1. Field
The present disclosure relates to illumination devices. More particularly, the disclosure relates to heat dissipation in elongated light fixtures using solid state light emitting devices.
2. Background
An elongated light fixture can be described as having a light source connected to a power source by use of multiple hollow arms that branch out from the center of the fixture. A chandelier is a decorative ceiling- or wall-mounted light fixture with such characteristics. Traditionally, each arm carries an incandescent or halogen lamp at its distal end. Solid state light emitting devices, such as light emitting diodes (LEDs), are attractive candidates for replacing such conventional light sources. LEDs have substantially higher light conversion efficiencies than incandescent and halogen lamps and longer lifetimes than either of these types of conventional light sources.
LEDs require lower voltages than traditional lamps and contain no mercury or other potentially dangerous materials, therefore, providing various safety and environmental benefits.
The problem is that these light fixtures do not provide an efficient means for dissipating heat generated by solid state light emitting devices.
In an embodiment, a light fixture includes a body, a hollow arm, often called a pipe, extending out from the body, a pipe cap at a distal end of the arm, and one or more solid state light emitting devices supported by the pipe cap. The pipe cap thermally couples the one or more solid state light emitting devices to the arm.
The present invention is described more fully hereinafter with reference to the accompanying drawings, in which various aspects of the present invention are shown. This invention, however, may be embodied in many different forms and should not be construed as limited to the various aspects of the present invention presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the present invention to those skilled in the art. The various aspects of the present invention illustrated in the drawings may not be drawn to scale. Rather, the dimensions of the various features may be expanded or reduced for clarity. In addition, some of the drawings may be simplified for clarity. Thus, the drawings may not depict all of the components of a given apparatus (e.g., device) or method.
Various aspects of the present invention will be described herein with reference to drawings that are schematic illustrations of idealized configurations of the present invention. As such, variations from the shapes of the illustrations as a result, for example, manufacturing techniques and/or tolerances, are to be expected. Thus, the various aspects of the present invention presented throughout this disclosure should not be construed as limited to the particular shapes of elements (e.g., regions, layers, sections, substrates, etc.) illustrated and described herein but are to include deviations in shapes that result, for example, from manufacturing. By way of example, an element illustrated or described as a rectangle may have rounded or curved features and/or a gradient concentration at its edges rather than a discrete change from one element to another. Thus, the elements illustrated in the drawings are schematic in nature and their shapes are not intended to illustrate the precise shape of an element and are not intended to limit the scope of the present invention.
It will be understood that when an element such as a region, layer, section, substrate, or the like, is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. It will be further understood that when an element such as a structure is referred to as being coupled to another element, it can be directly connected to the other element or intervening elements may also be present. For example, one element may be electrically coupled to another by direct conductive connection, or there may be an intervening electrically conductive connector, a capacitive, inductive or other form of connection which provides for transmission of electrical current, power, signal or equivalents. Similarly, two elements may be mechanically coupled by being either directly physically connected, or intervening connecting elements may be present. It will be further understood that when an element is referred to as being “formed” on another element, it can be grown, deposited, etched, attached, connected, coupled, or otherwise prepared or fabricated on the other element or an intervening element.
Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another element as illustrated in the drawings. It will be understood that relative terms are intended to encompass different orientations of an apparatus in addition to the orientation depicted in the drawings. By way of example, if an apparatus in the drawings is turned over, elements described as being on the “lower” side of other elements would then be oriented on the “upper” side of the other elements. The term “lower”, can therefore, encompass both an orientation of “lower” and “upper,” depending of the particular orientation of the apparatus. Similarly, if an apparatus in the drawing is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and this disclosure.
As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The term “and/or” includes any and all combinations of one or more of the associated listed items.
The detailed description set forth below in connection with the appended drawings is intended as a description of various aspects of the present invention and is not intended to represent all aspects in which the present invention may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the present invention. However, it will be apparent to those skilled in the art that the present invention may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring the concepts of the present invention.
Various aspects of a light source will now be presented. However, as those skilled in the art will readily appreciate, these aspects may be extended to other apparatus without departing from the spirit and scope of the invention. The light source may include a series of solid state light emitting devices mounted on a universal mounting carriage. The universal mounting carriage is configured to replace one or more parts of the illumination system in any of a plurality of available housing heads for lighting. The plurality of housing heads may differ in at least one dimension, and the illumination systems may also vary in illumination pattern and intensity requirements.
Disclosed is an apparatus and method for mounting a thermally conductive pipe on a distal end of a light fixture arm, where the pipe cap supports a solid state light emitting device, such as an LED or LED array. LEDs are representative of one of solid state light emitting devices, and are described with reference to the various embodiments without loss of generality pertaining to solid state emitting devices.
An example of a solid state light emitting device for used in solid state light emitting devices is the light emitting diode (LED). The LED is well known in the art, and therefore, will only briefly be discussed to provide a complete description of the invention. An LED is a semiconductor material impregnated, or doped, with impurities. These impurities add “electrons” and “holes” to the semiconductor, which can move in the material relatively freely. Depending on the kind of impurity, a doped region of the semiconductor can have predominantly electrons or holes, and is referred to as n-type or a p-type semiconductor region, respectively. In LED applications, the semiconductor includes an n-type semiconductor region and a p-type semiconductor region. A reverse electric field is created at the junction between the two regions, which cause the electrons and holes to move away from the junction to form an active region. When a forward voltage sufficient to overcome the reverse electric field is applied across the p-n junction, electrons and holes are forced into the active region and combine. When electrons combine with holes, they fall to lower energy levels and release energy in the form of light.
LEDs are available in a range of colors of relatively narrow bandwidth. However, in applications where it is desirable to simulate illumination spectral properties representative of “white light” produced by incandescent, fluorescent, halogen or natural sunlight, one solution is to include one or more phosphors in a carrier encapsulating, or as a layer above, a blue LED. The phosphors absorb a portion of the short wavelength blue light and emit longer wavelengths of light by a process of Stokes shift emission. By controlling the type and amount of phosphor a balanced mix of light emitted by the LED directly and the phosphor is perceived by the human eye as “white light.”
Referring to
The electrodes 206 and 208 may be formed on the surface of the epitaxial-layer structure 204. The p-type semiconductor region 218 is exposed at the top surface, and therefore, the p-type electrode 206 may be readily formed thereon. However, the n-type semiconductor region 214 is buried beneath the p-type semiconductor region 218 and the active region 216. Accordingly, to form the n-type electrode 208 on the n-type semiconductor region 214, a portion of the active region 216 and the p-type semiconductor region 218 is removed to expose the n-type semiconductor region 214 therebeneath. After this portion of the epitaxial-layer structure 204 is removed, the n-type electrode 208 may be formed.
As discussed above, one or more light emitting devices may be used to construct an LED array. One example of an LED array will now be presented with reference to
The LED array may be configured to produce white light. White light may enable the LED array to act as a direct replacement for conventional light sources used today in incandescent, halogen, fluorescent, HID, and other suitable lamps. There are at least two common ways of producing white light. One way is to use individual LEDs that emit wavelengths (such as red, green, blue, amber, or other colors) and then mix all the colors to produce white light. The other way is to use a phosphor material or materials to convert monochromatic light emitted from a blue or ultra-violet (UV) LED to broad-spectrum white light. The present invention, however, may be practiced with other LED and phosphor combinations to produce different color lights.
An example of a LED array will now be presented with reference to
In an alternative configuration of a white light emitting element, each LED 401 may have its own phosphor layer. As those skilled in the art will readily appreciate, various configurations of LEDs and other light emitting devices may be used to create a white light emitting element. Moreover, as noted earlier, the present invention is not limited to solid state lighting devices that produce white light, but may be extended to solid state lighting devices that produce other colors of light.
Referring to
An environmentally protective feature 590 may be placed over the solid state emitting device 400 to protect against various environmental elements that may degrade the performance of the solid state light emitting device 400. The feature 590 may be attached to the solid state light emitting device 400, the pipe cap 500, the arm 550, or any combination thereof. The feature 590 may be at least one of a sealed transparent cap, a translucent cap, a screen, or the like, and any combination thereof, to protect the solid state light emitting device 400 from moisture, dirt, fungus, air pollution, objects, insects and creatures, or the like.
Feature 590 may further be an optical element configured to guide or diffuse the light from the solid state light emitting device 400. The objective is to direct or disperse the light in an intended fashion. The dispersal of light by feature 590 may be a specified pattern or a diffusing effect to provide greater/lesser light spreading or to control glare.
In another embodiment, as shown in
The pipe cap 600 may include a series of thermally conductive fins 695, as shown in
In Another embodiment, as shown in
The claims are not intended to be limited to the various aspects of this disclosure, but are to be accorded the full scope consistent with the language of the claims. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”
This application claims priority from U.S. provisional application serial number 61/412,757, filed on Nov. 11, 2010, titled “THERMAL PIPE CAP,” and is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61412757 | Nov 2010 | US |