Thermal penetration and arc length controllable electrosurgical pencil

Information

  • Patent Grant
  • 8235987
  • Patent Number
    8,235,987
  • Date Filed
    Friday, November 21, 2008
    16 years ago
  • Date Issued
    Tuesday, August 7, 2012
    12 years ago
Abstract
An electrosurgical pencil is provided, which includes an elongated housing, an electrocautery electrode supported within the housing and extending distally from the housing. The electrocautery electrode is connected to a source of electrosurgical energy. The pencil also includes at least one voltage divider network supported on the housing and electrically connected to the source of electrosurgical energy for controlling intensity, frequency, and/or mode of electrosurgical energy being delivered to the electrocautery electrode.
Description
BACKGROUND

1. Technical Field


The present disclosure relates generally to electrosurgical instruments and, more particularly, to an electrosurgical pencil having a plurality of hand-accessible variable controls.


2. Background of Related Art


Electrosurgical instruments have become widely used by surgeons in recent years. Accordingly, a need has developed for equipment and instruments that are easy to handle, are reliable and are safe in an operating environment. By and large, most electrosurgical instruments are hand-held instruments, e.g., an electrosurgical pencil, that transfer radio-frequency (RF) electrical or electrosurgical energy to a tissue site. The electrosurgical energy is returned to the electrosurgical source via a return electrode pad positioned under a patient (i.e., a monopolar system configuration) or a smaller return electrode positionable in bodily contact with or immediately adjacent to the surgical site (i.e., a bipolar system configuration). The waveforms produced by the RF source yield a predetermined electrosurgical effect known generally as electrosurgical cutting and fulguration.


As used herein the term “electrosurgical pencil” is intended to include instruments having a handpiece that is attached to an active electrode and is used to cauterize, coagulate and/or cut tissue. Typically, the electrosurgical pencil may be operated by a handswitch or a foot switch. The active electrode is an electrically conducting element, which is usually elongated and may be in the form of a thin flat blade with a pointed or rounded distal end. Alternatively, the active electrode may include an elongated narrow cylindrical needle that is solid or hollow with a flat, rounded, pointed or slanted distal end. Typically electrodes of this sort are known in the art as “blade”, “loop” or “snare”, “needle” or “ball” electrodes.


As mentioned above, the handpiece of the electrosurgical pencil is connected to a suitable electrosurgical energy source (i.e., generator) that produces the radio-frequency electrical energy necessary for the operation of the electrosurgical pencil. In general, when an operation is performed on a patient with an electrosurgical pencil, electrical energy from the electrosurgical generator is conducted through the active electrode to the tissue at the site of the operation and then through the patient to a return electrode. The return electrode is typically placed at a convenient place on the patient's body and is attached to the generator by a conductive material. Typically, the surgeon activates the controls on the electrosurgical pencil to select the modes/waveforms to achieve a desired surgical effect.


The power parameters are typically controlled from outside the sterile field, which requires an intermediary like a circulating nurse to make such adjustment.


A typical electrosurgical generator has numerous controls for selecting an electrosurgical output. For example, the surgeon can select various surgical “modes” to treat tissue: cut, blend (blend levels 1-3), low cut, desiccate, fulgurate, spray, etc. The surgeon also has the option of selecting a range of power settings. As can be appreciated, this gives the surgeon a great deal of variety when treating tissue. However, so many options also tend to complicate simple surgical procedures and may lead to confusion. Moreover, surgeons typically follow preset control parameters and stay within known modes, frequencies, and power settings.


SUMMARY

The present disclosure is directed to an electrosurgical pencil having variable controls. In accordance with one aspect of the present disclosure the electrosurgical pencil includes an elongated housing and an electrocautery electrode supported within the housing and extending distally from the housing, the electrocautery electrode being connected to a source of electrosurgical energy. At least one voltage divider network (hereinafter “VDN”) is also supported on the housing and, is electrically connected to the source of electrosurgical energy for controlling a frequency, intensity, and/or mode of electrosurgical energy being delivered to the electrocautery electrode.


In another embodiment, an electrosurgical pencil is disclosed having an elongated housing and an electrocautery electrode supported within the housing and extending distally therefrom. The electrocautery electrode is operable to connect to a source of electrosurgical energy. At least one voltage divider network is supported on the housing and is operable to electrically connect to the source of electrosurgical energy for controlling the frequency, intensity, and/or mode of electrosurgical energy being delivered to the electrocautery electrode. The electrosurgical pencil further includes a frequency controller slidably supported on the housing. The frequency controller is configured to selectively actuate the voltage divider network(s) and provide a tactile feedback to a user of the electrosurgical pencil as the frequency controller is moved relative to the housing.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present disclosure are described herein with reference to the drawings wherein:



FIG. 1 is a perspective view of an electrosurgical pencil in accordance with the present disclosure;



FIG. 2A is a partially exploded, perspective view of the proximal end of the electrosurgical pencil of FIG. 1;



FIG. 2B is a partially exploded, perspective view of the distal end of the electrosurgical pencil of FIG. 1;



FIG. 3 is an exploded perspective view of the electrosurgical pencil of FIGS. 1 and 2;



FIG. 4 is a partially exploded, side elevational view of an alternative embodiment of the electrosurgical pencil of FIGS. 1-3;



FIG. 5 is a top plan view of an electrosurgical pencil according to another embodiment of the present disclosure;



FIG. 6 is a side elevational view of the electrosurgical pencil of FIG. 5;



FIG. 7 is a front perspective view of a distal end portion of an electrosurgical pencil according to yet another embodiment of the present disclosure;



FIG. 8 is a front perspective view of a distal end portion of an electrosurgical pencil according to still another embodiment of the present disclosure;



FIG. 9 is an enlarged perspective view of a portion of an electrosurgical pencil illustrating a set of exemplary switches disposed thereon;



FIG. 10 is an enlarged perspective view of a portion of an electrosurgical pencil illustrating another set of exemplary switches disposed thereon;



FIG. 11 is a perspective view of the switch of FIG. 10; and



FIG. 12 is a schematic illustration of a voltage divider network according to an embodiment of the present disclosure.





DETAILED DESCRIPTION

Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings. As used herein, the term “distal” refers to that portion which is further from the user while the term “proximal” refers to that portion which is closer to the user or surgeon. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.


In general, the present disclosure is directed to an electrosurgical pencil including an electrocautery electrode and at least one VDN electrically connected to a source of electrosurgical energy for controlling at least one of a frequency, an intensity, and a mode of electrosurgical energy being delivered to the electrocautery electrode.



FIG. 1 sets forth a perspective view of an electrosurgical pencil constructed in accordance with one embodiment of the present disclosure and generally referenced by numeral 10. While the following description will be directed towards electrosurgical pencils for the purposes of illustration, the features and concepts (or portions thereof) of the present disclosure can be applied to any electrosurgical type instrument, e.g., forceps, suction coagulator, vessel sealers, etc.


As seen in FIGS. 1-3, electrosurgical pencil 10 includes an elongated housing 2 configured and adapted to support a blade receptacle 4 at a distal end 3 thereof which, in turn, receives a replaceable electrocautery end effector 6 in the form of a loop and/or blade therein. Electrocautery blade 6 is understood to include a planar blade, a loop, a needle and the like. A distal end portion 8 of blade 6 extends distally from receptacle 4 while a proximal end portion 11 (see FIG. 3) of blade 6 is retained within distal end 3 of housing 2. Electrocautery blade 6 may be fabricated from any suitable conductive type material, such as, for example, stainless steel, or is coated with an electrically conductive material.


As shown, electrosurgical pencil 10 is coupled to a conventional electrosurgical generator “G” via a cable 12. Cable 12 includes a transmission wire 14 (see FIG. 3), which electrically interconnects electrosurgical generator “G” with proximal end portion 11 of electrocautery blade 6. Cable 12 further includes control wires 16, which electrically interconnect mode activation switches (as will be described in greater detail below), supported on an outer surface 7 of housing 2, with electrosurgical generator “G”. For the purposes herein the terms “switch” or “switches” includes electrical actuators, mechanical actuators, electro-mechanical actuators (rotatable actuators, pivotable actuators, toggle-like actuators, buttons, etc.) or optical actuators.


Turning back to FIGS. 1-3, as mentioned above, electrosurgical pencil 10 further includes at least one activation switch. In the illustrated embodiment, electrosurgical pencil 10 includes three activation switches 24a-24c, each of which are supported on an outer surface 7 of housing 2. Each activation switch 24a-24c is operatively connected to a location on a tactile element 26a-26c (e.g., a snap-dome is shown) which, in turn, controls the transmission of RF electrical energy supplied from generator “G” to electrosurgical blade 6. More particularly, tactile elements 26a-26c are operatively connected to a voltage divider network 27 (hereinafter “VDN 27”), which forms a switch closure (e.g., here shown as a film-type potentiometer). For the purposes herein, the term “voltage divider network” relates to any known form of resistive, capacitive or inductive switch closure (or the like) that determines the output voltage across a voltage source (e.g., one of two impedances) connected in series. A “voltage divider” as used herein relates to a number of resistors connected in series that are provided with taps at certain points to make available a fixed or variable fraction of the applied voltage.


In use, depending on which activation switch 24a-24c is depressed a respective switch 26a-26c is pressed into contact with VDN 27 and a characteristic signal is transmitted to electrosurgical generator “G” via control wires 16. Control wires 16a-16c are electrically connected to switches 26a-26c via a terminal 15 (see FIGS. 2 and 3) operatively connected to VDN 27. In embodiments, electrosurgical generator “G” may be used in conjunction with the device wherein generator “G” includes a circuit for interpreting and responding to the VDN settings.


Activation switches 24a-24c are configured and adapted to control the mode and/or “waveform duty cycle” to achieve a desired surgical intent. For example, first activation switch 24a can be set to deliver a characteristic signal to electrosurgical generator “G” that in turn transmits a duty cycle and/or waveform shape that produces a cutting and/or dissecting effect/function. Meanwhile, second activation switch 24b can be set to deliver a characteristic signal to electrosurgical generator “G” that in turn transmits a duty cycle and/or waveform shape that produces a blending effect/function (e.g., a combination of a dissecting and a hemostatic effect/function). Finally, third activation switch 24c can be set to deliver a characteristic signal to electrosurgical generator “G” that in turn transmits a duty cycle and/or waveform shape that produces a hemostatic effect/function.


Fourth control wire 16d (i.e., a return control wire) is connected to proximal end 11 of electrocautery blade 6. This prevents electrosurgical current, induced in control wires 16a-16c, from flowing through activation switches 24a-24c to electrocautery blade 6. This in turn, increases the longevity and life of switches 24a-24c.


Electrosurgical pencil 10 further includes an intensity controller 28 slidingly supported on housing 2. Intensity controller 28 includes a pair of nubs 29a, 29b, which are slidingly supported, one each, in respective guide channels 30a, 30b, formed in outer surface 7 of housing 2 on either side of activations switches 24a-24c. By providing nubs 29a, 29b on either side of activation switches 24a-24c, controller 28 can be easily manipulated by either hand of the user or the same electrosurgical pencil can be operated by a right-handed or a left-handed user.


In embodiments, intensity controller 28 may be a slide potentiometer wherein nubs 29a, 29b have a first position (e.g., proximal-most position closest to cable 12) corresponding to a relative low intensity setting, a second position (e.g., a distal-most position closest to electrocautery end effector 6) corresponding to a relative high intensity setting, and a plurality of intermediate positions corresponding to intermediate intensity settings. In embodiments, the intensity settings from proximal end to distal end may be reversed (e.g., high to low). Nubs 29a, 29b of intensity controller 28 and corresponding guide channels 30a, 30b may be provided with a series of cooperating discreet or dented positions defining a series of positions (e.g., five) to allow easy selection of the output intensity from the low intensity setting to the high intensity setting. The series of cooperating discreet or detented positions also provide the surgeon with a degree of tactile feedback. As best seen in FIG. 2, intensity controller 28 can include a series of indicia 31 provided thereon, which are visible through guide channels 30a, 30b. Indicia 31 may be a series of numbers (e.g., numbers 1-5) that reflect the level of intensity that is to be transmitted. Alternatively, level indicators may be printed alongside the sides of guide channels 30a, 30b along which nubs 29a, 29b slide.


Intensity controller 28 is configured and adapted to adjust the power parameters (e.g., voltage, power and/or current intensity) and/or the power verses impedance curve shape to affect the perceived output intensity. For example, the greater intensity controller 28 is displaced in a distal direction the greater the level of the power parameters transmitted to electrocautery blade 6. Conceivably, current intensities can range from about 60 mA to about 240 mA when using an electrosurgical blade and having a typical tissue impedance of about 2K ohms. An intensity level of 60 mA provides very light and/or minimal cutting/dissecting/hemostatic effects. An intensity level of 240 mA provides very aggressive cutting/dissecting/hemostatic effects. Accordingly, the optimal range of current intensity is from about 100 mA to about 200 mA at 2K ohms.


In embodiments, the intensity settings are preset and selected from a look-up table based on a choice of electrosurgical instruments/attachments, desired surgical effect, surgical specialty and/or surgeon preference. The selection may be made automatically or selected manually by the user. The intensity values may be predetermined or adjusted by the user.


Electrosurgical pencil 10 further includes a frequency controller 35 slidingly supported on housing 2. Frequency controller 35 includes a nub 36 that is slidingly supported in a guide channel 37 formed in outer surface 7 of housing 2 proximal to activation switches 24a-24c.


In embodiments, frequency controller 35 may be a slide potentiometer wherein nub 36 has a first position (e.g., a proximal-most position closest to cable 12) corresponding to a relative low frequency setting, a second position (e.g., a distal-most position closest to electrocautery end effector 6) corresponding to a relatively high frequency setting, and a plurality of intermediate positions corresponding to intermediate frequency settings. Any one of the plurality of intermediate positions may correspond to the “park” position, as discussed above, that corresponds to a standard and/or pre-determined frequency setting.


In embodiments, nub 36 of frequency controller 35 and corresponding guide channel 37 may be provided with a series of cooperating discreet or dented positions defining a series of positions (e.g., five positions) to allow easy selection of the output frequency from the low frequency setting to the high frequency setting. The series of cooperating discreet or detented positions also provide the surgeon with a degree of tactile feedback. As best seen in FIG. 2, frequency controller 35 may include a series of indicia 38 provided thereon that are visible through guide channel 37, Indicia 38 may be a series of numbers (e.g., numbers 1-5) that reflect the level of frequency that is to be transmitted. Alternatively, level indicators may be printed alongside the side of guide channel 37 along which nub 36 slides.


Frequency controller 35 is configured and adapted to adjust the frequency parameter to affect the perceived RF output of generator “G.” By way of example, the greater frequency controller 35 is displaced in a distal direction the greater the level of the frequency parameter of the energy transmitted to electrocautery blade 6. As frequency is increased from about 470 kHz to about 1 MHz, thermal penetration decreases and arc length increases. Thus, a frequency level of 470 kHz provides for deep thermal penetration and a relatively short arc length while a frequency level of 1 MHz provides for superficial thermal penetration and a relatively long arc length. Accordingly, the user would utilize the frequency controller 35 to select the lower 470 kHz level of frequency if deep thermal penetration is required to provide the desired surgical effect without the need for a long arc length. Conversely, the user would utilize the frequency controller 35 to select the higher 1 MHz level of frequency if superficial thermal penetration and a longer arc length are required to provide the desired surgical effect.


In embodiments, the frequency settings may be preset and selected from a look-up table based on a choice of electrosurgical instruments/attachments, desired surgical effect, surgical specialty and/or surgeon preference. The selection may be made automatically or selected manually by the user. The frequency values may be predetermined or adjusted by the user.


With reference to FIG. 12, in accordance with an embodiment of the present disclosure, a voltage divider network (VDN) 27, for inter-connecting control wires 16a-16d to activation and electrosurgical switches 24a-24c and electrocautery power wire 14 to blade 6, is shown. VDN 27 includes a first transmission line 27a, electrically connected to one of control wires 16a-16d, to operate the various frequencies of electrosurgical pencil 10. VDN 27 includes a second transmission line 27b, electrically connected to one of control wires 16a-16d, to operate the various modes of electrosurgical pencil 10. VDN 27 includes a third transmission line 27c, electrically connected to one of control wires 16a-16d, to operate the various intensities of electrosurgical pencil 10. VDN 27 includes a fourth and fifth transmission line 27d and 27e, respectively, to apply a voltage across VDN 27. For example, fourth transmission line 27d may be isolated or grounded and transmission line 27e may transmit +5 volts.


In the illustrated embodiment, VDN 27 includes a plurality of resistors “R1” (e.g., 6 resistors), connected in a first series between transmission line 27d and transmission line 27e. In embodiments, resistors “R1” may combine to total about 1000 ohms of resistance. The first series of resistors “R1” is selectively actuatable by intensity controller 28 at a plurality of locations along the length thereof. These locations along the length of the first series of resistors “R1” are represented as a first set of switches “S1a-S1e.” In operation, as intensity controller 28 is moved along the first series of resistors “R1,” the value of the resistance of the first series of resistors “R1” is changed. The change of the resistance value of the first series of resistors “R1” is represented in FIG. 12 as the closing of a switch “S1a-S1e.” The change in resistance of the first series of resistors “R1” causes a change in voltage that is measured by electrosurgical generator “G” that, in turn, transmits an RF energy at a unique intensity to electrosurgical pencil 10.


When intensity controller 28 is moved to a third of middle position along the first series of resistors “R1,” corresponding to switch “S1c,” a “park position” is established in which no resistance is present. Accordingly, electrosurgical generator “G” measures a maximum voltage value of zero volts.


VDN 27 further includes a plurality of resistors “R2” (e.g., four resistors), connected in a second series between transmission line 27d and transmission line 27e. In embodiments, resistors “R2” may combine to total about 1000 ohms of resistance. The second series of resistors “R2” is selectively actuatable by any one of activation buttons 24a-24c. The location where the second series of resistors “R2” is actuated is represented by as a second set of switches “S2a-S2c.” In operation, depending which switch “S2a-S2c” is closed, by actuation of a particular activation switch 24a-24c, the value of the resistance of the second series of resistors “R2” is changed. The change of the resistance value of the second series of resistors “R2” causes a change in voltage that is measured by electrosurgical generator “G” that, in turn, activates and transmits a different mode of operation to electrosurgical pencil 10.


VDN 27 further includes a plurality of resistors “R3” (e.g., six resistors), connected in a third series between transmission line 27d and transmission line 27e. In embodiments, resistors “R3” may combine to total about 1000 ohms of resistance. The third series of resistors “R3” is selectively actuatable by frequency controller 35 at a plurality of locations along the length thereof. These locations along the length of the third series of resistors “R3” are represented as a third set of switches “S3a-S3e.” In operation, as frequency controller 35 is moved along the third series of resistors “R3,” the value of the resistance of the third series of resistors “R3” is changed. The change of the resistance value of the third series of resistors “R3” is represented in FIG. 12 as the closing of a switch “S3a-S3e.” The change in resistance of the third series of resistors “R3” causes a change in voltage that is measured by electrosurgical generator “G” that, in turn, transmits an RF energy at a unique intensity to electrosurgical pencil 10.


When frequency controller 35 is moved to a third of middle position along the third series of resistors “R3,” corresponding to switch “S3c,” a “park position” is established in which no resistance is present. Accordingly, electrosurgical generator “G” measures a maximum voltage value of zero volts. In embodiments, electrosurgical generator “G” may interpret a measured voltage value of zero volts as a signal to transmit RF energy at a standard and/or predetermined level to electrosurgical pencil 10.


In operation, if more than one activation button 24a-24c is actuated simultaneously (i.e., a “multi-key activation” scenario), electrosurgical generator “G” will measure a unique voltage that does not correspond to any preset known voltage stored therein and thus does not activate or transmit any mode of operation to electrosurgical pencil 10.


In use, depending on which activation button 24a-24c is depressed a respective switch 26a-26c is pressed into contact with VDN 27. The depressed activation button 24a-24c electrically engages juxtaposed electrical contacts of VDN 27 thereby changing the value of the second series of resistors “R2.” Depending on the value of the resistance of the second series of resistors “R2” a characteristic voltage is generated and measured by electrosurgical generator “G” via transmission line 27b and one of control wires 16a-16d. (See FIGS. 3 and 12).


In order to vary the intensity of the power parameters of electrosurgical pencil 10, the surgeon displaces intensity controller 28 as described above, thereby changing the value of the first series of resistors “R1.” Depending on the value of the resistance of the first series of resistors “R1,” a characteristic voltage is generated and measured by electrosurgical generator “G” via third transmission line 27c and one of control wires 16a-16d. (See FIGS. 3 and 12).


In embodiments, a VDN (not explicitly shown) separate from VDN 27 may be provided for any one of the first series, second series, and third series of resistors “R1,” “R2,” and “R3” or any combination thereof. In this configuration, an independent voltage comparator circuit (not explicitly shown) may be provided to permit bi-directional communication between two or more VDNs. In this manner, each VDN may reference the voltage and, thus, the unique mode/frequency/duty cycle of the RF energy being transmitted to electrocautery blade 6.


Also as depicted in FIG. 12, transmission wire 14 is isolated from or otherwise completely separate from VDN 27. In particular, transmission wire 14 extends directly from the RF input or generator “G” to the RF output or to electrocautery blade 6.


The hemostatic effect/function may be defined as having waveforms with a duty cycle from about 1% to about 12%. The blending effect/function may be defined as having waveforms with a duty cycle from about 12% to about 75%. The cutting and/or dissecting effect/function may be defined as having waveforms with a duty cycle from about 75% to about 100%. It is important to note that these percentages are approximated and may be customized to deliver the desired surgical effect for various tissue types and characteristics.


In operation and depending on the particular electrosurgical function desired, the surgeon depresses one of activation switches 24a-24c, in the direction indicated by arrow “Y” (see FIG. 1) thereby urging a corresponding switch 26a-26c against VDN 27 and thereby transmitting a respective characteristic signal to electrosurgical generator “G”. For example, the surgeon can depress activation switch 24a to perform a cutting and/or dissecting function, activation switch 24b to perform a blending function, or activation switch 24c to perform a hemostatic function. In turn, generator “G” transmits an appropriate waveform output to electrocautery blade 6 via transmission wire 14.


In order to vary the intensity of the power parameters of electrosurgical pencil 10, the surgeon displaces intensity controller 28 in the direction indicated by double-headed arrow “X”. As mentioned above, the intensity can be varied from approximately 60 mA for a light effect to approximately 240 mA for a more aggressive effect. For example, by positioning nubs 29a, 29b of intensity controller 28 closer to the proximal-most end of guide channels 30a, 30b (i.e., closer to cable 12) a lower intensity level is produced and by positioning nubs 29a, 29b of intensity controller 28 closer to the distal-most end of guide channels 30a, 30b (i.e., closer to electrocautery end effector 6) a larger intensity level is produced resulting in a more aggressive effect being produced. In embodiments, when nubs 29a, 29b of intensity controller 28 are positioned at the proximal-most end of guide channels 30a, 30b, VDN 27 is set to a null and/or open position. Electrosurgical pencil 10 may be shipped with intensity controller 28 set to the null and/or open positions. In embodiments, the frequency settings from proximal end to distal end may be reversed (e.g., high to low).


In order to vary the frequency of the energy transmitted by electrosurgical generator “G” to pencil 10, the surgeon displaces frequency controller 35 in the direction indicated by double headed arrow “X.” As mentioned above, the frequency may be varied from about 1 MHz for superficial thermal penetration and a long arc length and 470 kHz for deep thermal penetration and a short are length. For example, by positioning nub 36 of frequency controller 35 closer to the distal-most end of guide channel 37 (i.e., closer to electrocautery end effector 6) a higher frequency level is produced and by positioning nub 36 of frequency controller 35 closer to the distal-most end of guide channel 37 (i.e., closer to cable 12) a lower frequency level is produced resulting in deeper thermal penetration. In embodiments, when nub 36 of frequency controller 35 is positioned at the proximal-most end of guide channel 37, VDN 27 is set to a null and/or open position. Electrosurgical pencil 10 may be shipped with frequency controller 35 set to the null and/or open position.


In embodiments, intensity controller 28 may control the intensity level of the electrosurgical energy transmitted by all three activation switches 24a-24c, simultaneously. That is, as nubs 29a, 29b of intensity controller 28 are positioned relative to guide channels 30a, 30b, the intensity level of the electrosurgical energy transmitted to all three activation switches 24a-24c is set to the same value of slide potentiometer or intensity controller 28. Similarly, frequency controller 35 may control the frequency level of the electrosurgical energy transmitted by all three activation switches 24a-24c, simultaneously. That is, as nub 36 of frequency controller 35 is positioned relative to guide channel 37, the frequency level of the electrosurgical energy transmitted to all three activation switches 24a-24c is set to the same value of slide potentiometer or frequency controller 35.


As a safety precaution, when electrosurgical pencil 10 is changed from one mode to another, intensity controller 28 and frequency controller 35 may be configured such that each must be reset (i.e., nubs 29a, 29b, 36 re-positioned to the proximal-most end of guide channels 30a, 30b, 37, thus setting VDN 27 to the null and/or open position). After being reset, intensity controller 28 and frequency controller 35 may be adjusted as needed to the desired and/or necessary intensity level and frequency level respectively, for the mode selected.


In embodiments, VDN 27 may also include an algorithm that stores the last intensity level and/or frequency level setting for each mode. In this manner, intensity controller 28 and frequency controller 35 do not have to be reset to the last operative value when the particular mode is re-selected.


The combination of placing VDN 27 and fourth control wire 16d in electrosurgical pencil 10 essentially places the entire resistor network of the electrosurgical system (e.g., electrosurgical pencil 10 and the source of electrosurgical energy “G”) within electrosurgical pencil 10. Conventional electrosurgical systems typically include a current limiting resistor disposed within the electrosurgical pencil, for activating the electrosurgical pencil, and a second resistor network disposed in the source of electrosurgical energy, for controlling the intensity of the electrosurgical energy transmitted. In accordance with the present disclosure, all three resistor networks are disposed within electrosurgical pencil 10, namely, the first resistor network as evidenced by frequency controller 35, the second resistor network as evidenced by activation switches 24a-24c, and the third resistor network as evidenced by intensity controller 28.


As described above, intensity controller 28 and frequency controller 35 can be configured and adapted to provide a degree of tactile feedback. Alternatively, audible feedback can be produced from intensity controller 28 (e.g., a “click”), from electrosurgical energy source “G” (e.g., a “tone”) and/or from an auxiliary sound-producing device such as a buzzer (not explicitly shown).


As seen in FIGS. 1 and 3, intensity controller 28 and activation switches 24a-24c are supported in a recess 9 formed in outer wall 7 of housing 2. In embodiments, activation switches 24a-24c may be positioned at a location where the fingers of the surgeon would normally rest when electrosurgical pencil 10 is held in the hand of the surgeon while nubs 29a, 29b of intensity controller 28 are placed at locations that would not be confused with activation switches 24a-24c. Alternatively, nubs 29a, 29b of intensity controller 28 are positioned at locations where the fingers of the surgeon would normally rest when electrosurgical pencil 10 is held in the hand of the surgeon while activation switches 24a-24c are placed at locations that would not be confused with nubs 29a, 29b of intensity controller 28. In addition, recess 9 formed in outer wall 7 of housing 2 advantageously minimizes inadvertent activation (e.g., depressing, sliding and/or manipulating) of activation switches 24a-24c and intensity controller 28 while in the surgical field and/or during the surgical procedure. In embodiments, frequency controller 35 may be embodied in a “two-nub” configuration substantially similar to intensity controller 28. Likewise, intensity controller 28 may be embodied in a “single-nub” configuration substantially similar to frequency controller 35. In this configuration, the placement of frequency controller 35 and intensity controller 28 may be reversed. That is, frequency controller 35 may be supported within outer surface 7 of housing 2 on either side of activations switches 24a-24c (e.g., in guide channels 30a and 30b) and intensity controller 28 may be slidingly supported proximal to recess 9 (e g., in guide channel 37). Additionally or alternatively, a second guide channel (not explicitly shown) may be formed in outer surface 7 of housing 2 proximal to activation switches 24a-24c. The second guide channel may be positioned in parallel to guide channel 37 and in spaced relation thereto (e.g., similar to guide channels 30a and 30b) to cooperatively support a “two-nub” embodiment of either intensity controller 28 or frequency controller 35.


As seen in FIG. 3, electrosurgical pencil 10 includes a molded/contoured hand grip 5, which substantially surrounds the distal and proximal ends of housing 2 as well as the underside of housing 2. Contoured hand grip 5 is shaped and dimensioned to improve the handling of electrosurgical pencil 10 by the surgeon. Accordingly, less pressure and gripping force is required to use and/or operate electrosurgical pencil 10 thereby potentially reducing the fatigue experienced by the surgeon and to prevent movement of electrosurgical pencil 10 during proximal and distal adjustments of nubs 29a and 29b.


As seen in FIG. 4, an alternative embodiment of electrosurgical pencil 10 is shown generally as 100. Electrosurgical pencil 100 is similar to electrosurgical pencil 10 and will only be discussed in detail to the extent necessary to identify differences in construction and operation. As seen in FIG. 4, electrosurgical pencil 100 includes a plurality of activation switches 124a-124c, each of which are supported on an outer surface 107 of housing 102. Each activation switch 124a-124c is operatively connected to a respective switch 126a-126c which, in turn, controls the transmission of RF electrical energy supplied from generator “G” to electrosurgical blade 106. More particularly, switches 126a-126c are electrically coupled to control loop 116 and are configured to close and/or complete control loop 116 to thereby permit RF energy to be transmitted to electrocautery blade 106 from electrosurgical generator “G.”


Activation switches 124a-124c are configured and adapted to control the mode and/or “waveform duty cycle” to achieve a desired surgical intent in the same manner as activation switches 24a-24c of electrosurgical pencil 10 described above.


In operation and depending on the particular electrosurgical function desired, the surgeon depresses one of activation switches 124a-124c, in the direction indicated by arrow “Y” thereby closing a corresponding switch 126a-126c and closing and/or completing control loop 116. For example, the surgeon can depress activation switch 124a to perform a cutting or dissecting function, activation switch 124b to perform a dissecting/hemostatic function, or activation switch 124c to perform a hemostatic function. In turn, generator “G” transmits an appropriate waveform output to electrocautery blade 106 via transmission wire 114.


In an alternative embodiment, as seen in FIGS. 5 and 6, sliding frequency controller 135 has been replaced with frequency controllers 235a, 235b in the form of dial-like VDNs. Frequency controllers 235a, 235b function to vary the frequency of the RF energy waveform via a rotation of dial controllers 235a, 235b in either a clockwise or counter-clockwise direction as indicated by double headed arrow “Z”. As seen in FIGS. 5 and 6, dial controllers 235a, 235b are disposed externally of housing 102, however, dial controllers 235a, 235b may be disposed within housing 102 with only a portion projecting therefrom for manipulation by the surgeon. In embodiments, frequency controllers 235a, 235b may be a single controller having a pair of opposed knobs/dials provided, one each, on either side of housing 102. In this manner, the frequency can be controlled from either side of electrosurgical pencil 100. In the illustrated embodiment, frequency controllers 235a, 235b are shown positioned adjacent activation switches 124a-124c for illustrative purposes only and may be positioned anywhere along housing 102 (e.g., proximal or distal to activation switches 124a-124c). Further, sliding intensity controllers 128a, 128b may be slidably supported in guide channels 130a and 130b. Alternatively, intensity controllers 128a, 128b may be configured in either a “single-nub” or “double-nub” configuration and slidably supported in a guide channel (not explicitly shown) proximal or distal to activation switches 124a-124c.


In alternative embodiments, sliding intensity controllers 128a, 128b may be replaced with dial-like VDNs (not explicitly shown). In this configuration, sliding frequency controller 135 may be configured in either a “single-nub” or “double-nub” configuration and slidably supported in a guide channel (not explicitly shown) proximal or distal to activation switches 124a-124c.


Since the surgeon has a number of controls at his finger tips, the surgeon is able to create a pallet of varying therapeutic effects ranging from a pure “cutting” effect to a pure “coagulating” effect and a number of effects in between at a number of intensities and/or frequencies. Moreover, with some pre-setting of the electrosurgical energy source “G”, electrosurgical pencil 100 will have all the useful settings available to the surgeon within the sterile field. Accordingly, it is not necessary that the surgeon interact with hardware outside the sterile field (e.g., electrosurgical energy source “G”) once the surgical procedure begins thus allowing the surgeon to focus attention on the surgical procedure.


While embodiments of electrosurgical pencils according to the present disclosure have been described herein, it is not intended that the disclosure be limited there and the above description should be construed as merely exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.


For example, as seen in FIG. 7, an alternative embodiment of an electrosurgical pencil is shown generally as 200. Electrosurgical pencil 200 is similar to electrosurgical pencil 10 and/or 100 and will only be discussed in detail to the extent necessary to identify differences in construction and operation. As seen in FIG. 7, electrosurgical pencil 200 includes a plurality of nubs 229a-229c, which are slidingly supported, one each, in respective guide channels 230a-230c, formed in outer surface 7 of housing 2, at a position proximal of activation switches 24a-24c. In embodiments, each nub 229a-229c is operatively engaged with a slide potentiometer and may be configured and adapted to adjust the frequency parameter to affect the perceived RF output of generator “G.” In an alternative embodiment, each nub 229a-229c is operatively engaged with a slide potentiometer and may be configured and adapted to adjust the power parameters and/or the power verses impedance curve shape to affect the perceived output intensity.


Accordingly, electrosurgical pencil 200 can be configured such that each activation switch 24a-24c is a separate mode, such as, for example, activation switch 24a can be set such that electrosurgical pencil 200 performs “division” when depressed, activation switch 24b can be set such that electrosurgical pencil 200 performs “division with hemostasis” when depressed, and activation switch 24c can be set such that electrosurgical pencil 200 performs “hemostasis” when depressed. In addition, each of nubs 229a-229c is in operative engagement with a corresponding activation switch 24a-24c such that the power/frequency for each mode of operation of electrosurgical pencil 200 can be independently adjusted.


As seen in FIG. 8, nubs 229a-229c of electrosurgical pencil 200 have been replaced with toggles 231a-231c operatively engaged with a respective activation switch 24a-24c. Each toggle 231a-231c can be operatively engaged with a rocker-type switch (not shown) or a rotational dial (not shown) in place of the slide-type potentiometer described above. Further, toggles 231a-231c may be configured and adapted to adjust the power parameters or, alternatively, the frequency parameters to adjust the perceived output intensity and perceived output frequency, respectively.


Turning now to FIGS. 9-11, an electrosurgical pencil, in accordance with still another embodiment of the present disclosure, is generally designated as 300. Electrosurgical pencil 300 is similar to electrosurgical pencil 10 and/or 100 and will only be discussed in detail to the extent necessary to identify differences in construction and operation. As seen in FIGS. 9 and 10, nubs 29a, 29b have been replaced with a dial 329 rotatably supported in an aperture 330 formed in outer surface 7 of housing 2. In embodiments, dial 329 may be positioned forward of activation switch 24a such that dial 329 is not inadvertently rotated during the depression of any one of activation switches 24a-24c. Further, dial 329 may be configured and adapted to adjust the power parameters or, alternatively, the frequency parameters to adjust the perceived output intensity and perceived output frequency, respectively.


As seen in FIG. 9, a side surface 331 of dial 329 can be provided with indicia and/or markings “M” in the form of a scale and/or other form of gradient to indicate to the surgeon the degree of and/or level of power/frequency at which electrosurgical pencil 300 is set.


As seen in FIGS. 10 and 11, windows 332 can be formed on either side of dial 329 in outer surface 7 of housing 2. As seen in FIG. 11, windows 332 provide the surgeon with visibility to indicia “M” provided on stub 333 extending from the central axis of dial 329. Indicia “M” can be in the form of numbers, letters, colors and, as seen in FIGS. 10 and 11, an enlarging gradient. In embodiments, each dial 329 may perform a dual function, for example, dial 329 can be rotated to set the desired power/frequency level and can be pressed down to activate the electrosurgical pencil with the desired mode.


In embodiments, electrosurgical pencil 100 may include a smart recognition technology that communicates with the generator to identify the electrosurgical pencil and communicate various surgical parameters that relate to treating tissue with electrosurgical pencil 100. For example, the electrosurgical pencil 100 may be equipped with a bar code or Aztec code that is readable by the generator and presets the generator to default parameters associated with treating tissue with electrosurgical pencils. The bar code or Aztec code may also include programmable data that is readable by the generator and programs the generator to specific electrical parameters prior to use.


Other smart recognition technology may be included that enables the generator to determine the type of instrument being utilized or to insure proper attachment of the instrument to the generator as a safety mechanism. One such safety connector is identified in U.S. Pat. No. 7,131,860, the entire contents of which are incorporated herein by reference. For example, in addition to the smart recognition technology described above, such a safety connector can include a plug or male portion operatively associated with the electrosurgical pencil and a complementary socket or female portion operatively associated with the electrosurgical generator. Socket portion is “backward compatible” to receive connector portions of electrosurgical pencils disclosed therein and to receive connector portions of prior electrosurgical instruments.


While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. An electrosurgical pencil, comprising: an elongated housing;an electrocautery electrode supported within the housing and extending distally from the housing, the electrocautery electrode configured to connect to a source of electrosurgical energy; andat least one voltage divider network supported on the housing, the at least one voltage divider network electrically connected to the source of electrosurgical energy and configured to transmit at least one characteristic signal to the source of electrosurgical energy for controlling at least one of a frequency, an intensity, and a mode of electrosurgical energy delivered by the source of electrosurgical energy to the electrocautery electrode, the at least one voltage divider network configured to control the frequency of the electrosurgical energy separately from the mode of the electrosurgical energy.
  • 2. The electro surgical pencil according to claim 1, further including a plurality of activation switches supported on the housing, each activation switch configured to activate a particular mode of electrosurgical energy produced by the source of electrosurgical energy.
  • 3. The electrosurgical pencil according to claim 2, wherein the at least one voltage divider network includes at least one slide potentiometer operatively supported on the housing.
  • 4. The electrosurgical pencil according to claim 3, wherein the at least one slide potentiometer is configured to vary the frequency of electrosurgical energy delivered to the electrocautery electrode from a minimum of about 470 kHz to a maximum of about 1 MHz.
  • 5. The electrosurgical pencil according to claim 4, wherein the at least one slide potentiometer is configured to adjust the frequency of a waveform duty cycle corresponding to a particular mode of the electrosurgical energy.
  • 6. The electrosurgical pencil according to claim 5, wherein the at least one slide potentiometer is configured to provide a plurality of discreet frequency settings.
  • 7. The electrosurgical pencil according to claim 5, wherein the at least one slide potentiometer has a first position corresponding to a minimum frequency, a second position corresponding to a maximum frequency and a plurality of positions between the first and second positions corresponding to frequencies between the minimum and the maximum frequency.
  • 8. The electrosurgical pencil according to claim 4, wherein the at least one slide potentiometer is configured to selectively actuate the at least one voltage divider network to transmit the at least one characteristic signal to the source of electrosurgical energy for varying the frequency of electrosurgical energy delivered to the electrocautery electrode.
  • 9. The electrosurgical pencil according to claim 4, wherein the at least one slide potentiometer is configured to selectively actuate the at least one voltage divider network to transmit the at least one characteristic signal to the source of electrosurgical energy for varying the frequency of a waveform duty cycle corresponding to a particular mode of the electrosurgical energy.
  • 10. The electrosurgical pencil according to claim 3, wherein the at least one slide potentiometer is configured to control at least one of the intensity and the frequency of electrosurgical energy delivered to the electrocautery electrode.
  • 11. The electrosurgical pencil according to claim 10, wherein the at least one slide potentiometer comprises at least one nub extending from a surface thereof, wherein the at least one nub is configured to contact the at least one voltage divider network and adjust the at least one characteristic signal transmitted by the at least one voltage divider network as the at least one slide potentiometer is moved relative to the housing.
  • 12. The electrosurgical pencil according to claim 3, wherein the plurality of activation switches are configured to selectively actuate a first resistor network of the at least one voltage divider network, and wherein the at least one slide potentiometer is configured to selectively actuate at least one of a second resistor network and a third resistor network of the at least one voltage divider network.
  • 13. The electrosurgical pencil according to claim 3, wherein the at least one slide potentiometer is set to a minimum when the at least one slide potentiometer is placed at a first position and is set to a maximum when the at least one slide potentiometer is placed at a second position.
  • 14. The electrosurgical pencil according to claim 3, wherein the at least one slide potentiometer includes a pair of nubs slidably supported, one each, on either side of the plurality of activation switches such that the at least one slide potentiometer is operable from either side of the electrosurgical pencil.
  • 15. The electrosurgical pencil according to claim 3, wherein the at least one slide potentiometer is configured to selectively actuate the at least one voltage divider network to transmit the at least one characteristic signal to the source of electrosurgical energy for controlling the at least one of the intensity and the frequency of electro surgical energy delivered to the electrocautery electrode.
  • 16. The electrosurgical pencil according to claim 1, wherein the at least one voltage divider network is rotatably supported on the housing.
  • 17. The electrosurgical pencil according to claim 1, wherein the at least one voltage divider network is configured to provide analog frequency settings.
  • 18. The electro surgical pencil according to claim 1, wherein the plurality of activation switches are configured to selectively actuate the at least one voltage divider network to transmit the at least one characteristic signal to the source of electrosurgical energy for controlling the mode of electrosurgical energy delivered to the elecrocautery electrode.
  • 19. An electrosurgical pencil, comprising: an elongated housing;an electrocautery electrode supported within the housing and extending distally from the housing, the electrocautery electrode operable to connect to a source of electrosurgical energy;at least one voltage divider network supported on the housing, the at least one voltage divider network operable to electrically connect to the source of electrosurgical energy and configured to transmit at least one characteristic signal to the source of electrosurgical energy for controlling at least one of a frequency, a duty cycle, and an intensity of electrosurgical energy delivered to the electrocautery electrode by the source of electrosurgical energy; anda frequency controller slidably supported on the housing and configured to selectively actuate the at least one voltage divider network to transmit the at least one characteristic signal to the source of electrosurgical energy for controlling the frequency of the electrosurgical energy produced by the source of electrosurgical energy separately from the duty cycle.
  • 20. The electrosurgical pencil according to claim 19, further comprising a plurality of activation switches supported on the housing and configured for selective engagement with the at least one voltage divider network, each activation switch configured to selectively complete a control loop extending from the source of electrosurgical energy to the at least one voltage divider network upon actuation thereof.
  • 21. The electrosurgical pencil according to claim 20, wherein the plurality of activation switches define a first resistor network disposed within the housing, and wherein the frequency controller defines a second resistor network disposed within the housing.
  • 22. The electrosurgical pencil according to claim 19, further comprising an intensity controller slidably supported on the housing, wherein the intensity controller is configured to selectively actuate the at least one voltage divider network and provide a tactile feedback to a user of the electrosurgical pencil as the intensity controller is moved relative to the housing.
  • 23. The electrosurgical pencil according to claim 22, wherein the intensity controller is configured to selectively actuate the at least one voltage divider network to transmit the at least one characteristic signal to the source of electrosurgical energy for controlling the intensity of the electrosurgical energy produced by the source of electrosurgical energy.
  • 24. The electrosurgical pencil according to claim 19, wherein the frequency controller selectively actuates the at least one voltage divider network to transmit the at least one characteristic signal to the source of electrosurgical energy which in turn transmits a corresponding waveform frequency to the electrocautery electrode.
  • 25. The electrosurgical pencil according to claim 19, wherein the frequency controller has a first position corresponding to a minimum frequency of the electrosurgical energy, a second position corresponding to a maximum frequency of the electrosurgical energy and a plurality of positions between the first and second positions corresponding to frequencies between the minimum and the maximum frequency of the electrosurgical energy.
  • 26. An electrosurgical pencil, comprising: an elongated housing;an electrocautery electrode supported within the housing and extending distally from the housing, the electrocautery electrode configured to connect to a source of electrosurgical energy;at least one voltage divider network supported on the housing, the at least one voltage divider network electrically connected to the source of electrosurgical energy and configured to transmit at least one characteristic signal to the source of electrosurgical energy for controlling at least one of a frequency, an intensity, and a mode of electrosurgical energy delivered to the electrocautery electrode by the source of electrosurgical energy, the voltage divider network configured to control the frequency of the electrosurgical energy separately from the mode of the electrosurgical energy;a frequency controller slidably supported on the housing and configured to selectively actuate the at least one voltage divider network to transmit the at least one characteristic signal to the source of electrosurgical energy for controlling the frequency of the electrosurgical energy;an intensity controller slidably supported on the housing and configured to selectively actuate the at least one voltage divider network to transmit the at least one characteristic signal to the source of electrosurgical energy for controlling the intensity of the electrosurgical energy separately from the mode of the electrosurgical energy; anda plurality of activation switches supported on the housing, the plurality of activation switches configured to selectively actuate the at least one voltage divider network to transmit the at least one characteristic signal to the source of electrosurgical energy for controlling the mode of electrosurgical energy, each activation switch corresponding to a particular mode of electrosurgical energy produced by the source of electrosurgical energy.
  • 27. An electrosurgical pencil, comprising: an elongated housing;an electrocautery electrode supported within the housing and extending distally from the housing, the electrocautery electrode configured to connect to a source of electrosurgical energy; anda voltage divider network supported by the housing and electrically connected to the source of electrosurgical energy, the voltage divider network configured to transmit at least one characteristic signal to the source of electrosurgical energy upon actuation thereof for controlling electrosurgical energy delivered to the electrocautery electrode by the source of electrosurgical energy;at least one duty cycle controller supported on the housing and operably coupled to the voltage divider network, the at least one duty cycle controller configured to actuate the voltage divider network to select a duty cycle of the electrosurgical energy delivered to the electrocautery electrode; anda frequency controller supported on the housing and operably coupled to the voltage divider network, the frequency controller configured to actuate the voltage divider network to adjust the frequency of the electrosurgical energy delivered to the electrocautery electrode for each selected duty cycle.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Application Ser. No. 60/992,413 entitled “THERMAL PENETRATION AND ARC LENGTH CONTROLLABLE ELECTROSURGICAL PENCIL” filed Dec. 5, 2007 by Jason L. Craig, which is incorporated by reference herein.

US Referenced Citations (445)
Number Name Date Kind
2031682 Charles et al. Feb 1936 A
2102270 Hyams Dec 1937 A
2993178 Burger Jul 1961 A
3058470 Seeliger et al. Oct 1962 A
3219029 Richards et al. Nov 1965 A
3460539 Anhalt, Sr. Aug 1969 A
3494363 Jackson Feb 1970 A
3648001 Anderson et al. Mar 1972 A
3675655 Sittner Jul 1972 A
3699967 Anderson Oct 1972 A
3720896 Beierlein Mar 1973 A
3801766 Morrison, Jr. Apr 1974 A
3801800 Newton Apr 1974 A
3825004 Durden, III Jul 1974 A
3828780 Morrison, Jr. Aug 1974 A
3875945 Friedman Apr 1975 A
3902494 Haberlen et al. Sep 1975 A
3906955 Roberts Sep 1975 A
3911241 Jarrard Oct 1975 A
3967084 Pounds Jun 1976 A
3974833 Durden, III Aug 1976 A
4014343 Esty Mar 1977 A
4032738 Esty et al. Jun 1977 A
4034761 Prater et al. Jul 1977 A
4038984 Sittner Aug 1977 A
4112950 Pike Sep 1978 A
D253247 Gill Oct 1979 S
4232676 Herczog Nov 1980 A
4314559 Allen Feb 1982 A
4427006 Nottke Jan 1984 A
4443935 Zamba et al. Apr 1984 A
4459443 Lewandowski Jul 1984 A
4463234 Bennewitz Jul 1984 A
4463759 Garito et al. Aug 1984 A
4492231 Auth Jan 1985 A
4492832 Taylor Jan 1985 A
4545375 Cline Oct 1985 A
4562838 Walker Jan 1986 A
4589411 Friedman May 1986 A
4593691 Lindstrom et al. Jun 1986 A
4595809 Pool Jun 1986 A
4606342 Zamba et al. Aug 1986 A
4619258 Pool Oct 1986 A
4620548 Hasselbrack Nov 1986 A
4625723 Altnether et al. Dec 1986 A
4640279 Beard Feb 1987 A
4642128 Solorzano Feb 1987 A
4655215 Pike Apr 1987 A
4657016 Garito et al. Apr 1987 A
4683884 Hatfield et al. Aug 1987 A
4688569 Rabinowitz Aug 1987 A
4701193 Robertson et al. Oct 1987 A
4712544 Ensslin Dec 1987 A
4735603 Goodson et al. Apr 1988 A
4754754 Garito et al. Jul 1988 A
4785807 Blanch Nov 1988 A
4788977 Farin et al. Dec 1988 A
4794215 Sawada et al. Dec 1988 A
4796623 Krasner et al. Jan 1989 A
4803323 Bauer et al. Feb 1989 A
4811733 Borsanyi et al. Mar 1989 A
4827911 Broadwin et al. May 1989 A
4827927 Newton May 1989 A
D301739 Turner et al. Jun 1989 S
4846790 Hornlein et al. Jul 1989 A
4850353 Stasz et al. Jul 1989 A
4860745 Farin et al. Aug 1989 A
4862889 Feucht Sep 1989 A
4862890 Stasz et al. Sep 1989 A
4869715 Sherburne Sep 1989 A
4872454 DeOliveira et al. Oct 1989 A
4876110 Blanch Oct 1989 A
4886060 Wiksell Dec 1989 A
4901719 Trenconsky et al. Feb 1990 A
4903696 Stasz et al. Feb 1990 A
4909249 Akkas et al. Mar 1990 A
4911159 Johnson et al. Mar 1990 A
4916275 Almond Apr 1990 A
4919129 Weber, Jr. et al. Apr 1990 A
4921476 Wuchinich May 1990 A
4922903 Welch et al. May 1990 A
4931047 Broadwin et al. Jun 1990 A
4949734 Bernstein Aug 1990 A
4969885 Farin Nov 1990 A
4986839 Wertz et al. Jan 1991 A
4988334 Hornlein et al. Jan 1991 A
5000754 DeOliveira et al. Mar 1991 A
5011483 Sleister Apr 1991 A
5013312 Parins et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5026368 Adair Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5035696 Rydell Jul 1991 A
5046506 Singer Sep 1991 A
5055100 Olsen Oct 1991 A
5071418 Rosenbaum Dec 1991 A
5074863 Dines Dec 1991 A
5076276 Sakurai et al. Dec 1991 A
5088997 Delahuerga et al. Feb 1992 A
5098430 Fleenor Mar 1992 A
5100402 Fan Mar 1992 A
5108391 Flachenecker et al. Apr 1992 A
5133714 Beane Jul 1992 A
5147292 Kullas et al. Sep 1992 A
D330253 Burek Oct 1992 S
5154709 Johnson Oct 1992 A
5160334 Billings et al. Nov 1992 A
5162044 Gahn et al. Nov 1992 A
5167659 Ohtomo et al. Dec 1992 A
5178012 Culp Jan 1993 A
5178605 Imonti Jan 1993 A
5190517 Zieve et al. Mar 1993 A
5192267 Shapira et al. Mar 1993 A
5195959 Smith Mar 1993 A
5196007 Ellman et al. Mar 1993 A
5197962 Sansom et al. Mar 1993 A
5199944 Cosmescu Apr 1993 A
5217457 Delahuerga et al. Jun 1993 A
5224944 Elliott Jul 1993 A
5226904 Gentelia et al. Jul 1993 A
5233515 Cosman Aug 1993 A
5234428 Kaufman Aug 1993 A
5234429 Goldhaber Aug 1993 A
5242442 Hirschfeld Sep 1993 A
5244462 Delahuerga et al. Sep 1993 A
5246440 Van Noord Sep 1993 A
5254082 Takase Oct 1993 A
5254117 Rigby et al. Oct 1993 A
5256138 Burek et al. Oct 1993 A
5261906 Pennino et al. Nov 1993 A
5269781 Hewell, III Dec 1993 A
5300087 Knoepfler Apr 1994 A
5304763 Ellman et al. Apr 1994 A
5306238 Fleenor Apr 1994 A
5312329 Beaty et al. May 1994 A
5312400 Bales et al. May 1994 A
5312401 Newton et al. May 1994 A
5318516 Cosmescu Jun 1994 A
5318565 Kuriloff et al. Jun 1994 A
5322503 Desai Jun 1994 A
5330470 Hagen Jul 1994 A
5334183 Wuchinich Aug 1994 A
5342356 Ellman et al. Aug 1994 A
5348555 Zinnanti Sep 1994 A
5366464 Belknap Nov 1994 A
5376089 Smith Dec 1994 A
5380320 Morris Jan 1995 A
5382247 Cimino et al. Jan 1995 A
5395363 Billings et al. Mar 1995 A
5399823 McCusker Mar 1995 A
5401273 Shippert Mar 1995 A
5403882 Huggins Apr 1995 A
5406945 Riazzi et al. Apr 1995 A
5409484 Erlich et al. Apr 1995 A
5413575 Haenggi May 1995 A
5421829 Olichney et al. Jun 1995 A
5423838 Willard Jun 1995 A
5431645 Smith et al. Jul 1995 A
5431650 Cosmescu Jul 1995 A
5451222 De Maagd et al. Sep 1995 A
5460602 Shapira Oct 1995 A
5462522 Sakurai et al. Oct 1995 A
5468240 Gentelia et al. Nov 1995 A
5472442 Klicek Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5484398 Stoddard Jan 1996 A
5484434 Cartmell et al. Jan 1996 A
5486162 Brumbach Jan 1996 A
5496314 Eggers Mar 1996 A
5498654 Shimasaki et al. Mar 1996 A
D370731 Corace et al. Jun 1996 S
5531722 Van Hale Jul 1996 A
5549604 Sutcu et al. Aug 1996 A
5561278 Rutten Oct 1996 A
5601224 Bishop et al. Feb 1997 A
5609573 Sandock Mar 1997 A
5626575 Crenner May 1997 A
5630417 Petersen et al. May 1997 A
5630426 Eggers et al. May 1997 A
5630812 Ellman et al. May 1997 A
5633578 Eggers et al. May 1997 A
5634912 Injev Jun 1997 A
5634935 Taheri Jun 1997 A
5643256 Urueta Jul 1997 A
D384148 Monson Sep 1997 S
5669907 Platt, Jr. et al. Sep 1997 A
5674219 Monson et al. Oct 1997 A
5693044 Cosmescu Dec 1997 A
5693050 Speiser Dec 1997 A
5693052 Weaver Dec 1997 A
5697926 Weaver Dec 1997 A
5702360 Dieras et al. Dec 1997 A
5702387 Arts et al. Dec 1997 A
5712543 Sjostrom Jan 1998 A
5713895 Lontine et al. Feb 1998 A
5720745 Farin et al. Feb 1998 A
D393067 Geary et al. Mar 1998 S
5749869 Lindenmeier et al. May 1998 A
5765418 Rosenberg Jun 1998 A
5776092 Farin et al. Jul 1998 A
5788688 Bauer et al. Aug 1998 A
5797907 Clement Aug 1998 A
5800431 Brown Sep 1998 A
5836897 Sakurai et al. Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836944 Cosmescu Nov 1998 A
D402030 Roberts et al. Dec 1998 S
D402031 Roberts et al. Dec 1998 S
5843109 Mehta et al. Dec 1998 A
5846236 Lindenmeier et al. Dec 1998 A
5859527 Cook Jan 1999 A
5868768 Wicherski et al. Feb 1999 A
5876400 Songer Mar 1999 A
5888200 Walen Mar 1999 A
5893848 Negus et al. Apr 1999 A
5893849 Weaver Apr 1999 A
5893862 Pratt et al. Apr 1999 A
5913864 Garito et al. Jun 1999 A
5919219 Knowlton Jul 1999 A
5928159 Eggers et al. Jul 1999 A
5938589 Wako et al. Aug 1999 A
5941887 Steen et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5951548 DeSisto et al. Sep 1999 A
5951581 Saadat et al. Sep 1999 A
5954686 Garito et al. Sep 1999 A
5972007 Sheffield et al. Oct 1999 A
6004318 Garito et al. Dec 1999 A
6004333 Sheffield et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010499 Cobb Jan 2000 A
6022347 Lindenmeier et al. Feb 2000 A
6045564 Walen Apr 2000 A
6063050 Manna et al. May 2000 A
6068603 Suzuki May 2000 A
6068627 Orszulak et al. May 2000 A
6070444 Lontine et al. Jun 2000 A
6071281 Burnside et al. Jun 2000 A
6074386 Goble et al. Jun 2000 A
6074387 Heim et al. Jun 2000 A
6086544 Hibner et al. Jul 2000 A
6090123 Culp et al. Jul 2000 A
6099525 Cosmescu Aug 2000 A
6117134 Cunningham et al. Sep 2000 A
6139547 Lontine et al. Oct 2000 A
D433752 Saravia Nov 2000 S
6142995 Cosmescu Nov 2000 A
6146353 Platt, Jr. Nov 2000 A
6149648 Cosmescu Nov 2000 A
6156035 Songer Dec 2000 A
6197024 Sullivan Mar 2001 B1
6200311 Danek et al. Mar 2001 B1
D441077 Garito et al. Apr 2001 S
6213999 Platt, Jr. et al. Apr 2001 B1
6214003 Morgan et al. Apr 2001 B1
6238388 Ellman et al. May 2001 B1
6241723 Heim et al. Jun 2001 B1
6241753 Knowlton Jun 2001 B1
6249706 Sobota et al. Jun 2001 B1
6251110 Wampler Jun 2001 B1
6257241 Wampler Jul 2001 B1
6258088 Tzonev et al. Jul 2001 B1
6273862 Privitera et al. Aug 2001 B1
6277083 Eggers et al. Aug 2001 B1
6286512 Loeb et al. Sep 2001 B1
6287305 Heim et al. Sep 2001 B1
6287344 Wampler et al. Sep 2001 B1
6312441 Deng Nov 2001 B1
6325799 Goble Dec 2001 B1
D453222 Garito et al. Jan 2002 S
D453833 Hess Feb 2002 S
6350276 Knowlton Feb 2002 B1
6352544 Spitz Mar 2002 B1
6355034 Cosmescu Mar 2002 B2
6358281 Berrang et al. Mar 2002 B1
6361532 Burek Mar 2002 B1
D457955 Bilitz May 2002 S
6386032 Lemkin et al. May 2002 B1
6395001 Ellman et al. May 2002 B1
6402741 Keppel et al. Jun 2002 B1
6402742 Blewett et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6402748 Schoenman et al. Jun 2002 B1
6409725 Khandkar et al. Jun 2002 B1
6413255 Stern Jul 2002 B1
6416491 Edwards et al. Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6458122 Pozzato Oct 2002 B1
6458125 Cosmescu Oct 2002 B1
6461352 Morgan et al. Oct 2002 B2
6464702 Schulze et al. Oct 2002 B2
6471659 Eggers et al. Oct 2002 B2
6494882 Lebouitz et al. Dec 2002 B1
6500169 Deng Dec 2002 B1
6511479 Gentelia et al. Jan 2003 B2
6526320 Mitchell Feb 2003 B2
6551313 Levin Apr 2003 B1
6558383 Cunningham et al. May 2003 B2
6585664 Burdorff et al. Jul 2003 B2
6589239 Khandkar et al. Jul 2003 B2
6610054 Edwards et al. Aug 2003 B1
6610057 Ellman et al. Aug 2003 B1
6616658 Ineson Sep 2003 B2
6618626 West, Jr. et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6632193 Davison et al. Oct 2003 B1
6652514 Ellman et al. Nov 2003 B2
6662053 Borkan Dec 2003 B2
6669691 Taimisto Dec 2003 B1
6685701 Orszulak et al. Feb 2004 B2
6685704 Greep Feb 2004 B2
6702812 Cosmescu Mar 2004 B2
6710546 Crenshaw Mar 2004 B2
6712813 Ellman et al. Mar 2004 B2
6719746 Blanco Apr 2004 B2
6740079 Eggers et al. May 2004 B1
6747218 Huseman et al. Jun 2004 B2
D493530 Reschke Jul 2004 S
D493888 Reschke Aug 2004 S
D494270 Reschke Aug 2004 S
D495051 Reschke Aug 2004 S
D495052 Reschke Aug 2004 S
6794929 Pelly Sep 2004 B2
6830569 Thompson et al. Dec 2004 B2
6840948 Albrecht et al. Jan 2005 B2
6855140 Albrecht et al. Feb 2005 B2
6902536 Manna et al. Jun 2005 B2
6905496 Ellman et al. Jun 2005 B1
6923804 Eggers et al. Aug 2005 B2
6923809 Eggers et al. Aug 2005 B2
6939347 Thompson Sep 2005 B2
6955674 Eick et al. Oct 2005 B2
D515412 Waaler et al. Feb 2006 S
7033353 Stoddard et al. Apr 2006 B2
D521641 Reschke et al. May 2006 S
D535396 Reschke et al. Jan 2007 S
7156842 Sartor et al. Jan 2007 B2
7156844 Reschke et al. Jan 2007 B2
7235072 Sartor et al. Jun 2007 B2
7241294 Reschke Jul 2007 B2
7244257 Podhajsky et al. Jul 2007 B2
7311706 Schoenman et al. Dec 2007 B2
7393354 Buchman, II et al. Jul 2008 B2
20010047183 Privitera et al. Nov 2001 A1
20010049524 Morgan et al. Dec 2001 A1
20020019596 Eggers et al. Feb 2002 A1
20020019631 Kidder et al. Feb 2002 A1
20020022838 Cunningham et al. Feb 2002 A1
20020026145 Bagaoisan et al. Feb 2002 A1
20020035364 Schoenman et al. Mar 2002 A1
20020049427 Wiener et al. Apr 2002 A1
20020058958 Walen May 2002 A1
20020087179 Culp et al. Jul 2002 A1
20020095199 West, Jr. et al. Jul 2002 A1
20020103485 Melnyk et al. Aug 2002 A1
20020111622 Khandkar et al. Aug 2002 A1
20020133148 Daniel et al. Sep 2002 A1
20020151886 Wood Oct 2002 A1
20020151887 Stern et al. Oct 2002 A1
20020156471 Stern et al. Oct 2002 A1
20020173776 Batchelor et al. Nov 2002 A1
20020198519 Qin et al. Dec 2002 A1
20030004508 Morgan et al. Jan 2003 A1
20030014043 Henry et al. Jan 2003 A1
20030032950 Altshuler et al. Feb 2003 A1
20030050633 Ellman et al. Mar 2003 A1
20030055421 West et al. Mar 2003 A1
20030061661 Borders et al. Apr 2003 A1
20030065321 Carmel et al. Apr 2003 A1
20030078572 Pearson et al. Apr 2003 A1
20030083655 Van Wyk May 2003 A1
20030088247 Ineson May 2003 A1
20030109864 Greep et al. Jun 2003 A1
20030109865 Greep et al. Jun 2003 A1
20030130663 Walen Jul 2003 A1
20030144680 Kellogg et al. Jul 2003 A1
20030163125 Greep Aug 2003 A1
20030199856 Hill et al. Oct 2003 A1
20030199866 Stern et al. Oct 2003 A1
20030199869 Johnson et al. Oct 2003 A1
20030212393 Knowlton et al. Nov 2003 A1
20030212397 Avrahami et al. Nov 2003 A1
20030216728 Stern et al. Nov 2003 A1
20030220635 Knowlton et al. Nov 2003 A1
20030220638 Metzger Nov 2003 A1
20030225401 Eggers et al. Dec 2003 A1
20030229341 Albrecht et al. Dec 2003 A1
20030229343 Albrecht et al. Dec 2003 A1
20040000316 Knowlton et al. Jan 2004 A1
20040002704 Knowlton et al. Jan 2004 A1
20040002705 Knowlton et al. Jan 2004 A1
20040010246 Takahashi Jan 2004 A1
20040015160 Lovewell Jan 2004 A1
20040015161 Lovewell Jan 2004 A1
20040015162 McGaffigan Jan 2004 A1
20040015216 DeSisto Jan 2004 A1
20040024395 Ellman et al. Feb 2004 A1
20040024396 Eggers Feb 2004 A1
20040030328 Eggers et al. Feb 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040030332 Knowlton et al. Feb 2004 A1
20040030367 Yamaki et al. Feb 2004 A1
20040034346 Stern et al. Feb 2004 A1
20040054370 Given Mar 2004 A1
20040111087 Stern et al. Jun 2004 A1
20040124964 Wang et al. Jul 2004 A1
20040127889 Zhang et al. Jul 2004 A1
20040143677 Novak Jul 2004 A1
20040147909 Johnston et al. Jul 2004 A1
20040162553 Peng et al. Aug 2004 A1
20040167512 Stoddard et al. Aug 2004 A1
20040172011 Wang et al. Sep 2004 A1
20040172015 Novak Sep 2004 A1
20040172016 Bek et al. Sep 2004 A1
20040181140 Falwell et al. Sep 2004 A1
20040243120 Orszulak et al. Dec 2004 A1
20040267252 Washington et al. Dec 2004 A1
20040267254 Manzo et al. Dec 2004 A1
20040267297 Malackowski Dec 2004 A1
20050033286 Eggers et al. Feb 2005 A1
20050059858 Frith et al. Mar 2005 A1
20050059967 Breazeale, Jr. et al. Mar 2005 A1
20050065510 Carmel et al. Mar 2005 A1
20050070891 DeSisto Mar 2005 A1
20050085804 McGaffigan Apr 2005 A1
20050096645 Wellman et al. May 2005 A1
20050096646 Wellman et al. May 2005 A1
20050096681 Desinger et al. May 2005 A1
20050113817 Isaacson et al. May 2005 A1
20050113818 Sartor et al. May 2005 A1
20050113823 Reschke May 2005 A1
20050113824 Sartor et al. May 2005 A1
20050113825 Cosmescu May 2005 A1
20050149001 Uchikubo et al. Jul 2005 A1
20050154385 Heim et al. Jul 2005 A1
20060030849 Mirizzi et al. Feb 2006 A1
20060041257 Sartor et al. Feb 2006 A1
20060058783 Buchman Mar 2006 A1
20060178667 Sartor et al. Aug 2006 A1
20070049926 Sartor Mar 2007 A1
20070093810 Sartor Apr 2007 A1
20070142832 Sartor Jun 2007 A1
20070260239 Podhajsky et al. Nov 2007 A1
20070260240 Rusin Nov 2007 A1
Foreign Referenced Citations (23)
Number Date Country
24 29 021 Jan 1976 DE
24 60 481 Jun 1976 DE
30 45 996 Jul 1982 DE
0186369 Jul 1986 EP
1050277 Nov 2000 EP
1050279 Nov 2000 EP
1082945 Mar 2001 EP
1293171 Mar 2003 EP
1 645 233 Apr 2006 EP
1656900 May 2006 EP
1645234 Dec 2006 EP
1852078 Nov 2007 EP
2235669 Jan 1975 FR
2798579 Mar 2001 FR
WO 9420032 Sep 1994 WO
WO 9639086 Dec 1996 WO
WO 9843264 Oct 1998 WO
WO 0164122 Sep 2001 WO
WO 0247568 Jun 2002 WO
WO 2004010883 Feb 2004 WO
WO 2004045436 Jun 2004 WO
WO 2004073753 Sep 2004 WO
WO 2005060849 Jul 2005 WO
Related Publications (1)
Number Date Country
20090149851 A1 Jun 2009 US
Provisional Applications (1)
Number Date Country
60992413 Dec 2007 US