The present application is a 35 U.S.C. ยงยง371 national phase conversion of PCT/JP2008/068172 filed Oct. 6, 2008, which claims priority of Japanese Application No. 2008-028684, filed Feb. 8, 2008, the disclosure of which is incorporated by reference herein. The International Application was published in the Japanese Language.
The present invention relates to a thermal printer which performs printing by holding and conveying a printing medium between a platen roller and a thermal head. More particularly, the present invention relates to a thermal printer which performs printing using a thermal head attached between a pair of frames facing each other in a width direction of the printing medium.
In general, a thermal printer which performs printing using a thermal head prints predetermined print data onto a printing medium by holding and conveying a printing medium, such as a continuous label or a continuous tag, between a platen roller and a thermal head. The thermal head is supported by a printing unit such that a heat generating element is opposing the platen roller.
In the past, the attachment of the thermal head to the printing unit was performed by directly attaching the thermal head with a screw, or by attaching it using a so called spacer, which is a joining member, attached to the thermal head by a screw. (See, for example, Japanese Unexamined Patent Application, First Publication H11-216889 for reference).
However, in conventional technology, a tool, such as a screw driver, was necessary when attaching the thermal head to the printing unit, and there was a problem that the attaching process of the thermal head becoming complicated.
The present invention has been made in view of the aforementioned problem. The object of the present invention is to provide a thermal printer which can easily attach the thermal head to the printing unit without requiring a tool such as a screw driver.
In order to solve the aforementioned problem, the thermal printer of the present invention proposes the following arrangements.
An aspect of the present invention includes a thermal printer which performs printing by holding and conveying a printing medium between a platen roller and a thermal head. The printer comprises: a printing unit provided with a first frame and a second frame facing each other in a width direction of the printing medium. A head housing supports the thermal head and is attached between the first frame and the second frame. A supporting unit is provided on an opposing surface on the first frame facing the second frame supporting a first side face of the head housing. A frame cover is fitted on and removed from a fitting portion provided on the outer surface of the second frame, which is at the back side of the surface facing the first frame and supporting a second side face of the head housing through a through-hole formed on the second frame.
Another aspect of the present invention relates to the above thermal printer support-recess for the head housing to be supported is formed on the second side face of the head housing, and wherein a supporting-protrusion fitted into the supported-recess formed on the second side face of the head housing through the through-hole formed on the second frame is formed on the frame cover.
Another aspect of the present invention relates to the above thermal printer wherein the supporting unit supports the first side face of the head housing at a more upstream side of the conveyance direction of the printing medium than the thermal head as a rotational axis enabling to move rotationally, and wherein, the supported-recess formed on the second side face of the head housing is in a round shape, with the rotational axis supported by the supporting unit consistent with the axis of the supported-recess.
In yet another aspect of the present invention, the thermal printer performs printing by transferring ink from an ink ribbon onto the printing medium, and between the first frame and the second frame, a ribbon supply shaft supplying the ribbon and a ribbon take-up shaft taking-up the ribbon are rotatably bridged over.
In another aspect of the present invention, a driving force transferring mechanism on the first frame transfers the driving force to the ribbon take-up shaft, and through-holes are formed on the frame cover respectively at the places corresponding to the ribbon take-up shaft and the ribbon supply shaft.
In yet another aspect of the present invention, the thermal printer is provided with a head pressure regulating unit regulating the head pressure of the thermal head by the rotational movement of a regulating shaft bridged over in a direction perpendicular to the first frame and the second frame, and a through-hole is formed on the frame cover at a place corresponding to the regulating shaft.
The thermal printer of the present invention comprises: a printing unit provided with a first frame and a second frame facing each other in a width direction of the printing medium; a head housing supporting the thermal head and attached between the first frame and the second frame; a supporting unit provided on an opposing surface on the first frame facing the second frame supporting a first side face of the head housing; and a frame cover fitted on and removed from a fitting portion provided on the outer surface of the second frame which is at the back side of the surface facing the first frame and supporting a second side face of the head housing through a through-hole formed on the second frame.
In this way, the thermal printer of the present invention enables easy attaching and detaching of the head housing supporting the thermal head, by only fitting on and removing the frame cover from the outer surface of the second frame. In addition, the thermal printer of the present invention enables easily attaching the thermal head to the printing unit without requiring a tool such as a screw driver.
Furthermore, the thermal printer of the present invention is configured such that a supported-recess for the head housing to be supported is formed on the second side face of the head housing, and a supporting-protrusion on the frame cover is fitted into the supported-recess formed on the second side face of the head housing through the through-hole formed on the second frame. In this way, the thermal printer of the present invention achieves an effect of accurately positioning the head housing supporting the thermal head by removably fitting the frame cover to the outer surface of the second frame.
Furthermore, the thermal printer of the present invention is configured such that the supporting unit supports the first side face of the head housing upstream in the conveyance direction of the printing medium of the thermal head as a rotational axis enabling to move rotationally. The supported-recess formed on the second side face of the head housing is in a round shape, with the rotational axis supported by the supporting unit consistent with the axis of the supported-recess. In this way, the thermal printer of the present invention can rotatably support the thermal head by only removably fitting the frame cover to the outer surface of the second frame, thereby simplifying the mechanism pressing the thermal head to the platen roller.
Furthermore, the thermal printer of the present invention is configured such that a ribbon take-up shaft and a ribbon supply shaft are rotatably bridged over between the first frame and the second frame. In this way, the thermal printer of the present invention can use the ribbon frames, where the ribbon take-up shaft and the ribbon supply shaft are bridged over, also as a structure supporting the thermal head, thereby achieving the effects of cost reduction by reducing the number of parts, and downsizing the thermal printer.
Still further, the thermal printer of the present invention is configured such that on the first frame, a driving force transferring mechanism transferring the driving force to the ribbon take-up shaft is provided, and the through-holes are formed respectively at the places on the frame cover corresponding to the ribbon take-up shaft and the ribbon supply shaft. Even in a state with the frame cover fitted to the outer surface of the second frame, it is possible to achieve the effect of easily regulating the ribbon take-up shaft and the ribbon supply shaft through the through-holes formed on the frame cover from the second frame side where the driving force transferring mechanism is not provided.
Furthermore, the thermal printer of the present invention is configured with a head pressure regulating unit regulating the head pressure of the thermal head by the rotational movement of a regulating shaft bridged over in a direction perpendicular to the first frame and the second frame, and a through-hole is formed on the frame cover at a place corresponding to the regulating shaft. In this way, even in a state with the frame cover fitted to the outer surface of the second frame, it is possible to achieve the effect of easily regulating the head pressure from the second frame side by operating the regulating shaft through the through-hole formed on the frame cover.
a) is a front perspective view diagram showing the configuration of the head housing shown in
b) is a front perspective view diagram showing the configuration of the head housing shown in
c) is a rear perspective view diagram showing the configuration of the head housing shown in
Hereinafter, an embodiment of the present invention is described in detail based on the drawings.
With reference to
The printing medium 1, is in a state wound in a roll to define a tubular body such as a paper tube, that is, a roll of paper 3, is rotatably supported at the supply unit 13. The printing medium 1 is supplied between the platen roller 11 and the thermal head 12 from the supply unit 13. In addition, the ink ribbon 2 is laid between a ribbon take-up shaft 14 which is rotationally driven interlocking with the platen roller 11, and a ribbon supply shaft 15. The ink ribbon 2, in a state wound in a roll supported at the ribbon supply shaft 15, is supplied between the platen roller 11 and the thermal head 12 together with the printing medium 1. After transferring the ink, the ink ribbon 2 is taken-up by the ribbon take-up shaft 14.
Furthermore, the thermal printer 10 is provided with a main unit 20, of which an upper portion is opened, and having a platen roller 11 and a supply unit 15, an upper cover unit 30 covering the upper portion of the main unit 20, and a printing unit 40, arranged between the main unit 20 and the upper cover unit 30, having a thermal head 12, a ribbon take-up shaft 14, and a ribbon supply unit 15. The upper cover unit 30 and the printing unit 40 are supported to rotate open and closed by the supporting shaft 17 provided at the back side of the main unit 20. In addition, the upper cover unit 30 and the printing unit 40 are configured such that they may be opened from the front side where the outlet 16 discharges the printed print medium.
In
In
The thermal head 12 is configured such that it is attached to the printing unit 40 supported by the head housing 60. Referring to
Furthermore, a lower surface 65 of the head housing 60 functions as a guide surface which leads the ink ribbon 2 between the platen roller 11 and the thermal head 12 from the ribbon supply shaft 15.
The thermal head 12 is fixed at the head housing 60. A pressing member 66 at the back side of the printing surface of the thermal head 12 abuts the after-mentioned head pressure regulating unit when attaching the head housing 60 to the printing unit 40. The pressing member is supported movably in a direction perpendicular to the printing presses the thermal head 12 fixed to the head housing 60 against the platen roller 11.
Referring to
On the left ribbon frame 43, there is a driven gear 46, which is engaged with a driving gear 21 in
On the outer surface of the right ribbon frame 42 which is at the back side of the surface facing the left ribbon frame 43, there is a frame rim 48 perpendicular to the outer surface, and formed on the outer edges. The region surrounded by the frame rim 48 functions as a fitting portion 49 in which it is possible to fit and remove a frame cover 70 shown in
Referring to
Furthermore, in the right ribbon frame 42 at the fitting portion 49, a through-hole 50a and a through-hole 50b are formed at the places corresponding respectively to the support-recess 61a and the support-recess 61b which are formed on the right side face 62 of the attached head housing 60. Also, on the frame cover 70 in
Furthermore, on the side face of the frame cover 70 that faces the frame rim 48 when fitted together, there are two widely spaced resin spring portions 76 which are displaced in a direction perpendicular to the frame rim 48. Engaging projections 77 are formed at the resin spring portions 76. On the frame rim 48, respective notches 51 are formed at places opposing the resin spring portions 76, such that it is possible to operate the resin spring portions 76 of the frame cover 70 when fitting. Engaging recesses 52, engaging with the engaging projections 77 when fitting, are formed near the notch 51. In addition, in this embodiment, the engaging recesses 52 are formed as the through-holes penetrating through the frame rim 48.
Next, attaching the head housing 60 to the printing unit 40 is described with reference to
In the attachment first, the support-protrusion 63a formed on the left side face 64 of the head housing 60 is fitted to the support-recess 47a formed on the surface facing the left ribbon frame 43. At the same time, the support-protrusion 63b formed on the left side face 64 of the head housing 60 is loosely fitted to the support-recess 47b formed on the opposing surface of the left ribbon frame 43. Then, as shown in
Next, as shown in
To fit the frame cover 70 to the fitting portion 49, the support-protrusion 74 formed on the frame cover 70 is fitted to the support-recess 61a through the through-hole 50a. At the same time, the support-protrusion 75 formed on the frame cover 70 is loosely fitted to the support-recess 61b through the through-hole 50b. In this way, as shown in
In addition, the ribbon take-up shaft 14, the ribbon supply shaft 15, and the regulating shaft 44 projecting out to the fitting portion 49, are inserted respectively into the through-holes 71, 72 and 73 which are formed on the frame cover 70. Therefore, it is possible to respectively operate the ribbon take-up shaft 14, the ribbon supply shaft 15 and the regulating shaft 44 through the through-holes 71, 72 and 73.
Detaching the head housing 60 attached to the printing unit 40 is performed in a reverse procedure of the attachment of the head housing 60 to the printing unit 40. In other words, by pressing the resin spring portions 76 formed on the side surface of the frame cover 70 through the notches 51, the engagement of the engaging projections 77, formed on the resin spring portions 76, with the engaging recesses 52, formed on the frame rim 48, are released. Then, by pressing the resin spring portions 76 formed on the side surfaces, the frame cover 70 is detached from the fitting portion 49. In this way, it is possible to detach the head housing 60 from between the right ribbon frame 42 and the left ribbon frame 43.
Furthermore, the present embodiment is configured to provide the support-recess 47a and support-recess 47b on the opposing surface of the left ribbon frame 43, and the support-protrusion 63a and the support-protrusion 63b on the left side face 64 of the head housing 60. However, the support-protrusions may be provided on the opposing surface of the left ribbon frame 43, and the support-recesses may be provided on the left side face 64 of the head housing 60. In addition, in the present embodiment, the support-recess 47a formed on the opposing surface on the left ribbon frame 43 is configured in a round shape of which the diameter is larger than that of the support-protrusion 63b formed on the left side face 64 of the head housing 60. Together with this, in the present embodiment, the support-recess 61b formed on the right side face 62 of the head housing 60 is configured such that it is in a round shape of with a diameter larger than that of the support-recess 75 formed on the frame cover 70. However, the shape of the support-recess 47a and the support-recess 61b may be in an elongated shape hole to guide the rotational movement of the head housing 60.
As explained above, according to the present embodiment, the thermal printer 10 comprises a printing unit 40 provided with a left ribbon frame 43 and a right ribbon frame 42 facing each other; a head housing 60 supporting the thermal head 12 and attached between the left ribbon frame 43 and the right ribbon frame 42; a supporting-recess 47a provided on an opposing surface on the left ribbon frame 43 facing the right ribbon frame 42 supporting a left side face 64 of the head housing 60; and a frame cover 70 fitted and removed to and from a fitting portion 49 provided on the outer surface of the right ribbon frame 42 which is at the back side of the surface facing the left ribbon frame 43 and supporting a right side face 62 of the head 60 housing through a through-hole 50a formed on the right ribbon frame 42. The thermal printer 10 of the present embodiment enables easily attaching and detaching the head housing 60 supporting the thermal head 12 by only fitting and removing the frame cover 70 to and from the outer surface of the right ribbon frame 42. In addition, the thermal printer 10 of the present embodiment achieves an effect of easily attaching the thermal head 12 to the printing unit 40 without requiring a tool such as a screw driver.
Furthermore, according to the present embodiment, the thermal printer 10 is configured such that a support-recess 61a for the head housing 60 to be supported is formed on the right side face 62 of the head housing 60, and on the frame cover 70, a support-protrusion 74 fitted into the support-recess 61a formed on the right side face 62 of the head housing 60 through the through-hole 50a formed on the right ribbon frame 42 is formed. In this way, the thermal printer 10 of the present embodiment achieves an effect of accurately performing positioning of the head housing 60 supporting the thermal head 12 by removably fitting the frame cover 70 to the outer surface of the right ribbon frame 42.
Furthermore, according to the present embodiment, the thermal printer 10 is configured such that the support-recess 47a provided on the left side face 64 of the head housing 60 supports the left side face 64 of the head housing 60 at a more upstream side of the conveyance direction of the printing medium 1 than the thermal head 12 as a rotational axis enabling to move rotationally, and the support-recess 61a formed on the right side face 62 of the head housing 60 is in a round shape, with the rotational axis of the support-recess 47 is consistent with the axis of the support-recess 61a. In this way, the thermal printer 10 of the present embodiment can rotatably support the thermal head 12 by removably fitting the frame cover 70 only to the outer surface of the right ribbon frame 42, thereby achieving an effect of simplifying the mechanism pressing the thermal head 12 to the platen roller 11.
Furthermore, according to the present embodiment, a ribbon take-up shaft 14 and a ribbon supply shaft 15 are rotatably bridged over between the left ribbon frame 43 and the right ribbon frame 42. In this way, the thermal printer 10 of the present embodiment can use the left ribbon frame 43 and the right ribbon frame 42, where the ribbon take-up shaft 14 and the ribbon supply shaft 15 are bridged over, also as a support for the thermal head 12, thereby achieving the effects of cost reduction by reducing the number of parts, and downsizing of the thermal printer 10.
Still furthermore, according to the present embodiment, the thermal printer 10 has a driving force transferring mechanism on the left ribbon frame 43 for transferring the driving force to the ribbon take-up shaft 14, and on the frame cover 70, the through-holes 71 and 72 are formed respectively at the places corresponding to the ribbon take-up shaft 14 and the ribbon supply shaft 15. In this way, the thermal printer 10, even in a state with the frame cover 70 fitted to the outer surface of the right ribbon frame 42, makes it possible to achieve the effect of easily regulating the ribbon take-up shaft 14 and the ribbon supply shaft 15 through the through-holes 71 and 72 formed on the frame cover 70 from the right ribbon frame 42 side where the driving force transferring mechanism is not provided.
Furthermore, the thermal printer 10 of the present embodiment is configured with a head pressure regulating unit regulating the head pressure of the thermal head 12 by the rotational movement of a regulating shaft 44 bridged over in perpendicular direction to the left ribbon frame 43 and the right ribbon frame 42, and on the frame cover 70, a through-hole 73 is formed at a place corresponding to the regulating shaft 44. In this way, the thermal printer 10 of the present embodiment, even in a state with the frame cover 70 fitted to the outer surface of the right ribbon frame 42, makes it possible to achieve the effect of easily regulating the head pressure from the right ribbon frame 42 side by operating the regulating shaft 44 through the through-hole 73 formed on the frame cover 70.
While the present invention has been described in relation to the above embodiment thereof, it is not to be considered as limiting, and that it is apparent that other variations and modifications may be made within the scope of the technological thoughts of the present invention. The numbers, positions, and forms, etc. of the above configuring components are not to be limited to the above embodiment, and may be modified to preferable numbers, positions, and forms, etc. The same reference number is used for the same configuration components in each diagram.
Number | Date | Country | Kind |
---|---|---|---|
2008-028684 | Feb 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/068172 | 10/6/2008 | WO | 00 | 8/3/2010 |