The present disclosure relates generally to communications networks, and more particularly, to thermal modeling for cables transmitting power and data communications.
Communications cables that are used to deliver power and data simultaneously may encounter self-heating due to a combination of currents carried in the cables, how the cables are installed (e.g., cable bundling), and what type of cables are used. Heat generation in cable bundles is an issue that can greatly affect performance and cause damage to a cable plant.
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
Overview
In one embodiment, a method generally comprises receiving at a thermal modeling module, data from a Power Sourcing Equipment device (PSE) for cables extending from the PSE to Powered Devices (PDs), the cables configured to transmit power and data from the PSE to the PDs, calculating at the thermal modeling module, thermal characteristics for the cables based on the data, and identifying a thermal rise above a specified threshold at one of the cables. The data comprises real-time electrical data for the cables.
In another embodiment, an apparatus generally comprises an interface for receiving data from a Power Sourcing Equipment device (PSE) for cables extending from the PSE to Powered Devices (PDs), the cables configured to transmit power and data from the PSE to the PDs, the data comprising real-time electrical data for the cables, a processor for calculating thermal characteristics for the cables based on the data and identifying a thermal rise above a specified threshold at one of the cables, and memory for storing wire gauges and associated cable temperature ratings.
In yet another embodiment, logic is encoded on one or more non-transitory computer readable media for execution and when executed by a processor operable to process data from a Power Sourcing Equipment device (PSE) for cables extending from the PSE to Powered Devices (PDs), the cables configured to transmit power and data from the PSE to the PDs, the data comprising real-time electrical data for the cables, calculate thermal characteristics for the cables based on the data, and identify a thermal rise above a specified threshold at one of the cables.
The following description is presented to enable one of ordinary skill in the art to make and use the embodiments. Descriptions of specific embodiments and applications are provided only as examples, and various modifications will be readily apparent to those skilled in the art. The general principles described herein may be applied to other applications without departing from the scope of the embodiments. Thus, the embodiments are not to be limited to those shown, but are to be accorded the widest scope consistent with the principles and features described herein. For purpose of clarity, details relating to technical material that is known in the technical fields related to the embodiments have not been described in detail.
In systems used to simultaneously transmit power and data communications (e.g., Power over Ethernet (PoE), Power over Fiber (PoF), and the like), cable heating may degrade the reliability of the communications signals that are carried over the cables and damage the cable plant. Cable plant damage is often a direct result of thermal stress occurring in unattended or non-visible locations. In some cases, powered devices may still operate on a thermally stressed cable with uncertain operation, thereby leaving a user confused as to how to debug the system. High temperatures may also lead to higher power costs due to more power dissipated in the cables. In conventional systems, visible inspection may be needed to comply with standards (e.g., NEC (National Electrical Code), IEEE (Institute of Electrical and Electronics Engineers) 802.3) and determine the operational ability of the cable plant between the power source equipment and the powered devices. Many instances of failure may be missed or ignored. As PoE standards allow for higher power transmissions, temperature concerns are expected to become more prevalent.
The embodiments described herein provide real-time thermal modeling in cables that are used to carry data and power simultaneously. Real-time measurements provide an accurate and up-to-date analysis of a cable plant health assessment. The embodiments may be used, for example, to identify power and thermal impact due to self-heating and provide alerts for possible over heat conditions. One or more embodiments may be used to limit power output based on the modeling or prevent modes that may result in unwanted cable behavior such as heat damage to the cable or other unintended consequences. As described in detail below, one or more embodiments may collect cable heating factors (e.g., current carried in cable, cable type, cable installation, etc.) and use this data to model expected temperature rises and other health assessment characteristics in the cables to determine if the cable can handle the power level and if the integrity of the data carried across the cable is at risk.
Referring now to the drawings, and first to
The network may be configured for Power over Ethernet (PoE), Power over Fiber (PoF), or any other power over communications cable system that is used to pass electric power along with data to allow a single cable to provide both data connectivity and electric power to network devices such as wireless access points, IP (Internet Protocol) cameras, VoIP (Voice over IP) phones, video cameras, point-of-sale devices, security access control devices, residential devices, building automation, industrial automation, and many other devices. Signals may be exchanged among communications equipment and power transmitted from power sourcing equipment to powered devices.
As shown in the simplified example of
The cables 14 are configured to transmit both power and data from the PSE 10 to the PDs 12. The cables 14 may be formed from any material suitable to carry both power and data (e.g., copper, fiber). The cables 14 may comprise, for example Catx cable (e.g., category 5 twisted pair (e.g., four pair) Ethernet cabling) or any other type of cable. The cables 14 may extend between the PSE 10 and PDs 12 at a distance, for example, of 10 meters, 100 meters, or any other length. The cables 14 may be arranged in any configuration. For example, the cables 14 may be bundled together in one or more groups 13 or stacked in one or more groups 15 as shown schematically in cross-section in
The cable 14 may be rated for one or more power levels, a maximum power level, a maximum temperature, or identified according to one or more categories indicating acceptable power level usage, for example. In one example, the cables 14 correspond to a standardized wire gauge system such as AWG (American Wire Gauge). For different gauge wire, AWG provides data including diameter, area, resistance per length, ampacity (maximum amount of current a conductor can carry before sustaining immediate or progressive deterioration), and fusing current (how much current it takes to melt a wire in free air). Various other standards (e.g., NEC (National Electrical Code), UL (Underwriters Laboratories)) may be used to provide various requirements for the cable and cable system and provide temperature ratings or limits, or other information. This data may be stored in a thermal modeling system for reference in providing a cable thermal status, as described below.
As noted above, the cables 14 may encounter self-heating. For example, when power is added to twisted-pair cables, the copper conductors generate heat and temperatures rise. A thermal modeling module 18 is configured to model the thermal impact due to self-heating. In one or more embodiments, the thermal modeling module 18 is located at a network device 19, which may be located at a Network Operations Center (NOC), for example. The network device 19 may comprise, for example, a network management station, controller, computer, or any other device. The network device 19 is in communication with the PSE 10 and may also communicate with one or more PDs 12 directly or through the PSE. The thermal modeling module 18 (e.g., code, software, logic, firmware, application, client, appliance, hardware, device, element) may also be distributed across any number of network devices or operate in a cloud environment. Also, the thermal modeling module 18 or one or more components of the module may be located at the PSE 10, as shown in
The PSE 10 may measure one or more variables used for thermal modeling calculations at the PSE or at the network device 19. For example, the PSE 10 may measure cable length using a TDR (Time Domain Reflectometer), output voltage at PSE, and current (e.g., for individual conductors). In one or more embodiments, the PSE 10 may also collect intelligent PD available statistics for reporting input voltage at the PD. One or more calculations may be made at the PSE 10 or at the remote network device 19 based on measurements made at the PSE.
The thermal modeling module 18 may collect data including, for example, cable AWG, real-time current carried in the conductors of the cables (nominal or maximum current), voltage (output at PSE, input at PD), cable length, cable segment length, number of PSE ports, cable proximity to other cables carrying currents that can act as localized heat sources, maximum expected ambient temperature where cables are routed, maximum temperature rating of the cable, temperature at PD, or any combination of this data or other data. Various measurements may be used to gather real-time data and user input may also be provided for one or more parameters (e.g., cable type, cable installation configuration, number of ports) if not available. The thermal modeling module 18 may use this data to determine the operational maximum power (maximum safe available power for delivery on the PSE port), thermal characteristics (real-time temperature rise in cables), overall health of an end-to-end cable 14, a bundle of those end-to-end cables, and a bundle encompassing bundles of cable bundles, and if a cable is safe for operation by the attached PD 12.
As described in detail below, the thermal modeling module 18 may calculate real-time localized heating in a cable plant and generate a cable plant risk assessment (e.g., spreadsheet, graphical image) and alarm states to minimize unsafe operation. In one or more embodiments, the thermal modeling module 18 may provide an alarm state or syslog (system log) message, as well as prevent delivery of more power than is safely determined for a particular cable. For example, the thermal modeling module 18 may warn a user of potential heating issues and power concerns that may compromise the cable plant, data integrity of the communications channel, and PD operation.
In one or more embodiments, the network device 19 may include a GUI (Graphical User Interface) 11 for receiving user input and presenting results of the thermal modeling to the user. As described below, the GUI 11 may be used to display a risk assessment table or graphical image indicating the thermal rise, health status, or other information about the cables and cable plant.
It is to be understood that the network devices and topology shown in
Memory 24 may be a volatile memory or non-volatile storage, which stores various applications, operating systems, modules, and data for execution and use by the processor 22. For example, components of the thermal modeling module 28 (e.g., code, logic, firmware, etc.) may be stored in the memory 24. Memory 24 may also store manually input data (e.g., wire gauges and associated cable temperature ratings, measurements, calculated data, or other data, tables, or graphs. The network device 20 may include any number of memory components.
Logic may be encoded in one or more tangible media for execution by the processor 22. For example, the processor 22 may execute codes stored in a computer-readable medium such as memory 24. The computer-readable medium may be, for example, electronic (e.g., RAM (random access memory), ROM (read-only memory), EPROM (erasable programmable read-only memory)), magnetic, optical (e.g., CD, DVD), electromagnetic, semiconductor technology, or any other suitable medium. In one example, the computer-readable medium comprises a non-transitory computer-readable medium. Logic may be used to perform one or more functions described below with respect to the flowchart of
The network interface 26 may comprise any number of interfaces (linecards, ports) for receiving data or transmitting data to other devices. The interface may be, for example, an interface at the PSE 10 for transmitting power and data to the PD 12, an interface at the PSE for transmitting measurements, data, or risk assessment information to the network device 19, or an internal interface at the PSE 10 for transmitting data to the thermal modeling module 18 (
It is to be understood that the network device 20 shown in
It is to be understood that the process shown in
The following provides examples for determining wire gauge, bundle size, and cable adjacencies, and presenting data and thermal modeling results to a user.
In one or more embodiments, wire gauge calculations may be made using V_out (voltage at port of PSE), V_in (voltage at PD), I_individual_cable (current of cable), and TDR_m (cable length). In one example, calculations are performed assuming no connector loss. The resistance calculations may be performed as follows:
R_individual conductor=(V_out−V_in)/I_individual conductor; and
R_mOhm/m=(R_individual conductor/TDR_m)×1000.
R_mOhm/m may be used to determine the AWG for the conductor.
The user may enter the basic wire gauge for the assessment calculations if there is not an intelligent PD to provide V_in.
In one embodiment, the packet pulse generator carries switch IP (Internet Protocol) address and port ID (identifier) so that adjacent switches in the data center can identify where the packet is sourced from and return the received calculation for each port on the switch receiving or recognizing the packet. In one example, the packet 55 includes the source equipment IP address (e.g., IP address for Ethernet console port or command control panel), source equipment definition (e.g., what kind of switching or routing equipment), source port (e.g., port number, port power capability, port speed capability), signal data definition (e.g., data packet type (FFFF0000, FF00, AA55, etc.)), and data (e.g., as many bytes as possible of the signal data definition).
The pulsing and high frequency tests described above may be used to detect cable architecture (e.g., cable bundling, cable adjacency, bundle size) and basic dielectric calculations may be used to determine cable insulation type. In one example for a 96 port switch, a source wire pulse may be transmitted on one port and the pulse field strength measured on 95 ports. This process may be repeated through 96 ports or a fewer number of ports. In another example, a pulse may be sent on only a portion of the ports until an arrangement of the cables is identified. The cable bundling may be determined by using field strength measurements to determine cable location and cable adjacency. For example, finite element analysis and a convergence algorithm may be used to determine cable-to-cable proximity. In order to detect shielded foil, the pulse strength may be increased on a closest pair to determine if a change indicates shielded or not shielded. The measured field strength will increase with a smaller factor with a shielded cable. An algorithm output may be used to determine the proximity of cables and build a table.
It is to be understood that the methods and systems described above for determining cable adjacency and bundle characteristics are only examples and that other devices or methods may be used without departing from the scope of the embodiments. Also, if bundle characteristics are known, this information may be manually input to the thermal modeling system. In one or more embodiments, both the 1 MHz pulse and packet pulse generator may be used to determine cable adjacencies. For example, the 1 MHz pulse may be used during bring up and the packet pulse generator used for periodic updates.
As shown in
Referring first to
The cable thermal status is based on the calculated thermal rise and maximum temperature rating of the cable and may be represented, for example, as a color (e.g., green (safe operating condition), yellow (approaching unsafe operating condition), red (unsafe operating condition)) based on a specified limit or threshold. The threshold may be based on standard temperature limits for the cable or may be user defined. Cable health may be determined based on an expected Pcable based on Iport, Vport, and TDR as compared to Pcable calculated using Vpd.
Referring now to
The table 90 in
It is to be understood that the tables 70, 80, and 90 shown in
It is to be understood that the tables 70, 80, 90 shown in
In addition to (or in place of) the table 70, 80, 90 or schematic 100, the thermal modeling module 18 may transmit one or more alerts (alarm, message, syslog, etc.) when a specified threshold has been reached (e.g., thermal rise above a specified limit, maximum current or power exceeded in one or more cables). For example, the thermal modeling module 18 may determine or user input provided to define appropriate thresholds for allowable temperature rise in a cable for safe operation per port. In one example, a red cable thermal status may prevent the port from operating and a yellow cable thermal status may only allow the port to operate with user intervention. In one embodiment, the GUI may allow for a red override. The user may set the green/yellow/red threshold as appropriate for their cable plant configuration. In one embodiment, the thermal modeling module 18 may generate a flag based on worst case PD classification current. The alarm conditions may include, for example, a strict mode in which the PSE 10 monitors real-time PD currents and enforces a current limit (i.e., shuts down port when current limit is exceeded), and a non-strict mode in which the PSE monitors real-time PD currents and generates an alarm when a current limit is exceeded. The alarm and assessment information may be displayed, for example, on a system display panel or customer interface and provide an indication that attention is needed (e.g., blue attention LED (Light Emitting Diode), syslog message sent through the Ethernet control interface port to the network operations center).
As can be observed from the foregoing, the embodiments described herein may provide many advantages. For example, one or more embodiments may be used to prevent the unwanted heating of cables (e.g., individual cables, bundle of cables) in communications cables where power is delivered over the cables to a powered device. The calculations may be done at installation and continued in real-time during idle packet transfer of the communications circuit, for example. Alarm conditions, attention lights, LCD (Liquid Crystal Display), and messaging may be used to alert the end user in the event an unwanted amount of power beyond the ability of the cable and cable environment is requested by the PD. In one or more embodiments, the PSE port may automatically limit the power available for delivery based on the ability of the cable to safely deliver the required current, and thereby prevent serious damage to the cable plant, building, or user. The embodiments may be used, for example, by network engineers who manage networks with a significant deployment of PoE or PoF powered devices to provide a warning of deployment scenarios where the self-heating of cables could jeopardize the data integrity of the cables. The system may be used for long term planning in a cable plant, for example. One or more embodiments allow a network engineer to simply review the cable plant health assessment, which provides a more accurate assessment than may be provided with visual inspection and also saves a significant amount of time.
Although the method and apparatus have been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations made to the embodiments without departing from the scope of the invention. Accordingly, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
The present application is a divisional of U.S. patent application Ser. No. 17/022,685, entitled THERMAL MODELING FOR CABLES TRANSMITTING DATA AND POWER, filed Sep. 16, 2020, which in turn is a continuation of U.S. patent application Ser. No. 15/604,344, entitled THERMAL MODELING FOR CABLES TRANSMITTING DATA AND POWER, filed on May 24, 2017, now U.S. Pat. No. 10,809,134 B2, issued Oct. 20, 2020, the entire contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3335324 | Buckeridge | Aug 1967 | A |
3962529 | Kubo | Jun 1976 | A |
4803331 | Cohen | Feb 1989 | A |
4811187 | Nakajima | Mar 1989 | A |
4997388 | Dale et al. | Mar 1991 | A |
5602387 | Bowen | Feb 1997 | A |
5652893 | Ben-Meir | Jul 1997 | A |
6008631 | Johari | Dec 1999 | A |
6220955 | Posa | Apr 2001 | B1 |
6259745 | Chan | Jul 2001 | B1 |
6636538 | Stephens | Oct 2003 | B1 |
6685364 | Brezina | Feb 2004 | B1 |
6784790 | Lester | Aug 2004 | B1 |
6826368 | Koren | Nov 2004 | B1 |
6855881 | Khoshnood | Feb 2005 | B2 |
6860004 | Hirano | Mar 2005 | B2 |
7188415 | Robinson et al. | Mar 2007 | B2 |
7325150 | Lehr | Jan 2008 | B2 |
7420355 | Liu | Sep 2008 | B2 |
7473849 | Glew | Jan 2009 | B2 |
7490996 | Sommer | Feb 2009 | B2 |
7492059 | Peker | Feb 2009 | B2 |
7509505 | Randall | Mar 2009 | B2 |
7566987 | Black et al. | Jul 2009 | B2 |
7583703 | Bowser | Sep 2009 | B2 |
7589435 | Metsker | Sep 2009 | B2 |
7593747 | Karam | Sep 2009 | B1 |
7603570 | Schindler | Oct 2009 | B2 |
7616465 | Vinciarelli | Nov 2009 | B1 |
7737704 | Diab et al. | Jun 2010 | B2 |
7813646 | Furey | Oct 2010 | B2 |
7814346 | Diab | Oct 2010 | B2 |
7835389 | Yu | Nov 2010 | B2 |
7854634 | Filipon | Dec 2010 | B2 |
7881072 | DiBene | Feb 2011 | B2 |
7915761 | Jones | Mar 2011 | B1 |
7921307 | Karam | Apr 2011 | B2 |
7924579 | Arduini | Apr 2011 | B2 |
7940787 | Karam | May 2011 | B2 |
7973538 | Karam | Jul 2011 | B2 |
8020043 | Karam | Sep 2011 | B2 |
8035399 | Diab et al. | Oct 2011 | B2 |
8037324 | Hussain | Oct 2011 | B2 |
8068937 | Eaves | Nov 2011 | B2 |
8081589 | Gilbrech | Dec 2011 | B1 |
8184525 | Karam | May 2012 | B2 |
8276397 | Carlson | Oct 2012 | B1 |
8279883 | Diab | Oct 2012 | B2 |
8310089 | Schindler | Nov 2012 | B2 |
8319627 | Chan | Nov 2012 | B2 |
8344246 | Lipiansky et al. | Jan 2013 | B2 |
8345439 | Goergen | Jan 2013 | B1 |
8350538 | Cuk | Jan 2013 | B2 |
8358893 | Sanderson | Jan 2013 | B1 |
8386820 | Diab | Feb 2013 | B2 |
8638008 | Baldwin et al. | Jan 2014 | B2 |
8700923 | Fung | Apr 2014 | B2 |
8712324 | Corbridge | Apr 2014 | B2 |
8750710 | Hirt | Jun 2014 | B1 |
8768528 | Millar et al. | Jul 2014 | B2 |
8775151 | Algaonkar et al. | Jul 2014 | B2 |
8781637 | Eaves | Jul 2014 | B2 |
8787775 | Earnshaw | Jul 2014 | B2 |
8829917 | Lo | Sep 2014 | B1 |
8836228 | Xu | Sep 2014 | B2 |
8842430 | Hellriegel | Sep 2014 | B2 |
8849471 | Daniel | Sep 2014 | B2 |
8966747 | Vinciarelli | Mar 2015 | B2 |
9019895 | Li | Apr 2015 | B2 |
9024473 | Huff | May 2015 | B2 |
9184795 | Eaves | Nov 2015 | B2 |
9189036 | Ghoshal | Nov 2015 | B2 |
9189043 | Vorenkamp | Nov 2015 | B2 |
9206684 | Parra et al. | Dec 2015 | B2 |
9273906 | Goth | Mar 2016 | B2 |
9319101 | Lontka | Apr 2016 | B2 |
9321362 | Woo | Apr 2016 | B2 |
9373963 | Kuznelsov | Jun 2016 | B2 |
9419436 | Eaves | Aug 2016 | B2 |
9484771 | Braylovskiy et al. | Nov 2016 | B2 |
9510479 | Vos | Nov 2016 | B2 |
9531551 | Balasubramanian | Dec 2016 | B2 |
9590811 | Hunter, Jr. | Mar 2017 | B2 |
9618714 | Murray | Apr 2017 | B2 |
9640998 | Dawson | May 2017 | B2 |
9665148 | Hamdi | May 2017 | B2 |
9693244 | Maruhashi | Jun 2017 | B2 |
9734940 | McNutt | Aug 2017 | B1 |
9853689 | Eaves | Dec 2017 | B2 |
9874930 | Vavilala | Jan 2018 | B2 |
9882656 | Sipes, Jr. | Jan 2018 | B2 |
9893521 | Lowe | Feb 2018 | B2 |
9948198 | Mai | Apr 2018 | B2 |
9979370 | Xu | May 2018 | B2 |
9985600 | Xu | May 2018 | B2 |
10007628 | Pitigoi-Aron | Jun 2018 | B2 |
10028417 | Schmidtke | Jul 2018 | B2 |
10128764 | Vinciarelli | Nov 2018 | B1 |
10248178 | Brooks | Apr 2019 | B2 |
10263526 | Sandusky et al. | Apr 2019 | B2 |
10281513 | Goergen et al. | May 2019 | B1 |
10407995 | Moeny | Sep 2019 | B2 |
10439432 | Eckhardt | Oct 2019 | B2 |
10468879 | Eaves | Nov 2019 | B2 |
10541543 | Eaves | Jan 2020 | B2 |
10541758 | Goergen et al. | Jan 2020 | B2 |
10631443 | Byers et al. | Apr 2020 | B2 |
10714930 | Weiss et al. | Jul 2020 | B1 |
10735105 | Goergen et al. | Aug 2020 | B2 |
20010024373 | Cuk | Sep 2001 | A1 |
20020126967 | Panak | Sep 2002 | A1 |
20040000816 | Khoshnood | Jan 2004 | A1 |
20040033076 | Song | Feb 2004 | A1 |
20040043651 | Bain | Mar 2004 | A1 |
20040073703 | Boucher | Apr 2004 | A1 |
20040264214 | Ku et al. | Dec 2004 | A1 |
20050197018 | Lord | Sep 2005 | A1 |
20050268120 | Schindler | Dec 2005 | A1 |
20060202109 | Delcher | Sep 2006 | A1 |
20060209875 | Lum | Sep 2006 | A1 |
20070103168 | Batten | May 2007 | A1 |
20070143508 | Linnman | Jun 2007 | A1 |
20070236853 | Crawley | Oct 2007 | A1 |
20070263675 | Lum | Nov 2007 | A1 |
20070284946 | Robbins | Dec 2007 | A1 |
20070288125 | Quaratiello | Dec 2007 | A1 |
20080004634 | Farritor et al. | Jan 2008 | A1 |
20080054720 | Lum et al. | Mar 2008 | A1 |
20080180087 | Pankau et al. | Jul 2008 | A1 |
20080198635 | Hussain | Aug 2008 | A1 |
20080229120 | Diab | Sep 2008 | A1 |
20080310067 | Diab | Dec 2008 | A1 |
20090027033 | Diab | Jan 2009 | A1 |
20100052642 | Diab et al. | Mar 2010 | A1 |
20100077239 | Diab | Mar 2010 | A1 |
20100117808 | Karam | May 2010 | A1 |
20100171602 | Kabbara | Jul 2010 | A1 |
20100190384 | Lanni | Jul 2010 | A1 |
20100214708 | Diab et al. | Aug 2010 | A1 |
20100237846 | Vetteth | Sep 2010 | A1 |
20100290190 | Chester | Nov 2010 | A1 |
20100318819 | Diab | Dec 2010 | A1 |
20110004773 | Hussain | Jan 2011 | A1 |
20110007664 | Diab et al. | Jan 2011 | A1 |
20110057612 | Taguchi et al. | Mar 2011 | A1 |
20110083824 | Rogers | Apr 2011 | A1 |
20110218790 | Algaonkar et al. | Sep 2011 | A1 |
20110228578 | Serpa | Sep 2011 | A1 |
20110266867 | Schindler | Nov 2011 | A1 |
20110290497 | Stenevik | Dec 2011 | A1 |
20120043935 | Dyer et al. | Feb 2012 | A1 |
20120064745 | Ottliczky | Mar 2012 | A1 |
20120170927 | Huang | Jul 2012 | A1 |
20120201089 | Barth | Aug 2012 | A1 |
20120231654 | Conrad | Sep 2012 | A1 |
20120287984 | Lee | Nov 2012 | A1 |
20120317426 | Lee | Nov 2012 | A1 |
20120319468 | Schneider | Dec 2012 | A1 |
20130077923 | Weem | Mar 2013 | A1 |
20130079633 | Weem | Mar 2013 | A1 |
20130103220 | Eaves | Apr 2013 | A1 |
20130249292 | Blackwell, Jr. | Sep 2013 | A1 |
20130272721 | Van Veen | Oct 2013 | A1 |
20130329344 | Tucker et al. | Dec 2013 | A1 |
20140111180 | Vladan | Apr 2014 | A1 |
20140126151 | Campbell et al. | May 2014 | A1 |
20140129850 | Paul | May 2014 | A1 |
20140258742 | Chien | Sep 2014 | A1 |
20140258813 | Lusted et al. | Sep 2014 | A1 |
20140265550 | Milligan | Sep 2014 | A1 |
20140372773 | Heath | Dec 2014 | A1 |
20150049992 | Bauco | Feb 2015 | A1 |
20150078740 | Sipes, Jr. | Mar 2015 | A1 |
20150106539 | Leinonen | Apr 2015 | A1 |
20150115741 | Dawson | Apr 2015 | A1 |
20150207317 | Radermacher et al. | Jul 2015 | A1 |
20150215001 | Eaves | Jul 2015 | A1 |
20150215131 | Paul | Jul 2015 | A1 |
20150333918 | White, III | Nov 2015 | A1 |
20150340818 | Scherer | Nov 2015 | A1 |
20160018252 | Hanson | Jan 2016 | A1 |
20160020911 | Sipes, Jr. | Jan 2016 | A1 |
20160064938 | Balasubramanian | Mar 2016 | A1 |
20160111877 | Eaves | Apr 2016 | A1 |
20160118784 | Saxena | Apr 2016 | A1 |
20160133355 | Glew | May 2016 | A1 |
20160134331 | Eaves | May 2016 | A1 |
20160142217 | Gardner | May 2016 | A1 |
20160188427 | Chandrashekar et al. | Jun 2016 | A1 |
20160197600 | Kuznetsov | Jul 2016 | A1 |
20160365967 | Tu | Jul 2016 | A1 |
20160241148 | Kizilyalli | Aug 2016 | A1 |
20160253436 | Albero | Sep 2016 | A1 |
20160262288 | Chainer | Sep 2016 | A1 |
20160273722 | Crenshaw | Sep 2016 | A1 |
20160294500 | Chawgo | Oct 2016 | A1 |
20160294568 | Chawgo et al. | Oct 2016 | A1 |
20160308683 | Pischl | Oct 2016 | A1 |
20160352535 | Hiscock | Dec 2016 | A1 |
20170023756 | Glew et al. | Jan 2017 | A1 |
20170041152 | Sheffield | Feb 2017 | A1 |
20170041153 | Picard | Feb 2017 | A1 |
20170054296 | Daniel | Feb 2017 | A1 |
20170089192 | Rendusara et al. | Mar 2017 | A1 |
20170110871 | Foster | Apr 2017 | A1 |
20170123466 | Carnevale | May 2017 | A1 |
20170146260 | Ribbich | May 2017 | A1 |
20170155517 | Cao | Jun 2017 | A1 |
20170164525 | Chapel | Jun 2017 | A1 |
20170155518 | Yang | Jul 2017 | A1 |
20170214236 | Eaves | Jul 2017 | A1 |
20170229886 | Eaves | Aug 2017 | A1 |
20170234738 | Ross | Aug 2017 | A1 |
20170244318 | Giuliano | Aug 2017 | A1 |
20170248976 | Moller | Aug 2017 | A1 |
20170294966 | Jia et al. | Oct 2017 | A1 |
20170325320 | Wendt | Nov 2017 | A1 |
20170358920 | Galin | Dec 2017 | A1 |
20180003402 | Lambert Grossi et al. | Jan 2018 | A1 |
20180024964 | Mao | Jan 2018 | A1 |
20180053313 | Smith | Feb 2018 | A1 |
20180054083 | Hick | Feb 2018 | A1 |
20180060269 | Kessler | Mar 2018 | A1 |
20180088648 | Otani | Mar 2018 | A1 |
20180098201 | Torello | Apr 2018 | A1 |
20180102604 | Keith | Apr 2018 | A1 |
20180123360 | Eaves | May 2018 | A1 |
20180159430 | Albert | Jun 2018 | A1 |
20180188712 | MacKay | Jul 2018 | A1 |
20180191513 | Hess | Jul 2018 | A1 |
20180254624 | Son | Sep 2018 | A1 |
20180313886 | Mlyniec | Nov 2018 | A1 |
20180340840 | Bullock | Nov 2018 | A1 |
20190126764 | Fuhrer | May 2019 | A1 |
20190267804 | Matan | Aug 2019 | A1 |
20190272011 | Goergen et al. | Sep 2019 | A1 |
20190277899 | Goergen et al. | Sep 2019 | A1 |
20190277900 | Goergen et al. | Sep 2019 | A1 |
20190278347 | Goergen et al. | Sep 2019 | A1 |
20190280895 | Mather | Sep 2019 | A1 |
20190304630 | Goergen et al. | Oct 2019 | A1 |
20190312751 | Goergen et al. | Oct 2019 | A1 |
20190342011 | Goergen et al. | Nov 2019 | A1 |
20190363493 | Sironi et al. | Nov 2019 | A1 |
20200044751 | Goergen et al. | Feb 2020 | A1 |
20200153174 | Curtis | May 2020 | A1 |
20220190587 | Eaves et al. | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
1209880 | Jul 2005 | CN |
201689347 | Dec 2010 | CN |
10359776 | Feb 2014 | CN |
103597776 | Feb 2014 | CN |
104698297 | Jun 2015 | CN |
204836199 | Dec 2015 | CN |
205593671 | Jun 2016 | CN |
205544597 | Aug 2016 | CN |
104081237 | Oct 2016 | CN |
106165342 | Nov 2016 | CN |
106249087 | Dec 2016 | CN |
106465162 | Feb 2017 | CN |
104412541 | May 2019 | CN |
1936861 | Jun 2008 | EP |
2120443 | Nov 2009 | EP |
2257009 | Dec 2010 | EP |
2432134 | Mar 2012 | EP |
2693688 | Feb 2014 | EP |
9316407 | Aug 1993 | WO |
WO199316407 | Aug 1993 | WO |
2006127916 | Nov 2006 | WO |
WO2010053542 | May 2010 | WO |
WO2017054030 | Apr 2017 | WO |
WO2017167926 | Oct 2017 | WO |
WO2018017544 | Jan 2018 | WO |
WO2019023731 | Feb 2019 | WO |
2019212759 | Nov 2019 | WO |
Entry |
---|
Yencheck, Thermal Modeling of Portable Power Cables, 1993. |
Zhang, Machine Learning-Based Temperature Prediction for Runtime Thermal Management across System Components, Mar. 2016. |
Data Center Power Equipment Thermal Guidelines and Best Practices. |
Dynamic Thermal Rating of Substation Terminal Equipment by Rambabu Adapa, 2004. |
Chen, Real-Time Termperature Estimation for Power MOSEFETs Conidering Thermal Aging Effects:, IEEE Trnasactions on Device and Materials Reliability, vol. 14, No. 1, Mar. 2014. |
UPOE-2400G, 7 pages (Year: 2016). |
Hirshmann, 8 pages, (Year: 2011). |
Selecting Cables for Power over Ethernet , Hitachi Cable America Inc. Aug. 12, 2017, 7 pages (Year: 2017). |
How Cable Temperature Impacts Cable Reach, Belden, Sep. 29, 2017, 2 pages (Year: 2017). |
NCP1095, PoE-PD Interface Controller, IEEE 802.3bt, 17 pages, Jun. 2019 (Year: 2019). |
IEEE 802.3af POE Powered Device Controllers With Auto-Retry, Texas Instruments, Apr. 2008, 28 pages (Year: 2008). |
https://www.fischerconnectors.com/us/en/products/fiberoptic. |
http://www.strantech.com/products/tfoca-genx-hybrid-2x2-fiber-optic-copper-connector/. |
http://www.qpcfiber.com/product/connectors/e-link-hybrid-connector/. |
https://www.lumentum.com/sites/default/files/technical-library-items/poweroverfiber-tn-pv-ae_0.pdf. |
“Network Remote Power Using Packet Energy Transfer”, Eaves et al., www.voltserver.com, Sep. 2012. |
Product Overview, “Pluribus VirtualWire Solution”, Pluribus Networks, PN-PO-VWS-05818, https://www.pluribusnetworks.com/assets/Pluribus-VirtualWire-PO-50918.pdf, May 2018, 5 pages. |
Implementation Guide, “Virtual Chassis Technology Best Practices”, Juniper Networks, 8010018-009-EN, Jan. 2016, https://wwwjuniper.net/us/en/local/pdf/implementation-guides/8010018-en.pdf, 29 pages. |
Alexander C.K., “Fundamentals of Electric Circuits,” Indian Edition, Jan. 2013, 37 pages.(“Alexander”). |
Cheng K.W.E., et al., “Constant Frequency, Two-Stage Quasiresonant Convertor,” Published in: IEE Proceedings B—Electric Power Applications, May 1, 1992, vol. 139, No. 03, pp. 227-237, XP000292493. |
Eaves S.S., “Network Remote Powering Using Packet Energy Transfer,” Proceedings of IEEE International Conference on Telecommunications Energy (INTELEC), 2012, Scottsdale, AZ, Sep. 30-Oct. 4, 2012, IEEE 2012, Eaves IEEE, 4 pages. |
Edelstein S., Updated 2016 Tesla Model S Also Gets New 75-kWhbattery Option, Jun. 19, 2016, Archived Jun. 19, 2016 by Internet Archive Wayback machine at https://web.archive.org/web/20160619001148/https://www.greencarreports.com/news/1103 782_updated-2016-tesla-model-s-also-gets-new-7 5-kwh-battery-option (“Edelstein”) 4 pages. |
Extended European Search Report for European Application No. 21156406.7, dated May 10, 2021, 12 Pages. |
Giovino B., “Develop the Right Power Over Ethernet System for Industrial LED Smart Lighting,” https://www.digikey.com/en/articles/develop-the-right-power-over-ethernet-system-for-industrial-led-smart-lighting?utm_adgroup=General&utm_source=google&utm_medium=cpc&utm_campaign=Dynamic%20Search_EN_RLSA&utm_term=&utm_content=General&gclid=EAlalQobChMIrliOzOHN9QIVQfvICh2ZpwrHEAAYASAAEgKKt_D_BwE, Jun. 11, 2018, 7 pages. |
Hall S.H., “High-Speed Digital System Design,” A Handbook of Interconnect Theory and Design Practices, Sep. 2000, 55 pages. (“Hall”). |
“Heat Concerns When Powering A Power Over Ethernet (POE) Device,” Blog, https://planetechusa.com/heat-concerns-when-powering-a-poe-device/, Apr. 21, 2020, 9 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2018/032250, dated Dec. 5, 2019, 09 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2018/032250, dated Jul. 20, 2018, 12 Pages. |
International Standard IEC 60947-1 Edition 5.0, 2014, ISBN 978-2-8322-1798-6, Sep. 2014, 106 pages. (“IEC-60947”). |
International Standard IEC 60950-1 Edition 2.2, 2013, ISBN 978-2-8322-0820-5, May 2013, Part 1, 324 pages. (“IEC-60950”). |
International Standard IEC 60950-1 Edition 2.2, 2013, ISBN 978-2-8322-0820-5, May 2013, Part 2, 324 pages. (“IEC-60950”). |
International Standard IEC 62368-1 Edition 2.0, 2014, ISBN 978-2-8322-1405-3, Feb. 2014, Part 1, 340 pages. (“IEC-62368”). |
International Standard IEC 62368-1 Edition 2.0, 2014, ISBN 978-2-8322-1405-3, Feb. 2014, Part 2, 340 pages. (“IEC-62368”). |
International Standard IEC/TS 60479-1 Edition 4.0, 2005, ISBN 2-8318-8096-3, Jul. 2005, 122 pages. (“IEC-60479”). |
Jingquan C., et al., “Buck-Boost PWM Converters Having Two Independently Controlled Switches,” 32nd Annual IEEE Power Electronics Specialists Conference, PESC 2001, Conference Proceedings, Vancouver, Canada, New York, NY : IEEE., US, US, Jun. 17-21, 2001, vol. 2, pp. 736-741, DOI:10.1109/PESC.2001.954206, ISBN 978-0-7803-7067-8, XP010559317. |
Lathi B.P., “Modern Digital and Analog Communication Systems,” Fourth Edition, Jan. 2009, 15 pages. (“Lathi”). |
NFPA, “NFPA 70 National Electrical Code,” 2017 Edition (NEC), Aug. 2016, 881 pages. |
Petition for Post Grant Review of U.S. Pat. No. 10,735,105 [Public], Filed Feb. 16, 2021, PGR 2021-00055, 132 pages. |
Petition for Post Grant Review of U.S. Pat. No. 10,735,105 [Public], Filed Feb. 16, 2021, PGR 2021-00056, 116 pages. |
Tuenge, et al., “PoE Lighting System Energy Reporting Study Part 1,” Feb. 2017, 66 Pages. |
James, “Power Over Ethernet—The Story So Far,” HellermannTyton, Mar. 2019, 9 Pages. |
Panduit, “Power Over Ethernet with Panduit Copper Cabling,” https://www.panduit.com/content/dam/panduit/en/solutions/COTB05-WW-ENG-PoECabling.pdf, Oct. 2018, 8 Pages. |
“Protecting Your IP Traffic from the Heat and Noise of High-Power POE,” https://www.cablinginstall.com/sponsored/perk-tek/article/16482586/protecting-your-ip-traffic-from-the-heat-and-noise-of-highpower-poe, Mar. 28, 2017, 18 Pages. |
Sedra A.S., “Microelectronic Circuits,” Oxford, Seventh Edition, Jan. 2014, 38 pages. (“Sedra”). |
Stallings W., “Data and Computer Communications,” Fourth Edition, Jan. 1994, 14 pages. (“Stallings”). |
Tanenbaum A.S., “Computer Networks, ” Third Edition, Mar. 1996, 12 pages.(“Tanenbaum”). |
Tellas R., “The Time to Prepare for 100W Power Over Ethernet is Now,” Belden Inc., Jun. 2018, 6 pages. |
Microsemi, “Understanding 802.3at PoE Plus Standard Increases Available Power,” Jun. 2011, 7 pages. (“Microsemi”). |
“Audio/video, Information and Communication Technology Equipment—Part 1: Safety requirements,” International Standard, IEC 62368-1, Edition 2.0, Feb. 2014, 680 Pages, ISBN 978-2-8322-1405-3. |
Berkeley Lab ETA, “Touch-Safe, High Voltage Digital Electricity Transmission Using Packet Energy Transfer,” Vimeo, https://vimeo.com/172469008, Mar. 8, 2016, 8 pages. |
“Digital Electricity Gen2 Detailed Installation Manual,” Voltserver Digital Electricity, Rev B.1, Nov. 29, 2017, 68 Pages. |
Durfee D.A., “Curriculum Vitae,” 4 pages. |
“Electrical—Computer Conference Proceedings,” Internet Archive WayBack Machine Search for Intelec 2012, Curran Associates, Inc., http://www.proceedings.com/electrical-computer-proceedings.html, 2012, 125 pages. |
Information Technology Equipment—Safety—Part 1: General Requirements, International Standard, IEC 60950-1, Edition 2.2, May 2013, 648 pages, ISBN 978-2-8322-0820-5. |
“International Telecommunications Energy Conference: [proceedings] (Full Record),” Library Catalog, https://catalog.oc.gov/vwebv/holdingsInfo?searchId=3810&recPointer=O&recCount=25&searchType=1&bibId=11348322, retrieved from the Internet Feb. 12, 2021, 4 pages. |
“International Telecommunications Energy Conference: [proceedings] (Marc Tags),” Library Catalog, https://catalog.loc.gov/vwebv/staffView?searchId=3877&recPointer=O&recCount=25&searchType=1&bibId=11348322, retrieved from the Internet Feb. 12, 2021, 3 pages. |
LC Catalog-Browse, https://catalog.loc.gov/vwebv/searchBrowse, retrieved from the Internet Feb. 12, 2021, 1 page. |
“Part VII: A Summary of Commonly Used MARC 21 Fields,” Marc, Understanding MARC, https://www.loc.gov/marc//Umb/um07to10.html, retrieved from Internet Feb. 13, 2021, 17 pages. |
Voltserver Inc., v. Cisco Systems, Inc., “Patent Owner's Preliminary Response to Post Grant Review under 35 U.S.C. § 312 and 37 C.F.R. § 42.107,” United States Patent and Trademark Office, PGR2021-00055, U.S Pat. No. 10,735,105, 2021, Jun. 2, 2021, 51 pages. |
Voltserver Inc., v. Cisco Systems, Inc., “Patent Owner's Preliminary Response to Post Grant Review under 35 U.S.C. § 312 and 37 C.F.R. § 42.107,” United States Patent and Trademark Office, PGR2021-00056, U.S Pat. No. 10,735,105, 2021, Jun. 2, 2021, 46 pages. |
Voltserver Inc., v. Cisco Technology, Inc., “Decision Denying Institution of Post-Grant Review,” United States Patent and Trademark Office, PGR2021-00055, U.S. Pat. No. 10,735,105 B2, Aug. 19, 2021, 25 pages. |
Voltserver Inc., v. Cisco Technology, Inc., “Decision Denying Institution of Post-Grant Review,” United States Patent and Trademark Office, PGR2021-00056, U.S. Pat. No. 10,735,105 B2, Aug. 23, 2021, 18 pages. |
Voltserver Inc., v. Cisco Technology, Inc., “Declaration of David A. Durfee, Ph.D.,” United States Patent and Trademark Office, PGR2021-00055, U.S. Pat. No. 10,735,105, Feb. 16, 2021, 340 pages. |
Voltserver Inc., v. Cisco Technology, Inc., “Declaration of Stephens S. Eaves,” United States Patent and Trademark Office, PGR2021-00056, U.S. Pat. No. 10,735,105, Feb. 16, 2021, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20230122187 A1 | Apr 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17022685 | Sep 2020 | US |
Child | 17976441 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15604344 | May 2017 | US |
Child | 17022685 | US |