 46 (1981) 1469-1474. |
Newton “Taxol: A Case Study in Natural Products Chemistry,” Lecture Notes, University of Southern Maine, http:/www.usm.maine.edu/ (2009) 1-6. |
Nicolaou et al. “Total Synthesis of Taxol,” Nature, 367 (1994) 630-634. |
Ong et al. “Pressurized hot water extraction of bioactive or marker compounds in botanicals and medicinal plant materials,” J Chromatography A, 1112 (2006) 92-102. |
Pavia et al., Intro to Org Labo Techniques (1988) 3d ed. Saunders College Publishing, Washington p. 62-66, 541-587. |
Rao “Taxol and Related Taxanes. I. Taxanes of Taxus brevifolia Bark,” Pharm Res 10:4 (1993) 521-524. |
Rao et al. “A New Large-Scale Process for Taxol and Related Taxanes from Taxus brevifolia,” Pharm Res, 12:7 (1995) 1003-1010. |
Senilh et al. “Mise en Evidence de Nouveaux Analogues du Taxol Extraits de Taxus baccata,” J of Natural Products, 47 (1984) 131-137. (English Abstract included). |
Smith R.M. “Extractions with superheated water,” J Chromatography A, 975 (2002) 31-46. |
Snader “Detection and Isolation,” in Suffness, M. (ed) Taxol-Science and Applications, CRC Press, Boca Raton, Florida (1995) 277-286. |
Stierle et al. “The Search for Taxol-Producing Microorganism Among the Endophytic Fungi of the Pacific Yew, Taxus brevifolia,” J of Natural Products, 58 (1995) 1315-1324. |
Yukimune et al. “Methyl Jasmonate-induced Overproduction of Paclitaxel and Baccatin III in Taxus Cell Suspension Cultures,” Nature Biotechnology 14 (1996) 1129-1132. |
Office Action for Chinese Patent Application No. 200780020439.9, issued Oct. 13, 2010. |
English Translation of Office Action for Chinese Patent Application No. 200780020439.9, issued Oct. 13, 2010. |
Office Action Mailed Jan. 10, 2014 in corresponding Chinese Patent Application No. 201210096487.9 (English translation provided). |
AccessScience Dictionary, “ebullating-bed reactor,” http://www.accessscience.com, last visited Jul. 15, 2014. |
Adam, J. “Catalytic conversion of biomass to produce higher quality liquid bio-fuels,” PhD Thesis, Department of Energy and Process Engineering, The Norwegian University of Science and Technology, Trondheim (2005). |
Adam, J. et al. “Pyrolysis of biomass in the presence of AI-MCM-41 type catalysts,” Fuel, 84 (2005) 1494-1502. |
Adjaye, John D. et al. “Catalytic conversion of a biomass-derived oil to fuels and chemicals I: Model compound studies and reaction pathways,” Biomass & Bioenergy, 8:3 (1995) 131-149. |
Adjaye, John D. et al. “Catalytic conversion of a biomass-derived oil to fuels and chemicals II: Chemical kinetics, parameter estimation and model predictions,” Biomass & Bioenergy, 8:4 (1995) 265-277. |
Adjaye, John D. et al. “Catalytic conversion of wood derived bio-oil to fuels and chemicals,” Studies in Surface Science and Catalysis, 73 (1992) 301-308. |
Adjaye, John D. et al. “Production of hydrocarbons by the catalytic upgrading of a fast pyrolysis bio-oil,” Fuel Process Technol, 45:3 (1995) 161-183. |
Adjaye, John D. et al. “Upgrading of a wood-derived oil over various catalysts,” Biomass & Bioenergy, 7:1-6 (1994) 201-211. |
Aho, A. et al. “Catalytic pyrolysis of woody biomass in a fluidized bed reactor; Influence of zeolites structure, Science Direct,” Fuel, 87 (2008) 2493-2501. |
Antonakou, E. et al. “Evaluation of various types of AI-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals,” Fuel, 85 (2006) 2202-2212. |
Atutxa, A. et al. “Kinetic Description of the Catalytic Pyrolysis of Biomass in a Conical Spouted Bed Reactor,” Energy Fuels, 19:3 (2005) 765-774. |
Baker, E. G. et al. “Catalytic Upgrading of Biomass Pyrolysis Oils,” in Bridgwater, A. V. et al. (eds) Research in Thermochemical Biomass Conversion, Elsevier Science Publishers Ltd., Barking, England (1988) 883-895. |
Baldauf, W. et al. “Upgrading of flash pyrolysis oil and utilization in refineries,” Biomass & Bioenergy, 7 (1994) 237-244. |
Baumlin, “The continuous self stirred tank reactor: measurement of the cracking kinetics of biomass pyrolysis vapours,” Chemical Engineering Science, 60 (2005) 41-55. |
Berg, “Reactor Development for the Ultrapyrolysis Process,” The Canadian Journal of Chemical Engineering, 67 (1989) 96-101. |
Bielansky, P. et al. “Catalytic conversion of vegetable oils in a continuous FCC pilot plant,” Fuel Processing Technology, 92 (2011) 2305-2311. |
Bimbela, F. et al. “Hydrogen production by catalytic steam reforming of acetic acid, a model compound of biomass pyrolysis liquids,” J. Ana App. Pyrolysis, 79 (2007) 112-120. |
Bridgwater et al. (eds) Fast Pyrolysis of Biomass: A Handbook, Newbury Cpl Press, Great Britain (2002) 12-13. |
Bridgwater, A.V. “Principles and practices of biomass fast pyrolysis processes for liquids,” Journal of Analytical and Applied Pyrolysis, 51 (1999) 3-22. |
Bridgwater, Tony “Production of high grade fuels and chemicals from catalytic pyrolysis of biomass,” Catalysis Today, 29 (1996) 285-295. |
Bridgwater, Tony et al. “Transport fuels from biomass by thermal processing,” EU-China Workshop on Liquid Biofuels, Beijing, China (Nov. 4-5, 2004). |
Buchsbaum, A. et al. “The Challenge of the Biofuels Directive for a European Refinery,” OMW Refining and Marketing, ERTC 9th Annual Meeting, Prague, Czech Republic (Nov. 15-17, 2004). |
Carlson, T. et al. “Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks,” Top Catal, 52 (2009) 241-242. |
Carlson., T. et al. “Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass Derived Compounds,” ChemSusChem, 1 (2008) 397-400. |
Chantal, P. D. et al. “Production of Hydrocarbons from Aspen Poplar Pyrolytic Oils over H-ZSM5,” Applied Catalysis, 10 (1984) 317-332. |
Chen, N. Y. et al. “Fluidized Upgrading of Wood Pyrolysis Liquids and Related Compounds,” in Soltes, E. J. et al. (eds) Pyrolysis Oils from Biomass, ACS, Washington, DC (1988) 277-289. |
Chinsuwan, A. et al. “An experimental investigation of the effect of longitudinal fin orientation on heat transfer in membrane water wall tubes in a circulating fluidized bed,” International Journal of Heat and Mass Transfer, 52:5-6 (2009) 1552-1560. |
Cornelissen, T. et al., “Flash co-pyrolysis of biomass with polylactic acid. Part 1: Influence on bio-oil yield and heating value,” Fuel 87 (2008) 1031-1041. |
Cousins, A. et al. “Development of a bench-scale high-pressure fluidized bed reactor and its sequential modification for studying diverse aspects of pyrolysis and gasification of coal and biomass,” Energy and Fuels, 22:4 (2008) 2491-2503. |
Czernik, S. et al. “Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil,” Catalysis Today, 129 (2007) 265-168. |
Czernik, S. et al. “Hydrogren by Catalytic Steam Reforming of Liquid Byproducts from Biomass Thermoconversion Processes,” Ind. Eng. Chem. Res., 41 (2002) 4209-4215. |
Dahmen, “Rapid pyrolysis for the pretreatment of biomass and generation of bioslurry as intermediate fuel”, Chemie- Ingenieur-Technik, 79:9 (2007) 1326-1327. Language: German (Abstract only; Machine translation of Abstract). |
Dandik, “Catalytic Conversion of Used Oil to Hydrocarbon Fuels in a Fractionating Pyrolysis Reactor,” Energy & Fuels, 12 (1998) 1148-1152. |
de Wild, P. et al. “Lignin valorisation for chemicals and (transportation) fuels via (catalytic) pyrolysis and hydrodeoxygenation,” Environ. Prog. Sustainable Energy, 28 (2009) 461-469. |
Demirbas, Ayhan “Fuel Conversional Aspects of Palm Oil and Sunflower Oil,” Energy Sources, 25 (2003) 457-466. |
Di Blasi, C. et al. “Effects of Potassium Hydroxide Impregnation of Wood Pyrolysis, American Chemical Society,” Energy & Fuels 23 (2009) 1045-1054. |
Ellioti, D. “Historical Developments in Hydroprocessing Bio-oils,” Energy & Fuels, 21 (2007) 1792-1815. |
Ensyn Technologies Inc. “Catalytic de-oxygenation of biomass-derived RTP vapors.” Prepared for ARUSIA, Agenzia Regionale Umbria per lo Sviluppo e L'Innovazione, Perugia, Italy (Mar. 1997). |
Filtration, Kirk-Othmer Encyclopedia of Chemical Technology 5th Edition. vol. 11., John Wiley & Sons, Inc., Feb. 2005. |
Gayubo, A. G. et al. “Deactivation of a HZSM-5 Zeolite Catalyst in the Transformation of the Aqueous Fraction of Biomass Pyrolysis Oil into Hydrocarbons,” Energy & Fuels, 18:6 (2004) 1640-1647. |
Gayubo, A. G. et al. “Undesired components in the transformation of biomass pyrolysis oil into hydrocarbons on an HZSM-5 zeolite catalyst,” J Chem Tech Biotech, 80 (2005) 1244-1251. |
Geyert Bërjie S. et al. “Upgrading of directly liquefied biomass to transportation fuels: catalytic cracking,” Biomass 14:3 (1987) 173-183. |
Goesele, W. et al., Filtration, Wiley-VCHVerlag GmbH & Co. KGaA, Weinheim, 10.1002/14356007.b0210, 2005. |
Graham, R.G. et al. “Thermal and Catalytic Fast Pyrolysis of Lignin by Rapid Thermal Processing (RPT),” Seventh Canadian Bioenergy R&D Seminar, Skyline Hotel, Ottawa, Ontario, Canada, Apr. 24-26, 1989. |
Grange, P. et al. “Hydrotreatment of pyrolysis oils from biomass: reactivity of the various categories of oxygenated compounds and preliminary techno-economical study,” Catalysis Today, 29 (1996) 297-301. |
Hama, “Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles”, Biochemical Engineering Journal, 34 (2007) 273-278. |
Hoekstra, E. et al., “Fast Pyrolysis of Biomass in a Fluidized Bed Reactor: In Situ Filtering of the Vapors,” Ind. Eng. Chern. Res., 48:10 (2009) 4744-4756. |
Horne, Patrick A. et al. “Catalytic coprocessing of biomass-derived pyrolysis vapours and methanol,” J. Analytical and Applied Pyrolysis, 34:1 (1995) 87-108. |
Horne, Patrick A. et al. “Premium quality fuels and chemicals from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading,” Renewable Energy, 5:5-8 (1994) 810-812. |
Horne, Patrick A. et al. “The effect of zeolite ZSM-5 catalyst deactivation during the upgrading of biomass-derived pyrolysis vapours,” J Analytical and Applied Pyrolysis, 34:1 (1995) 65-85. |
Huffman, D. R. et al., Ensyn Technologies Inc., “Thermo-Catalytic Cracking of Wood to Transportation Fuels,” DSS Contract No. 38SQ.23440-4-1429, Efficiency and Alternative Energy Technology Branch, Natural Resources Canada, Ottawa, Canada (1997). |
Huffman, D. R., Ensyn Technologies Inc., “Thermo-catalytic cracking of wood to transportation fuels using the RTP process,” DSS Contract No. 38SQ.23440-4-1429, Efficiency and Alternative Energy Technology Branch, Natural Resources Canada, Ottawa, Ontario (Jan. 1997). |
Hughes, J. et al. “Structural variations in natural F, OH and CI apatites,” American Mineralogist, 74 (1989) 870-876. |
International Search Report dated Feb. 22, 2013 for corresponding International Application No. PCT/US2012/68876. |
Ioannidou, “Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations,” Renewable and Sustainable Energy Reviews, 13 (2009) 750-762. |
Iojoiu, E. et al. “Hydrogen production by sequential cracking of biomass-derived pyrolysis oil over noble metal catalysts supported on ceria-zirconia,” Applied Catalysis A: General, 323 (2007) 147-161. |
Jackson, M. et al. “Screening heterogenous catalysts for the pyrolysis of lignin,” J. Anal. Appl. Pyrolysis, 85 (2009) 226-230. |
Junming et al. “Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics,” Biomass and Energy, 32 (2008) 1056-1061. |
Kalnes, Tom et al. “Feedstock Diversity in the Refining Industry,” UOP Report to NREL and DOE (2004). |
Khanal, “Biohydrogen Production in Continuous-Flow Reactor Using Mixed Microbial Culture,” Water Environment Research, 78:2 (2006) 110-117. |
Khimicheskaya Entsiklopediya. Pod red. N. S. Zefirov. Moskva, Nauchnoe Izdatelstvo “Bolshaya Rossyskaya Entsiklopediya”, 1995, p. 133-137,529-530. |
Lappas, A. A. et al. “Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals,” Fuel, 81 (2002) 2087-2095. |
Lappas, A.A. et al. “Production of Transportation Fuels from Biomass,” Workshop of Chemical Process Engineering Research Institute/Center for Research and Technology Hellas, Thermi-Thessaloniki, Greece (2004). |
Lappas, A.A., “Production of biofuels via co-processing in conventional refining process,” Catalysis Today, 145 (2009) 55-62. |
Maiti, R.N. et al. “Gas-liquid distributors for trickle-bed reactors: A review”; Industrial and Engineering Chemistry Research, 46:19 (2007) 6164-6182. |
Mancosky, “The use of a controlled cavitation reactor for bio-diesel production,” (abstract only), AlChE Spring National Meeting 2007, Houston, Texas. |
Marker, Terry L., et al. “Opportunities for Biorenewables in Petroleum Refineries,” Proceedings of the 230th ACS National Meeting, Washington, DC, Paper No. 125, Fuel Division (Aug. 31, 2005) (abstract only). |
Marker, Terry L., et al., UOP, “Opportunities for Biorenewables in Oil Refineries,” Final Technical Report, U.S. Department of Energy Award No. DE-FG36-05G015085, Report No. DOEGO15085Final (2005). |
Marquevich, “Hydrogen from Biomass: Steam Reforming of Model Compounds of Fast-Pyrolysis Oil,” Energy & Fuels, 13 (1999) 1160-1166. |
Masoumifard, N. et al. “Investigation of heattransfer between a horizontal tube and gas-solid ftuidized bed,” International Journal of Heat and Fluid Flow, 29:5 (2008) 1504-1511. |
Meier, D. et al. “State of the art of applied fast pyrolysis of lignocellulosic materials—a review,” Bioresource Technology, 68:1 (1999) 71-77. |
Meier, D. et al., “Pyrolysis and Hydroplysis of Biomass and Lignins—Activities at the Institute of Wood Chemistry in Hamburg, Germany,” vol. 40, No. 2, Preprints of Papers Presented at the 209th ACS National Meeting, Anaheim, CA (Apr. 2-7, 1995). |
Mercader, F. et al. “Pyrolysis oil upgrading by high pressure thermal treatment,” Fuel, 89:10 (2010) 2829-2837. |
Mohan, D. et al. “Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review,” Energy Fuels, 20:3 (2006) 848-849. |
Nowakowski, D. et al. “Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice,” Fuels, 86 (2007) 2389-2402. |
Ognisty, T. P. “The direct contact heat transfer performance of a spray nozzle, a notched through distributor, and two inch Pall rings,” AlChE 1990 Spring National Meeting (Orlando 3/18-22-90) Preprint N. 37c 36P, Mar. 18, 1990. |
Ohman “Bed Agglomeration Characteristics during Fluidized Bed Combustion of Biomass Fuels,” Energy & Fuels, 14 (2000) 169-178. |
Okumura, Y. et al. “Pyrolysis and gasification experiments of biomass under elevated pressure condition,” Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, vol. 73, No. 7, 2007, pp. 1434-1441. |
Olazar, M. et al. “Pyrolysis of Sawdust in a Conical Spouted-Bed Reactor with a HZSM-5 Catalyst,” AlChE Journal, 46:5 (2000) 1025-1033. |
Onay “Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor,” Fuel Processing Technology, 88 (2007) 523-531. |
Onay, “Production of Bio-Oil from BiomaSs: Slow Pyrolysis of Rapeseed (Brassica napus L.) in a Fixed-Bed Reactor,” Energy Sources, 25 (2003) 879-892. |
Ooi, Y. S. et al. “Catalytic Cracking of Used Palm Oil and Palm Oil Fatty Acids Mixture for the Production of Liquid Fuel: Kinetic Modeling.” J Am Chem Soc, 18 (2004) 1555-1561. |
Otterstedt, J. E. et al. “Catalytic Cracking of Heavy Oils,” in Occelli, Mario L. (ed) Fluid Catalytic Cracking, Chapter 17, ACS, Washington, DC (1988) 266-278. |
Padmaja, K.V. et al. “Upgrading of Candelilla biocrude to hydrocarbon fuels by fluid catalytic cracking,” Biomass and Bioenergy, 33 (2009) 1664-1669. |
PCT/US2012/055384 International Search Report, dated Mar. 28, 2013, and International Preliminary Report on Patentability, dated Mar. 25, 2014. |
Pecora, A.A.B. et al., “Heat transfer coefficient in a shallow ftuidized bed heat exchanger with a continuous ftow of solid particles,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, 28:3 (2006) 253-258. |
Pecora, A.A.B., et al., “An analysis of process heat recovery in a gas-solid shallow fluidized bed,” Brazilian Journal of Chemical Engineering, 23:4 (2006) 497-506. |
Petrik, P.T. et al. “Heat exchange in condensation of R227 coolant on inclined tubes placed in a granular Bed,” Journal of Engineering Physics and Thermophysics, 77:4 (2004) 758-761. |
Prasad Y. S. et al. “Catalytic conversion of canola oil to fuels and chemical feedstocks. Part II. Effect of co-feeding steam on the performance of HZSM-5 catalyst,” Can J Chem Eng, 64 (1986) 285-292. |
Prins, Wolter et al. “Progress in fast pyrolysis technology,” Topsoe Catalysis Forum 2010, Munkerupgaard, Denmark (Aug. 19-20, 2010). |
Radlein, D. et al. “Hydrocarbons from the Catalytic Pyrolysis of Biomass,” Energy & Fuels, 5 (1991) 760-763. |
Ravindranath, G., et al., “Heat transfer studies of bare tube bundles in gas-solid ftuidized bed”, 9th International Symposium on Fluid Control Measurement and Visualization 2007, FLUCOME 2007, vol. 3, 2007, pp. 1361-1369. |
Rodriguez, O.M.H. et al. “Heat recovery from hot solid particles in a shallow ftuidized bed,” Applied Thermal Engineering, 22:2 (2002) 145-160. |
Samolada, M. C. et al. “Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking,” Fuel, 77:14 (1998) 1667-1674. |
Sang “Biofuel Production from Catalytic Cracking of Palm Oil,” Energy Sources, 25 (2003) 859-869. |
Scahill, J. et al. “ Removal of Residual Char Fines from Pyrolysis Vapors by Hot Gas Filtration,” in Bridgwater, A. V. et al. (eds) Developments in Thermochemical Biomass Conversion, Springer Science+Business Media, Dordrecht (1997) 253-266. |
Scott, D. et al. Pretreatment of poplar wood for fast pyrolysis: rate of cation removal, Journal of Analytical and Applied Pyrolysis, 57 (2000) 169-176. |
Sharma, R. “Upgrading of pyrolytic lignin fraction of fast pyrolysis oil to hydrocarbon fuels over HZSM-5 in a dual reactor system,” Fuel Processing Technology, 35 (1993) 201-218. |
Sharma, R. K. et al. “Catalytic Upgrading of Pyrolysis Oil,” Energy & Fuels, 7 (1993) 306-314. |
Sharma, R. K. et al. “Upgrading of wood-derived bio-oil over HZSM-5,” Bioresource Technology, 35:1 (1991) 57-66. |
Srinivas, S.T. et al “Thermal and Catalytic Upgrading of a Biomass-Derived Oil in a Dual Reaction System.” Can. J. Chem. Eng., 78 (2009) 343-354. |
Stojanovic, B. et al. “Experimental investigation of thermal conductivity coefficient and heat exchange between ftuidized bed and inclined exchange surface,” Brazilian Journal of Chemical Engineering, 26:2 (2009) 343-352. |
Sukhbaatar, B. “Separation of Organic Acids and Lignin Fraction From Bio-Oil and Use of Lignin Fraction in Phenol-Formaldehyde Wood Adhesive Resin,” Master's Thesis, Mississippi State (2008). |
Twaiq, A. A. et al. “Performance of composite catalysts in palm oil cracking for the production of liquid fuels and chemicals,” Fuel Processing Technology, 85 (2004) 1283-1300. |
Twaiq, F. A. et al. “Liquid hydrocarbon fuels from palm oil by catalytic cracking over aluminosilicate mesoporous catalysts with various Si/Al ratios,” Microporous and Mesoporous Materials, 64 (2003) 95-107. |
Tyson, K. et al. “Biomass Oil Analysis: Research Needs and Recommendations,” National Renewable Energy Laboratory, Report No. NREL/TP-510-34796 (Jun. 2004). |
Valle, B. et al. “Integration of Thermal Treatment and Catalytic Transformation for Upgrading Biomass Pyrolysis Oil,” International Journal of Chemical Reactor Engineering, 5:1 (2007). |
Vasanova, L.K. “Characteristic features of heat transfer of tube bundles in a cross water-air ftow and a three-phase ftuidized bed,” Heat Transfer Research, 34:5-6 (2003) 414-420. |
Vitolo, S. et al. “Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading—regenerating cycles,” Fuel, 80 (2001) 17-26. |
Vitolo, S. et al. “Catalytic upgrading of pyrolytic oils to fuel over different zeolites,” Fuel, 78:10 (1999) 1147-1159. |
Wang, Xianhua et al., “The Influence of Microwave Drying on Biomass Pyrolysis,” Energy & Fuels 22 (2008) 67-74. |
Westerhof, Roel J. M. et al., “Controlling the Water Content of Biomass Fast Pyrolysis Oil,” Ind. Eng. Chem. 46 (2007) 9238-9247. |
Williams, Paul T. et al. “Characterisation of oils from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading,” Biomass and Bioenergy, 7:1-6 (1994) 223-236. |
Williams, Paul T. et al. “Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks,” Energy, 25:6 (2000) 493-513. |
Williams, Paul T. et al. “The influence of catalyst type on the composition of upgraded biomass pyrolysis oils,” J Analytical and Applied Pyrolysis, 31 (1995) 39-61. |
Zhang et al. “Investigation on initial stage of rapid pyrolysis at high pressure using Taiheiyo coal in dense phase,” Fuel, 81:9 (2002) 1189-1197. |
Zhang, “Hydrodynamics of a Novel Biomass Autothermal Fast Pyrolysis Reactor: Flow Pattern and Pressure Drop,” Chern. Eng. Technol., 32:1 (2009) 27-37. |
Bridgwater et al. (eds) Fast Pyrolysis of Biomass: A Handbook, Newbury Cpl Press, Great Britain (2008) 1-13. |
Wisner, R. “Renewable Identification Nos. (RINs) and Government Biofuels Blending Mandates,” AgMRC Renewable Energy Newsletter (Apr. 2009), available at http://www.agmrc.org/renewable—energy/biofuelsbiorefining—general/renewable-identification-numbers-rins-and-government-biofuels-blending-mandates/. |
Qi et al. “Review of biomass pyrolysis oil properties and upgrading research,” Energy Conversion & Management, 48 (2007) 87-92. |
Yoo et al. “Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars,” Bioresource Technology, 102 (2011) 7583-7590. |
Number | Date | Country | |
---|---|---|---|
20160024037 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
60788045 | Apr 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12295916 | US | |
Child | 14812711 | US |