The present disclosure relates to interactive pads, which may be (but are not necessarily) incorporated into devices worn by a person such as articles of clothing, personal adornments, etc. In one embodiment, a headphone has a heating element that is thermo-reactive to vibrations such as sound waves.
The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. The summary is not an extensive overview of the invention. It is not intended to identify critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some aspects of the invention in a simplified form as a prelude to the more detailed description that is presented elsewhere herein.
According to one embodiment, an interactive device includes a housing, configured to be positioned on or adjacent a heat-receiving surface. The housing includes a plurality of controlled-response elements for outputting heat in response to the controlled-response elements receiving a first energy input.
In one aspect of the invention, the interactive device is headphones. In another aspect of the invention, the interactive device is a glove. In still other aspects of the invention, the interactive device is any device for proving heat to a desirable surface.
According to another embodiment, headphones include a speaker for creating sound waves, and an ear pad configured to be positioned on or around an ear of a wearer. The ear pad has a plurality of controlled-response elements for outputting heat to the wearer in response to the controlled-response elements receiving sound waves created by the speaker.
Embodiments of thermal pads are described herein. Examples are provided to help with the understanding of the invention, but should not be considered limiting. The concepts presented herein can be translated to a number of different devices as shall be understood by those of skill in the art.
According to one embodiment of the invention, illustrated in
In the embodiment 100, the left-ear unit 110 is generally circularly shaped, but may be any suitable geometric shape in other embodiments. The left-ear unit 110 includes a housing 120, a speaker 140, and an ear pad 150. The speaker housing 120 may have a one-piece construction or may be formed of multiple pieces, based on such factors as cost and ease of manufacture. The housing 120 has a cavity 122 extending from one side 121 and may, for example, have a shape of a circular case or a hollow puck. The cavity 122 is bordered by sidewall 123 and end wall 124, and a second cavity 125 may extend from the cavity 122. The second cavity 125 may be useful for housing various components, such as a power source which may power components in one or both of the left and right ear units 110, 110′. A baffle plate 132 covers the cavity 122 and may have a generally complementary shape to the sidewall 123 (e.g., a circular or disc-like shape). The plate 132 may be permanently or removably coupled to the other portions of the housing 120 using any appropriate apparatus or method, whether now known or later developed, such as complementary threading, welding, adhesive, et cetera. The plate 132 includes at least one sound output hole 134 in communication with the cavity 122, and it may be desirable for the sound output hole 134 to be disposed in the center of the plate 132. The speaker 140 may be positioned within or adjacent the output hole 134, and the speaker 140 and the output hole 134 may be sized or otherwise configured (e.g., with flanges) such that the speaker 140 cannot undesirably pass entirely through the output hole 134.
The speaker 140 outputs sound waves when actuated, and may be any speaker now known or later developed. For example, a front (or user-facing) side of a speaker 140 well known in the art includes a diaphragm which has a fixed outer perimeter and a movable inner area coupled to a voice coil. The voice coil sits in front of a permanent magnet, and electrical signals pass through the voice coil—turning the coil into an electromagnet which either attracts or repels the permanent magnet, moving the coil (and the inner area of the diaphragm) backwards and forwards. Alternative displacement movements of the speaker 140 may be provided by the displacement of a ceramic-piezo, polymer-piezo or carbon nanostructure film diaphragm. Movement of the diaphragm result in sound wave propagation to the localized atmosphere through cycles of compression and rarefication of air. Air may consist of naturally occurring mixtures or intentionally fortified composites such as nitrogen, oxygen, or strategically selected inert materials (e.g. gases, liquids, gels, semi-fluids, or semi-solids).
The ear pad 150 is generally annular and overlies the baffle plate 132 for contacting a user on or around the user's ear. As shown in
While the embodiment 100 includes a device (i.e., the speaker 140) which triggers the response of the controlled-response elements, other embodiments may forego such triggering devices; in such embodiments, the trigger may be environmental. For example, if the trigger is the introduction of sound waves, such sound waves may be created by sources not directly coupled to the device. In embodiments, a portion of the controlled-response elements may be selectively tunable to a particular frequency such that the vibration of the controlled-response elements enhances the sound from the speaker(s) 140, for example. Such influence on the controlled-response elements may be provided by controlling the reaction of a portion of the controlled-response elements to outside energy (e.g., not energy as a result of the sound waves, supplemental, unintentional ambient energy) to the ear pad 150.
The portion of the controlled-response elements may be tuned to receive and react to the outside energy, for example, by providing a reaction (such as vibrations) in such a way to counteract the outside energy. Thus, the pad 150 may be equipped with one or more sensors configured to detect the frequency of the outside energy, and activate the portion of the controlled-response elements in accordance with the detected frequency. In another example, the portion of the controlled-response elements may be reoriented to block (filter or partially block) the passing of the outside energy through the pads 150. Accordingly, one portion of the controlled-response elements may be tuned to enhance one frequency (e.g., the sound waves from the speaker 140) while another portion is tuned to block another frequency. Of course, the controlled-response elements can be configured to adjust to additional frequencies as necessary or desired.
The ear pad 150 may be integral to the headphones 100, or it may be a separate add-on component. Where the ear pad 150 is integral to the headphones 100, the ear pad 150 may be connected directly to the energy source for the headphones 100. The energy source may provide the energy necessary to effectuate the tuning of the controlled-response elements. Where the ear pads 150 are separate from the headphones 100, the ear pad 150 may be provided with a connector (e.g., a 3.5 mm connector) for plugging the ear pad 150 into the headphones 100. In still another embodiment, the ear pad 150 may be provided with a standalone energy source for providing outside energy thereto (e.g., a battery). The amount of energy to the ear pad 150 may be controlled by a controller located on the headphones 100 or the ear pad 150, as the case may be. The controller may be configured to control all and/or various portions of the controlled-response elements. In embodiments, the ear pad 150 may be wirelessly connected to a user's device (e.g., smartphone, watch, laptop, visor, glasses), and the user may engage with the device in order to control the application of energy to influence the controlled-response elements.
The ability to influence the controlled-response elements may be particularly useful where the headphones 100 are utilized in multiple environments. Because the controlled-response elements may be tunable to a particular resonant frequency, the user may be able to selectively increase and decrease the response of the controlled-response elements to the amount of energy applied to the ear pads 150, which may be both a result of the soundwaves (e.g., from the speaker 140 and/or noise from the environment). For example, in a crowded room, the response of a portion of the controlled-response elements can be adjusted to block out the unwanted noise, while in a quiet room, all of the controlled-response elements may be focused on enhancing the sound from the speakers 140.
As noted above, pads can be incorporated for use in other devices as well. According to another embodiment 200, illustrated in
The controlled-response elements are triggered by the input of energy to the pad 250. As mentioned herein, the input may be from a device (e.g., a battery) or it may be environmental. In one embodiment, the input may simply be movement of the glove, such as the natural movement of a wearer of the glove. While prior art heat generating systems have previously required vigorous movement to activate particles, here, such movement is not necessary. As described above, the controlled-response elements can then be tuned to a particular resonant frequency if desired. The input energy can optionally be stored in the native format (e.g. thermal, electrical, chemical) or be converted into a transduced energy storage format for use at a later time. For example, input energy vibrations can be transduced via piezo transducer into electrical impulses and stored for long periods of time into an electrical capacitor charge and discharged later based on a thermostat function when the heating output function is desired.
From the foregoing, it shall be understood that the pads 150, 20 may be incorporated into many different types of devices, whether wearable or not. For example, the pads may be useful in certain types of housings, such as battery housings, computer housings, etc. where it may be desirable for the equipment to heat up in order to function properly, especially in cold environments. Thus, by providing any form of an excitation energy sufficient to activate the controlled-response elements, the pads 150, 250 can provide heat where needed. This may be particularly valuable where traditional types of energy, such as electricity, is scarce, and other energy forms can be utilized to activate the controlled-response elements, even speaking in the direction of the pads 150, 250 so as to generate sound waves.
Many different arrangements of the various components depicted, as well as components not shown, are possible without departing from the spirit and scope of the present disclosure. Embodiments of the present disclosure have been described with the intent to be illustrative rather than restrictive. Alternative embodiments will become apparent to those skilled in the art that do not depart from its scope. A skilled artisan may develop alternative means of implementing the aforementioned improvements without departing from the scope of the present disclosure.
Further, it will be understood that certain features and subcombinations may be of utility and may be employed within the scope of the disclosure. Further, various steps set forth herein may be carried out in orders that differ from those set forth herein without departing from the scope of the present methods. This description shall not be restricted to the above embodiments. It is to be understood that while certain forms of the present disclosure have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.
This application claims priority to U.S. Provisional Patent Application No. 62/616,297, filed Jan. 11, 2018, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
8442258 | Kimura | May 2013 | B2 |
8774441 | Miyazawa | Jul 2014 | B2 |
9258636 | Nakano et al. | Feb 2016 | B2 |
9479855 | Huang | Oct 2016 | B2 |
9613614 | Huang | Apr 2017 | B2 |
9699541 | Tsubone | Jul 2017 | B2 |
20050016989 | Kanel et al. | Jan 2005 | A1 |
20070163571 | Sereboff | Jul 2007 | A1 |
20110119065 | Pietrusko et al. | May 2011 | A1 |
20150382094 | Grinker | Dec 2015 | A1 |
20160277852 | Lee | Sep 2016 | A1 |
20170060177 | Rahim et al. | Mar 2017 | A1 |
20170099539 | Di Censo et al. | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
20170103487 | Sep 2017 | KR |
2017040741 | Mar 2017 | WO |
Entry |
---|
PCT Application No. PCT/US2019/012905, International Search Report and Written Opinion, dated Mar. 21, 2019, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20190215594 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
62616297 | Jan 2018 | US |