In certain circumstances, uncontrolled release of crude oil may occur from a subsea well. While careful steps are taken to avoid such uncontrolled release, once release occurs it is exceedingly important to move quickly and effectively to capture the oil being released to minimize environmental damage while further steps are taken to stop the flow of oil. Recent events have underscored the importance and difficulty of dealing with an uncontrolled subsea well.
The terms “invention,” “the invention,” “this invention” and “the present invention” used in this patent are intended to refer broadly to all of the subject matter of this patent and the patent claims below. Statements containing these terms should not be understood to limit the subject matter described herein or to limit the meaning or scope of the patent claims below. Embodiments of the invention covered by this patent are defined by the claims below, not this summary. This summary is a high-level overview of various aspects of the invention and introduces some of the concepts that are further described in the Detailed Description section below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to the entire specification of this patent, all drawings and each claim.
In some embodiments, a system for servicing an undersea well can include a submersible isolation bell for capturing effluent being exhausted from the well, and an umbilical. A power cable supplies electric power to the submersible isolation bell, for example, for heating of the interior of the submersible isolation bell to prevent and/or discourage the formation of methane hydrates and/or the precipitation of other byproducts. Diluents may be supplied to the submersible isolation bell to further discourage the formation of hydrates and/or precipitation of other byproducts. The diluents may be heated locally at the submersible isolation bell, using electric power supplied by the power cable. A conformable seal may substantially seal the submersible isolation bell to a riser or other structure at the wellhead.
In other embodiments, a method of servicing an undersea well includes providing a well servicing system that further includes a submersible isolation bell, and/or an umbilical connected to the submersible isolation bell. The umbilical further includes a collection conduit for carrying effluent from the well to a collection station. The umbilical may further include a power cable for transmitting electrical power to the submersible isolation bell. The system can be deployed by lowering the submersible isolation bell over the well and disposing the submersible isolation bell over the well.
According to other embodiments, a well servicing system can include an umbilical that includes a collection conduit for carrying effluent from the well to a collection station, at least one power cable, and/or a fitting connected to the umbilical. The fitting can be sized to fit within a piece of equipment at the wellhead. The system may further include a diluent carrying conduit for carrying diluent to the well. In some embodiments, the system may include an electric heater powered via the power cable and positioned to heat diluent in the diluent carrying conduit near a lower end of the umbilical. The system may also include a seal configured to deploy at the piece of equipment at the wellhead to substantially prevent effluent from escaping the well other than through the collection conduit.
According to other embodiments, a well servicing system can include an umbilical made of coiled tubing and/or sized for insertion into an existing drill stem. The umbilical can include a diluent carrying conduit. The system may also include at least one power cable carrying power to a lower portion of the umbilical, and/or an electric heater powered via the at least one power cable and/or positioned to heat diluent flowing from the diluent carrying conduit.
Illustrative embodiments of the present invention are described in detail below with reference to the following drawing figures.
The subject matter of embodiments of the present invention is described here with specificity to meet statutory requirements, but this description is not necessarily intended to limit the scope of the claims. The claimed subject matter may be embodied in other ways, may include different elements or steps, and may be used in conjunction with other existing or future technologies. This description should not be interpreted as implying any particular order or arrangement among or between various steps or elements except when the order of individual steps or arrangement of elements is explicitly described.
A previous technique for capturing at least some of the effluent 106 involved placement of a lower marine riser package cap (LMRP cap) over well riser 105.
Once LMRP cap 203 is in place, at least some of effluent 106 is captured and travels up pipe 205 to a collection reservoir aboard drillship 202. Liquids may be collected, and natural gas may be flared off.
The operation of LMRP cap 203 is complicated by the remoteness of undersea well 101, by the conditions at sea floor 103, and by the interactions between the components of effluent 106 and the surrounding seawater.
For example, effluent 106 may exit well under intense pressure and at a temperature of about 60° C. (140° F.). At an ocean depth of approximately 1524 meters (5,000 feet), the hydrostatic pressure of seawater is about 150 bar (about 2,200 pounds per square inch). The water temperature at the seafloor may be about 4° C. (39° F.). If effluent 106 is allowed to contact seawater at these conditions, ice-like crystals of methane hydrates may form. These crystals are often called simply “hydrates”. If hydrates are allowed to form during the use of LMRP cap 203, pipe 205 may be plugged and the collection of effluent 106 frustrated.
In order to maintain the flow of effluent 106 through pipe 205 the effluent can be maintained at temperature and pressure combinations outside of the hydrate envelope and/or significant contact between effluent 106 and seawater can be maintained. In some cases, where hydrates have already formed, it may also be necessary to dissociate any hydrates that block valves, piping, or tubing needed for effluent removal. Because seawater is a nearly infinite heat sink and the seawater surrounding LMRP cap 203 is most likely cold, maintaining effluent 106 at satisfactory temperature and pressure combinations can be challenging. LMRP cap 203 may be heated, for example by pumping heated fluids from drillship 202. To further discourage the formation of hydrates and to mitigate the effects of other precipitates that may form from effluent 106, one or more diluents such as methanol may also be pumped into LMRP cap 203 to mix with effluent 106. For example, tars, asphaltenes, or other precipitates may form from effluent 106, and may be at least partially dissolved or dissociated by the diluents.
Umbilical 402 includes a collection conduit that may be made of coiled tubing (CT) for carrying oil and other products from well 101 to a collection station, for example aboard a support vessel 403. Coiled tubing is used for various purposes in the drilling field, and can be any continuously-milled tubular product manufactured in lengths that require spooling onto a take-up reel or spool such as spool 409 during manufacturing. Coiled tubing may be manufactured in lengths of up to 40,000 feet or more. Coiled tubing may be transported to a wellsite in its coiled state, and at least partially straightened before being deployed into service. Upon being taken out of service, the coiled tubing may be wound back onto a spool. Most coiled tubing is made of metal, for example low-alloy high strength carbon steel, although other metals, plastics, and/or composites can be used.
When umbilical 402 is constructed using coiled tubing, it can be deployed and recovered relatively quickly, as compared with pipe 205. Submersible isolation bell 401 and/or umbilical 402 can be prefabricated and held at the ready in a region where undersea drilling is taking place. If an uncontrolled release incident occurs, system 400 can then be transported a relatively short distance to the wellsite and deployed to begin capture of effluent from the well soon after any wellsite preparations and construction of any required fittings are complete.
Should the initial deployment be unsuccessful, system 400 can be retracted and redeployed relatively quickly by coiling umbilical 402 back aboard support vessel 403, modifying equipment at submersible isolation bell 401, and lowering submersible isolation bell 401 back to well 101.
In other embodiments, an umbilical utilizing drill pipe may also be used. For example, submersible isolation bell 401 may be attached to drill pipe 205 and may be deployed in much the same way as LMRP cap 203 described above Submersible isolation bell 401 and related equipment may be stored on drillship 202 in case of a need for rapid deployment. While the embodiments described herein are illustrated as using coiled tubing any type of tubing can be used.
System 400 further comprises at least one power cable for transmitting electrical power to submersible isolation bell 401. In previous efforts to prevent hydrate formation, systems have provided heat at the wellhead by pumping heated fluids from the ocean surface to the wellhead. This prior method may result in significant heat loss as the heated fluids may cool during the trip to the wellhead. Systems in accordance with embodiments of the invention transmit energy to the wellhead area in the form of electricity, which can then be used to generate heat locally at submersible isolation bell 401, and may also be used for other purposes as described in more detail below. Heated fluids may still also be pumped from the surface, if desired. A conductor or multiple conductors may be integrated within umbilical 402, or may be provided in a separate cable or umbilical.
It may be possible to heat diluents or other fluids present at submersible isolation bell 401 to higher temperatures using local electric heating than would be possible using heated fluid pumped from the surface. Because of the elevated pressures present near sea floor 103, higher temperatures may be reached using local heating without causing boiling of fluids. In addition, heat losses occurring during fluid transfer from the surface may be reduced.
System 400 may also include a diluent carrying conduit 404, which may be integrated with umbilical 402 or may be provided in a separate umbilical, as shown in
One or more integral electric heaters may also be included within or near diluent carrying conduit 404, powered by the umbilical electric power cable. Moreover, in some embodiments, the diluents may be heated at the surface prior to being carried through diluent carrying conduit 404.
In some embodiment, umbilical 402 may further include various electrical cables for powering and/or communicating with sensors or other equipment at submersible isolation bell 401. Other kinds of service carrying lines may also be provided, for example one or more fiber optic lines may carry data such as images or video from submersible isolation bell 401 to support vessel 403. An electric submersible pump 406 may also be included at submersible isolation bell 401, for assisting in lifting the captured effluent through the collection conduit to support vessel 403.
In some embodiments, umbilical 402 may be insulated along at least part of its length, to help maintain the temperature of fluid carried in umbilical 402, for instance, to further discourage the formation of hydrates. One or more integral electric heaters may also be included within or near umbilical 402, and can be powered by the umbilical electric power cable. Such an integral electric heaters may also extend along the length or portions of the length of the umbilical.
Installation and operation of system 400 can be assisted by one or more remotely operated vehicles 407, which may be operated from support vessel 403 or from another tender vessel 408. Support vessel 403 may also carry equipment for handling coiled tubing, one or more generators for generating electric power, and other equipment beneficial to the operation of system 400.
Submersible isolation bell 401 can be made of a strong material, for example a steel alloy, and may be weighted for additional stability, and may include chambers that can admit and expel sea water to further control the buoyancy of submersible isolation bell 401. Submersible isolation bell 401 can be configured to engage with a severed riser 105 or another structure at the wellhead, to substantially inhibit the flow of effluent 106 outside of submersible isolation bell 401. The interior of submersible isolation bell 401 can be kept at a positive pressure in relation to the surrounding ocean, to inhibit the uptake of cold surrounding seawater 501 that may encourage the formation of hydrates. Submersible isolation bell 401 may also be thermally insulated, to inhibit heat loss to the surrounding seawater 501.
Sealing measures may be implemented to further isolate the interior of submersible isolation bell 401 from the surrounding seawater 501. For example, a conformable seal or gasket 502 may be placed between submersible isolation bell 401 and riser 105 or other structure. In some embodiments, seal or gasket 502 may be made of a highly conformable open cell foam that may be non-buoyant and semi-permeable. Seal or gasket 502 can be used so that a small portion of effluent 106 can be continually exhausted from submersible isolation bell 401, as shown at 503, to help ensure that surrounding seawater 501 is not admitted into submersible isolation bell 401. Seal or gasket 502 can be porous to allow effluent 106 to escape into surrounding seawater 501. Seal or gasket 502 may be, for example, made of a TEMBO® foam available from Composite Technology Development, Inc., of Lafayette, Colo., USA. Seal or gasket 502 and other fittings may be fabricated case-by-case for particular well installations, as the size, shape, degree of damage, and other aspects of the equipment remaining at sea floor 103 may vary from well to well. A fastening mechanism 504 may be provided for securely attaching submersible isolation bell 401 to the well structure, and may also be fabricated to fit a particular well situation. While fastening mechanism 504 is shown as two L-shaped latches that can be deployed to engage with a convenient part of riser 105 assembly or parts of BOP stack 104, any suitable fastening system may be used, for example pins, hooks, bolts, or other kinds of fasteners or combinations of fasteners.
One or more closeable vents 505 may be provided for venting submersible isolation bell 401 during installation. Closeable vents 505 can be closed once submersible isolation bell 401 is in place, to further contain effluent 106.
Additional connections may be provided for attaching additional umbilicals to submersible isolation bell 401, for example to carry additional solvents or diluents to submersible isolation bell 401, to carry additional effluent 106 to support vessel 403 or another vessel, to carry additional power or signals, or for other purposes.
Electric power may be generated aboard support vessel 403 and supplied by power cable 506 for various purposes at submersible isolation bell 401. For example, electric submersible pump 406 may be powered using power from power cable 506. Diluent or other fluids supplied through diluent carrying conduit 404 may be heated, for example using heater 507 (e.g., electrical and/or resistance heater) or other means, so that diluents introduced into submersible isolation bell 401, from nozzle 508, are heated to enhance their effectiveness and to further discourage the formation of hydrates and the precipitation of other by products.
Additional heat may also be introduced generally into the interior of submersible isolation bell 401 using heater 509 (e.g., electrical and/or resistance heater) or other means. Fins 510 or other structures may be provided to assist in dispersion of heat within submersible isolation bell 401. Heater 509 or similar heaters maybe especially useful for startup of the system, to prevent formation of hydrates during the installation of submersible isolation bell 401.
Electric power may be utilized for other purposes as well, for example, for closing closable vents 505, powering any sensors or communications equipment present at submersible isolation bell 401, or for other purposes. The amount of power supplied for heating, for example by heaters 507 and/or 509, may be controllable in response to temperature measurements made at submersible isolation bell 401. For example, sufficient power may be supplied to keep the conditions within submersible isolation bell and umbilical 402 well outside of hydrate envelope 302.
In some embodiments, umbilical 402 may be combined with other structures, enabling simultaneous deployment from support vessel 403. For example,
In other embodiments, all the umbilical components (and possibly other components) may be disposed within an outer umbilical 611 that is continuous or mostly continuous (e.g., with a handful of breaks) tube that extends from support vessel 403 to effluent 106 and/or well 101.
In other applications, a submersible isolation bell in accordance with embodiments of the invention may include additional connection points for additional umbilicals, cables, conduits, or other structures, which may be deployed from one or multiple support vessels. By way of example,
Umbilical 402 can include a collection conduit for carrying effluent from the well to a collection station, and/or at least one power cable 506. Fitting 901 can be sized to fit within a piece of equipment at the wellhead, for example riser 105. Fitting 901 can be a standard or custom fitting that is designed to fit with a specific riser, pipe or well. Fitting 901 may also comprise a seal 902 configured to deploy at the wellhead to substantially prevent effluent 106 from escaping the well other than through the collection conduit of umbilical 402. For example, seal 902 may be mechanically expandable or hydraulically inflatable to substantially seal against the inner wall of riser 105. Moreover seal 902 may also act as a centralizer that, for example, centers fitting 901 or umbilical 402, pump 406, conduit 404, or a combination of these within riser 105.
A diluent carrying conduit 404 may also be provided, for carrying diluent to the well, for example from support vessel 403. Either or both of umbilical 402 and diluent carrying conduit 404 may be made of coiled tubing and deployed by uncoiling the coiled tubing from a spool as fitting 901 is lowered to the well. Alternatively, system 900 may be implemented using conventional drill pipe.
Heater 507 may be provided, drawing its power from power cable 506. Heater 507 can be positioned to heat diluent supplied via diluent carrying conduit 404 near a lower end of umbilical 402. The heated diluent may mix with effluent 106 to heat effluent 106 to prevent the formation of hydrates before or while effluent 106 travels through the collection conduit of umbilical 402. System 900 thus provides local heating of effluent 106, and may be able to reach higher temperatures than would be achievable by piping pre-heated diluent from the ocean surface.
Electric submersible pump 406 may also be provided, to assist in lifting effluent 106 through the collection conduit to the collection station. Electric submersible pump 406 may be powered via power cable 506.
System 1000, for example, includes a drillship 1003 equipped with coiled tubing handling equipment. Drill pipe 1002 is plugged or restricted by a hydrate plug 1004. Hydrate plug 1004 is shown as having formed near the bottom of drill pipe 1002, near BOP stack 104, but such a plug may form in other locations as well.
In accordance with embodiments of the invention, an umbilical 1005 is made at least in part of coiled tubing, and is uncoiled from a spool and lowered into drill pipe 1002. The lower end of umbilical 1005 is shown in more detail in
Once hydrate plug 1004 has been removed, umbilical 1005 can be removed from drill pipe 1002 and normal operations may be resumed.
While electric heater 1104 is shown in
Different arrangements of the components depicted in the drawings or described above, as well as components and steps not shown or described are possible. Similarly, some features and subcombinations are useful and may be employed without reference to other features and subcombinations. Embodiments of the invention have been described for illustrative and not restrictive purposes, and alternative embodiments will become apparent to readers of this patent. Accordingly, the present invention is not limited to the embodiments described above or depicted in the drawings, and various embodiments and modifications can be made without departing from the scope of the claims below.
This is a non-provisional application that claims the benefit of commonly assigned U.S. Provisional Application No. 61/488,083, filed May 19, 2011, entitled “Thermal Hydrate Preventer,” the entire disclosure of which is hereby incorporated by reference herein for all purposes.
Number | Date | Country | |
---|---|---|---|
61488083 | May 2011 | US |