Not applicable.
1. Technical Field of the Invention
The present invention relates generally to a landscape luminaire. More particularly, the invention relates to a landscape luminaire having a wall mount system which supports the weight of the luminaire during installation, has thermal isolation characteristics, and a modular hinged ballast tray.
2. Description of the Related Art
Landscape luminaires are typically used to illuminate landscaping and building facades to provide an aesthetically pleasing appearance. Landscape luminaires may be situated on churches, office buildings, malls, hospitals, schools, and the like to illuminate the structure walls and adjacent landscaping. However, these building mounted landscape luminaires generally have several problems associated therewith. First, these lights are often quite large in order to effect a desired lighting level and therefore may be extremely heavy. This makes installation very difficult, sometimes requiring two-men. Second, the weight also makes servicing and cleaning very difficult, especially when the fixture must be opened and supported. Third, larger luminaires produce significant amounts of heat which may be damaging to the fixture and electrical components therein over the life of the fixture.
Older light designs have attempted to overcome the weight problems associated with outdoor landscaping luminaires. Various shapes and sizes have been developed; however, these designs often ship fully assembled yet must be disassembled to effectuate installation of lightweight manageable parts. This disassembly and re-assembly in the field can lead to water leaks, incorrect time-consuming installation, or even lost parts.
In view of the deficiencies in known landscape luminaires, it is apparent that a landscape luminaire is needed wherein a mounting system supports the weight of the luminaire during installation and subsequent servicing, and the luminaire has a modular design allowing thermal isolation of the lamp and electronic components to allow better heat dissipation of the light fixture and electrical components therein.
It is an object of the present invention to provide a landscape luminaire.
It is a further object of the present invention to provide a landscape luminaire having a wall mounting system which supports the weight of the luminaire during installation and servicing.
It is an even further object of the present invention to provide a landscape luminaire having a modular design which may allow for separate mounting of reflector housing and ballast housing.
Specifically, the present invention provides a landscape luminaire having a wall mount and thermal isolation system comprising a wall mount plate having parallel opposed arm slots, and a substantially U-shaped wireform having a first, a second and a third arm. The first and second arms are slidably connected to the wall mount plate within the parallel opposed arm slots. The third arm of the wireform is pivotably connected to a fixture mount plate. The wireform first and second arms have elbows therein which contact the wall mount plate and dispose a reflector housing away from a building wall when the fixture is open during installation or service. The wall mount plate has a knock-out plate where wires enter providing power to the fixture electronic components.
The landscape luminaire further comprises a reflector or optics housing. In a first embodiment the reflector or optics housing may be directly connected to the fixture mount plate. Within the reflector housing may be a modular hinged ballast tray. Mounted on the modular ballast tray may be a power supply, a ballast, a lamp socket, and lamp. Above the modular ballast tray is a reflector. Between the reflector and a lens tray mounted lens is the lamp and the lamp socket which may also be mounted on the modular ballast tray. In electrical communication with the lamp and lamp socket are the power supply and the lamp ballast. With this modular configuration, the modular hinged ballast tray, which contains the reflector, power supply, ballast, lamp socket and lamp, may be easily replaced during servicing if a component fails thereby removing the need for the service technician to replace individual components within the reflector housing and making servicing simplified.
In an alternative embodiment, the reflector or optics housing also comprises a reflector therein and a lens tray connected to a lower peripheral edge of the reflector housing. The lens tray has a lens seated therein. Between the reflector and lens is a lamp. The lamp is preferably a HID lamp, for instance, a metal halide lamp, but may be any other lamp known to one of ordinary skill in the art. The lamp is operably connected to a lamp socket, the lamp socket being mounted in a electronics or ballast housing. The ballast housing may be a plurality of shapes and has a modular ballast tray mounted therein. The modular ballast tray has a power supply and ballast mounted thereon. The ballast housing may have a plurality of vents for heat dissipation along a top semi-circular surface. On a first side of the ballast housing is a fixture bracket allowing the lamp socket to be attached on a first side thereof and the reflector housing to be attached on a second side thereof. On a second side of the ballast housing may be the fixture mounting plate which is pivotably attached to the wireform. The wall mount plate may further comprise a level bubble thereon for assisting in mounting. The wall mount plate may be of similar design to the other embodiment such that the installations are interchangeable.
All of the above outlined objectives are to be understood as exemplary only and many more objectives of the invention may be learned from the disclosure herein. Therefore, no limiting interpretation of the objectives noted is to be understood without further reading of the entire specification, claims, and drawings included herewith.
The aspects and advantages of the present invention will be better understood when the detailed description of the preferred embodiment is taken in conjunction with the accompanying drawings, in which:
Wall Mount System
The present invention will now be described in conjunction with the drawings, referring initially to
The reflector housing 12 is formed preferably of heavy duty die cast aluminum having a corrosion resistant finish, however various other materials may be used preferably being corrosion resistant. The bottom of the reflector housing 12 is open wherein various light components are positioned. Fastened along a lower edge 16 of the reflector housing 12 is a lens tray 18 wherein a lens 20 is preferably disposed, as shown in FIGS. 1,6,7. Moreover, the lens tray 18 is preferably hingeably connected to the reflector housing 12 as shown in
As shown in
As shown in FIGS. 2,4,9 the wire shield door 56 has a bent leg 57 extending therefrom and a ledge 58 along a lower edge of the wire shield door 56. The door 56 is positioned between the fixture mount plate 22 and the ballast housing 80 or reflector housing 12 such that the ledge 58 rests on an opening of either of the housings 12,80 depending on which embodiment is being used. The wire shield door allows access to an integral splice chamber without opening the fixture mount plate 22 from the wall mount plate 40. As shown in
Referring to
As best seen in
Along a top surface of the wall mount plate 40 is a level bubble 46 which aids in installation of the wall mount plate 40. A knock-out plate 48 is located in the wall mount plate 40 through which, when removed, wire can pass from a wall conduit or junction box. Extending from an inner surface of the wall mount plate 40 is a gasket 50, as depicted in
With the wall mount plate 40 mounted to a building wall the wireform fingers 38 are placed in upper portions of slots 44. The wireform 28, which is rotatably connected to the fixture mount plate 22 and reflector housing 12, is pulled to the bottom of the slot 44 by the weight of the reflector housing 12. When the fixture 10 is opened during initial wiring or installation, the elbows 36 of wireform 28 support the weight of reflector housing 12 in a manner such that the reflector housing 12 does not contact the building facade. This protects the lens 20, finish of the reflector housing 12, as well as the electrical components therein. When the luminaire 10 is initially wired, the reflector housing 12 is hung by the fixture mount plate 22 and wireform 28 to the wall mount 40. Moreover, this design provides support for the reflector housing 12 so that an installer's hands are free to connect the wall conduit wires and power supply wires. When the fixture 10 is closed, the wireform fingers 38—remain positioned at the bottom of the channel 44 and the arms 30, 32 rotate upwards such that they are parallel with the slots 44, vertically disposing the wireform 28 such that the fixture mount plate 22 encloses the wall mount plate 40 compressing the gasket 50 and creating the integral splice chamber therebetween. Wire connectors or wire-nuts may be disposed in the splice chamber eliminating the need for a junction box. With the fixture 10 in the closed position, screws 54 may be disposed through the top surfaces of the wall mount plate 40 and fixture mount plate 22 to lock the fixture 10 in the closed position.
Hinged Ballast Tray
In a first embodiment, the fixture mount plate 22 is directly attached to the reflector housing 12 as depicted in
Connected beneath the reflector housing 12 is the lens tray 18. The lens tray 18 is preferably rectangular shaped with a plurality of screw holes disposed about the perimeter of the tray 18. The lens tray 18 further has a lens aperture 19 which is preferably rectangular in shape. As seen in
Thermal Isolation System
Copious amounts of heat may be generated by the lamp and power supply of landscape luminaires, especially when the lamp is a large lamp, for example a 400 watt lamp. The considerate amounts of heat created by larger lamps can be harmful to the electronic components of the lamp and can, under some circumstances, lead to failure of those components.
In order to deal with this problem a second embodiment of the present invention comprises a thermal isolation system wherein a modular housing design is used to separate the reflector housing and lamp from the electronic components within a ballast or electronics housing. Thus, heat from the reflector housing and lamp therein is isolated from electrical components in the ballast housing.
Referring to
On the first side 86 of the ballast housing 80 is an aperture 90 which may be a plurality of shapes so long as the lamp 70 may fit therethrough. Disposed about the aperture 90 is a fixture bracket 92 which may be a plurality of shapes so long as the lamp 70 fits therethrough. Preferably, the bracket 92 fully encloses the aperture 90 to better seal the components within the ballast housing 80. The bracket 92 may also have a plurality of screw apertures extending inward from the bracket sides through which screws 171 may be placed to hold the lamp socket 169 and reflector housing 12. It is to be noted that the overall design of the embodiment shown herein incorporates similar design characteristics for the bracket and aperture 92, 90 as that of the wall mount plate 40 and fixture plate 22 so that they are interchangeable and truly modular in design.
The first and second sides 86, 88 and the semi-circular housing surface 81 define an opening which may be rectangular and wherein a ballast tray 96 may be disposed. The ballast tray 96 has a plurality of apertures wherein screws maybe positioned to attach the ballast tray 96 to the ballast housing 80. Disposed between the ballast tray 96 and the ballast housing 80 may be a gasket 17 which provides a seal therebetween.
Positioned on the ballast tray 96 may be a power supply 162, a ballast 164, and a plurality of wires not shown. The wires provide electrical communication between the power supply 162, the ballast 164, and a lamp socket 168. The lamp socket 168 is connected to a socket bracket 169 and the fixture bracket 92 from an inner portion of the ballast housing 80 by a plurality of fasteners, such as threaded screws 171. The wires preferably extend through the second side 88 of the ballast housing 80 and fixture mount plate 22 and are connected to wires extending from a building wall. Also preferably located on the second side 88 of the ballast housing is a fixture mount plate 22. As described above the fixture mount plate 22 has a wireform 28 extending therefrom being slidably and pivotably connected a wall mount plate 40 connected to a building facade. The wires in the ballast housing 80 and the power wires extending from the building may be connected by connectors or wire-nuts disposed in the splice chamber defined by the fixture mount plate 22 and wall mount plate 40 when the fixture 10 is in the closed position. A lamp 70 disposed in the lamp socket 168 passes through the ballast aperture 90 and into a reflector housing 112. Within the reflector 166 may be a lens tray 18, a lens 20, and a gasket 17 providing a seal between the reflector housing 12 and lens tray 18. The housing 12 and lens tray 18 are preferably of the same design as the first embodiment wherein the housing 12 may be interchangeable between the low wattage design of the first embodiment and the higher wattage design of the second embodiment.
The foregoing detailed description is given primarily for clearness of understanding and no unnecessary limitations are to be understood therefrom for modifications will become obvious to those skilled in the art upon reading this disclosure and may be made without departing from the spirit of the invention and scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/369,269, filed Apr. 2, 2002.
Number | Name | Date | Kind |
---|---|---|---|
5307254 | Russello et al. | Apr 1994 | A |
6375141 | Kettlestrings | Apr 2002 | B1 |
6530681 | Sieczkowski | Mar 2003 | B2 |
6733158 | Fischer et al. | May 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
60369269 | Apr 2002 | US |