The present application claims priority from Japanese Patent Applications No. JP 2010-084498 which was filed on Mar. 31, 2010 and No. 2010-084499 which was filed on Mar. 31, 2010, the disclosure of which is incorporated herein by reference in its entirety.
The disclosure relates to a thermal printer that includes a thermal head on which a plurality of heater elements are arranged, and that performs printing by selectively controlling energization of each of the plurality of heater elements.
There have conventionally been proposed various thermal printers which are provided with a thermal head on which a plurality of heater elements are arranged, and configured to perform printing by selectively controlling energization of each heater element. In the thermal printers, it is selectively controlled whether to energize or de-energize each of the plurality of heater elements according to printing data, so as to heat up the plurality of heater element. Such thermal printers generate heat at heater elements so as to heat heat-sensitive paper and form colors thereon, or to transfer a thermal fusion ink, for performing printing according to the printing data.
As described above, a thermal printer performs printing by generating heat at heater elements; then, the thermal head and the heater elements gradually store heat as the printing proceeds. The printing cycle at the thermal printer consists of heating period for heating up the heater elements and non-heating period for dissipating heat in the heater elements, but if heat is stored above dissipating ability of the thermal head in the thermal head or the heater elements, it may adversely affect the sensitivity of the heat-sensitive paper or the melting of the ink, resulting in highly dark printing. Also, this sometimes causes collapse, trailing or uneven density in printed materials, deteriorating the printing quality.
There has been known a thermal printer configured to address the above problem. The thermal printer prevents the occurrence of uneven density in the printed materials by controlling the energy of an energization pulse to apply to the thermal head, on the basis of the temperature in the vicinity of the thermal head.
In the field of the above thermal printers, there has been desired high-speed printing to reduce the print time. In addition, even if the print cycle becomes short for coping with the high-speed printing, sufficient energy should be secured for printing. In a case where the energy amount of energization pulse is controlled as in the thermal printer, voltage-resistant components or components with improved capacitance have to be used in the thermal head, etc. and this drives up the cost.
If the printing cycle is shortened, the proportion of a heating period in the printing cycle increases. Thereby, a non-heating period is shortened in the printing cycle at the time of high-speed printing. As a result, the time period for dissipating the heat from the thermal head and heater elements is also shortened, and the thermal head becomes apt to store heat, causing collapse, trailing or uneven density in printed materials, and resulting in considerably degrading the printing quality.
The disclosure relates to a thermal printer configured to perform print by energizing a thermal head, and has an object to provide a thermal printer capable of realizing a high printing-quality and of coping with high-speed printing.
To achieve the purpose of the disclosure, there is provided a thermal printer including a thermal head including a plurality of heater elements aligned in a main scanning direction, and a control unit that controls energization of each of the plurality of heater elements based on printing data including a plurality of line data arrays corresponding to the plurality of heater elements respectively, for selectively heating up the plurality of heater elements, and performs printing according to an order at the printing data while taking a line data array as a basic unit, on each printing cycle including a heating period for heating up by energizing the plurality of heater elements and a non-heating period for dissipating heat by de-energizing the plurality of heater elements, wherein the control unit delays a start of a heating period in a printing cycle with respect to a start of the printing cycle for a predetermined time period when a predetermined condition with respect to the line data array is satisfied.
A detailed description of an exemplary embodiment of a tape printing apparatus 1 embodying a thermal printer directed to the disclosure will now be given referring to the accompanying drawings, the tape printing apparatus 1 carrying out printing on a tape fed from a tape cassette.
First, the schematic structure of the tape printing apparatus 1 directed to a first embodiment will be described by referring to drawings. The tape printing apparatus 1 directed to the first embodiment carries out printing on a tape fed from a tape cassette 5 (refer to
As shown in
A tape ejecting portion 10 for ejecting a printed tape is formed at the left side of the cassette holding portion 8. Further, a connection interface (not shown) is arranged at the right side of the tape printing apparatus 1. The connection interface is used for connecting the tape printing apparatus 1 to an external apparatus (e.g., a personal computer, etc.) in a manner of either wireline connection or wireless connection. Accordingly, the tape printing apparatus 1 is capable of printing out printing data transmitted from an external apparatus.
The keyboard 3 includes plural operation keys such as character input keys 3A, a print key 3B, cursor keys 3C, a power key 3D, a setting key 3E, a return key 3R, etc. The character input keys 3A are operated for inputting characters that create texts consisting of document data. The print key 3B is operated for giving a command to print out printing data consisting of created texts, etc. The cursor keys 3C are operated for moving a cursor being indicated in the liquid crystal display 4 up, down, left or right. The power key 3D is operated for turning on or off the power of the main body of the tape printing apparatus 1. The setting key 3E is operated for setting various conditions (setting of printing density and the like). The return key 3R is operated for executing a line feeding instruction or various processing and for determining a choice from candidates.
The liquid crystal display 4 is a display device for indicating characters such as letters, etc. in plural lines. The liquid crystal display 4 can display a content of printing data (see
As shown in
The tape cutting mechanism includes a cutter 17 made up of a fixed blade 17A and a rotary blade 17B. Accordingly, the tape printing apparatus 1 is capable of cutting off a printed part of a tape with the cutter 17 constituting the tape cutting mechanism. As above discussed, the printed part of the tape thus cut off is ejected from the tape ejecting portion 10.
Inside the tape printing apparatus 1, a cassette holding frame 18 is arranged. As shown in
The tape cassette 5 includes a tape spool 32, a ribbon feeding spool 34, a used-ribbon-take-up spool 35, a base-material-sheet feeding spool 37 and a bonding roller 39 in a rotatably-supported manner, inside thereof. A surface tape 31 is wound around the tape spool 32. The surface tape 31 is a transparent tape made of such as PET (polyethylene terephthalate) film or the like. An ink ribbon 33 is wound around the ribbon feeding spool 34. On the ink ribbon 33, there is applied ink that melts or sublimes when heated. A part of the ink ribbon 33 that has been used for printing is taken up in the used-ribbon-take-up spool 35. A double tape 36 is wound around the base-material-sheet feeding spool 37. The double tape 36 is formed by bonding a release tape to one side of a double-sided adhesive tape wherein the double-sided adhesive tape includes adhesive agent layers at both sides thereof, with the same width as the surface tape 31. The double tape 36 is wound around the base-material-sheet feeding spool 37 so that the release tape is put outside. The bonding roller 39 is used for bonding the double tape 36 and the surface tape 31 together.
As shown in
When the arm 20 fully swings clockwise, the platen roller 21 presses the surface tape 31 and the ink ribbon 33 against the thermal head 41 to be described later in detail. At the same time, the conveying roller 22 presses the surface tape 31 and the double tape 36 against the bonding roller 39.
A plate 42 is arranged upright inside the cassette holding frame 18. The plate 42 includes the thermal head 41 at its side surface facing the platen roller 21. The thermal head 41 consists of a plurality of (e.g. 128 or 256) heater elements 41A aligned in the width direction of the surface tape 31 and the double tape 36. Accordingly, the main scanning direction of the thermal head 41 is the same as the width direction of the surface tape 31 and the like.
When the tape cassette 5 is placed in a predetermined position, the plate 42 is fitted in a concave portion 43 of the tape cassette 5.
Further, a ribbon-take-up roller 46 and a bonding-roller driving roller 47 are arranged upright inside the cassette holding frame 18 (refer to
In the cassette holding frame 18, there is arranged a tape conveying motor (not shown). Driving force of the tape conveying motor is transmitted to the platen roller 21, the conveying roller 22, the ribbon-take-up roller 46 and the bonding-roller driving roller 47, etc. via series of gears arranged along the cassette holding frame 18. Accordingly, when rotation of an output shaft of the tape conveying motor is started with supply of power to the tape conveying motor, rotation of the used-ribbon-take-up spool 35, the bonding roller 39, the platen roller 21 and the conveying roller 22 is started in conjunction with the operation of the tape conveying motor. Thereby, the surface tape 31, the ink ribbon 33 and the double tape 36 in the tape cassette 5 are loosed out from the tape spool 32, the ribbon feeding spool 34 and the base-material-sheet feeding spool 37, respectively, and are conveyed in a downstream direction (toward the tape ejecting portion 10 and the used-ribbon-take-up spool 35).
Thereafter, the surface tape 31 and the ink ribbon 33 go through a path between the platen roller 21 and the thermal head 41 in a superimposed state. Accordingly, in the tape printing apparatus 1, the surface tape 31 and the ink ribbon 33 are conveyed while being pressed by the platen roller 21 and the thermal head 41. The significant number of the heater elements 41A aligned on the thermal head 41 are selectively and intermittently energized by a control unit 60 (refer to
Printing data 50 is input through an operation on the keyboard 3 or external apparatuses via the connection interface. As illustrated in
Each heater element 41A gets heated by power supply and melts or sublimes ink applied on the ink ribbon 33. Therefore, ink in the ink layer on the ink ribbon 33 is transferred onto the surface tape 31 in a certain unit of dots. Consequently, a printing-data-based dot image desired by a user is formed on the surface tape 31 as mirror image.
After passing through the thermal head 41, the ink ribbon 33 is taken up by the ribbon-take-up roller 46. On the other hand, the surface tape 31 is superimposed onto the double tape 36 and goes through a path between the conveying roller 22 and the bonding roller 39 in a superimposed state. At the same time, the surface tape 31 and the double tape 36 are pressed against each other by the conveying roller 22 and the bonding roller 39 so as to form a laminated tape 38. Of the laminated tape 38, a printed-side surface of the surface tape 31 furnished with dot printing and the double tape 36 are firmly superimposed together. Accordingly, a user can see a normal image of the printed image from the reversed side for the printed-side surface of the surface tape 31 (i.e., the top side of the laminated tape 38).
Thereafter, the laminated tape 38 is conveyed further downstream with respect to the conveying roller 22 to reach the tape cutting mechanism including the cutter 17. The tape cutting mechanism contains the cutter 17 and the tape cutting motor 72 (refer to
The laminated tape 38 thus cut off is ejected outside of the tape printing apparatus 1 via the tape ejecting portion 10. By peeling off the release paper from the double tape 36 and exposing the adhesive agent layer, the laminated tape 38 can be used as an adhesive label that can be adhered to an arbitrary place.
Next, there will be described a control configuration of the tape printing apparatus 1 by referring to
The control unit 60 consists of a CPU 61, a CG-ROM 62, an EEPROM 63, a ROM 64 and a RAM 66. Furthermore, the control unit 60 is connected to a timer 67, the head driving circuit 68, the tape-cutting-motor driving circuit 69 and the tape-conveying-motor driving circuit 70. The control unit 60 is also connected to a liquid crystal display 4, a cassette sensor 7, a thermistor 73, a keyboard 3 and a connection interface 71.
The CPU 61 is a central processing unit that plays a primary role for various kinds of system control of the tape printing apparatus 1. Accordingly, the CPU 61 controls various peripheral devices in accordance with input signals from the keyboard 3 etc. as well as various control programs including an energization control process program to be described later.
The CG-ROM 62 is a character generator memory wherein image data of to-be-printed letters and signs are associated with code data and stored in dot patterns. The EEPROM 63 is a non-volatile memory that allows data write for storing therein and deletion of stored data therefrom. The EEPROM 63 stores data that indicates user setting etc. of the tape printing apparatus 1.
The ROM 64 stores various control programs and various data for the tape printing apparatus 1. Accordingly, the energization control process program, etc. to be described later are stored in the ROM 64. The RAM 66 is a storing device for temporarily storing a processing result of the CPU 61 etc. The RAM 66 also stores print data created with inputs by means of the keyboard 3, printing data taken therein from external apparatuses 78 via the connection interface 71. The timer 67 is a time-measuring device that measures passage of predetermined length of time for executing control of the tape printing apparatus 1. Further, the thermistor 73 is a sensor that detects temperature of the thermal head 41 and attached on the thermal head 41.
The head driving circuit 68 is a circuit that serves to supply a driving signal to the thermal head 41, based on a control signal from the CPU 61, the energization control process program to be described later, etc., for controlling operation manners of the thermal head 41. In this connection, the head driving circuit 68 controls to energize and de-energize each of the heater elements 41A based on a signal (strobe signal (STB signal) corresponding to a strobe number associated with each heater element 41A for comprehensively controlling heating manner of the thermal head 41.
The tape-cutting-motor driving circuit 69 is a circuit that serves to supply a driving signal to the tape cutting motor 72 in response to a control signal from the CPU 61 for controlling operation of the tape cutting motor 72. Further, the tape-conveying motor driving circuit 70 serves to supply a driving signal to a tape conveying motor 2 based on the control signal from the CPU 61 for controlling operation of the tape conveying motor 2.
Next, there will be described the energization control process program directed to a first embodiment by referring to
First, at S1, the CPU 61 executes a printing line data process. In the printing line data process (S1), the CPU 61 prefetches the printing data 50 (see
At S2, the CPU 61 determines whether a heating period H in the last printing period is in a delayed state where it is delayed from the start of the printing period T. If it is in a delayed state (YES at S2), the CPU 61 shifts the process to S6. If it is not in a delayed state (NO at S2), the CPU 61 shifts the process to S3.
As has been described above, printing of one printing line data array 55 is performed in one printing cycle T, which is made up of a heating period H and a non-heating period C. As illustrated in
Shifting to S3, the CPU 61 determines whether a delay condition is satisfied or not. The delay condition means a condition for delaying the start of the heating period from the start of the printing period T. In the first embodiment, the delay condition is satisfied when both requirements “a printing line data array 55 contains more than a predetermined number of dots (i.e., heater elements 41A) conforming to the heating condition and more than two such printing line data arrays 55 continue, including a printing line data array 55 which is the current printing target” and “there are less than a predetermined number of dots conforming to the heating condition in a printing line data array 55 of the next printing target” are met. If the delay condition is satisfied (YES at S3), the CPU 61 shifts the process to S4. If the delay condition is not satisfied (NO at S3), the CPU 61 shifts the process to S8.
At S4, the CPU 61 starts measuring the time at a heating delay timer, when the delay condition is satisfied. The heating delay timer is a timer for measuring a heating delay period L and performs the time measuring using a clock number in the CPU 61. In other words, the heating delay timer is a timer for measuring a start of heating period H based on the start of the printing cycle T when the heating delay period L is provided. If the above delay condition is satisfied as illustrated in
At S5, the CPU 61 determines whether the heating delay period L has elapsed from the start of the printing cycle T, based on the measuring result of the heating delay timer. If the heating delay period L has elapsed (YES at S5), the CPU 61 shifts the process to S8. If the heating delay period L has not elapsed (NO at S5), the CPU 61 stands by until the heating delay period L elapses (that is, until the start of the heating period H).
At S6, to which the process is to shift when the last printing cycle T is in a delayed state (see
At S7, the CPU 61 executes the delay restoration process. As illustrated in
For instance, if the heating delay period L in the last printing cycle T is made up of the first divided delay period La through the fourth divided delay period Ld (see
Upon shifting to S8, the CPU 61 outputs a control signal to the head driving circuit 68 based on a printing line data array 55 of the printing target, and starts to heat the heater elements 41. Thereby, power is supplied to the dots conforming to the heating condition in the printing line data array 55. Then the CPU 61 shifts the process to S9.
At S9, the CPU 61 determines whether the heating period H has elapsed. The heating period H is a predetermined time period, and the CPU 61 executes the determination by referring to the value of the timer 67, etc. If the heating period H has elapsed (YES at S9), the CPU 61 shifts the process to S11. If the heating period H has not yet elapsed (NO at S9), the CPU 61 shifts the process to S10.
Upon shifting to S10, the CPU 61 executes a next line data transfer process. In the next line data transfer process (S10), the CPU 61 transfers to the thermal head 41 a printing line data array 55 of the next printing target. Specifically, the CPU 61 transfers, to the thermal head 41, pulse data based on the printing line data array 55 of the next printing target. Then, the CPU 61 returns the process to S9. In
At S11, the CPU 61 determines whether printing based on the printing data 50 has been complete or not. That is, the CPU 62 determines the printing processes with respect to all the printing line data arrays 55 making up the printing data 50 has finished or not. If the printing based on the printing data 50 has been complete (YES at S11), the CPU 61 finishes the energization control process program. If there exists a printing line data array 55 (NO at S11), the CPU 61 shifts the process to S12.
At S12, the CPU 61 executes other processes. Here, the CPU 61 stops the energization to the heater elements 41A and starts the non-heating period C (see
Next, there will be discussed the relation between the printing cycle T based on the above-described energization control process program and the temperature at the thermal head 41, referring to
In the next printing cycle T (the center portion of
In the printing cycle T (on the right portion of
As discussed above, the tape printing apparatus 1 directed to the first embodiment executes printing based on the printing data 50, by controlling energization to the heater elements 41A arranged in lines on the thermal head 41, by a unit of a printing line data array 55 making up the printing data 50 per printing cycle T. The printing cycle T is made up of the heating period H and of the non-heating period C. The tape printing apparatus 1 is configured to start a heating period H concurrently with the start of the printing cycle T and to provide a non-heating period H after the heating period H elapses, in the printing cycle T.
The tape printing apparatus 1 prefetches print data when starting printing of the printing data. In at least two consecutive printing line data arrays 55 including a printing line data array 55 of the current printing target, if the number of heater elements 41A to be heated is equal to or more than a predetermined number, and at the same time the number of heater elements 41A to be heated at a printing line data array 55 of the next printing target is less than a predetermined number (YES at S3), the tape printing apparatus 1 sets a heating delay period L in the printing cycle T directed to the current printing line data array 55, and sets a heating period H after the end of the heating delay period L. Accordingly, the tape printing apparatus 1 can provide a heat delay period L (non-heating period C) of the current printing cycle T following the non-heating period C in the printing cycle T immediately before the current printing cycle T (see
The tape printing apparatus 1 sets the start of the heating period H earlier (see
In the tape printing apparatus 1, when the start of the heating period H is delayed from the start of the printing cycle T (YES at S2) in a printing cycle T immediately before the current printing cycle T, if “0” is counted as the number of the heater elements 41A to be heated based on the printing line data array 55 of the current printing target (YES at S6), the heating period H starts concurrently with the start of the printing cycle T, and the non-heating period C is provided after the elapse of the heating period H. As the number of the heater elements 41A to be heated is “0, there is no trouble in the printed result if the start of the heating period H is synchronized with the start of the current printing cycle T. Accordingly, the tape printing apparatus 1 can set the start of the heating period H in a normal state without causing any trouble in the printed result; thereby can provide a high quality printed result.
In the printing cycle T immediately before the current printing cycle T, even when the start of the heating period H is delayed in a unit of divided delay period (i.e., in the middle of gradually restoring the heating delay period L) as illustrated in
Although an embodiment of the present disclosure have been described in detail, it should be understood that it is not limited to the above embodiment, and that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention. For example, in the first embodiment, the thermal printer directed to the present disclosure is discussed referring to an example where the thermal printer is applied to the tape printing apparatus 1. However, the present disclosure is not limited to a tape printing apparatus. The present disclosure can be applied to various apparatuses if there is used a thermal head 41 in which a plurality of heater elements 41A are arranged in lines, and printing is performed by selectively energizing each of the plurality of heater elements 41A.
Further, in the first embodiment, the heating delay period L is divided into four periods and the heating delay period L is gradually restored in a unit of divided period (i.e., the first divided delay period La through the fourth divided delay period Ld), however, the disclosure is not limited to this configuration. For example, the number of the divided periods obtained by dividing the heating delay period L and stages (steps) needed to restore the heating delay period L are not limited to those discussed in the above embodiment.
Next, another embodiment (a second embodiment), which is different from the above first embodiment, will be discussed referring to the drawings. The tape printing apparatus 1 directed to the second embodiment has the same basic configuration as the tape printing apparatus 1 directed to the first embodiment, and only the control operation by the energization control program is different. Accordingly, the detailed description with respect to the basic configuration of the tape printing apparatus 1 directed to the second embodiment is omitted, and the control operation by the energization control program will be discussed in detail referring to the drawings.
Here, in the second embodiment, a printing line data array 55 which comes odd-number-th in the printing order in the printing data 50 is referred to as an odd line data array, and a printing line data piece 55 which comes even-number-th is referred to as an even line data array.
Then, an energization control process program directed to the second embodiment will be discussed referring to
First, at S21, the CPU 61 executes a printing line data process. In the printing line data process (S21), the CPU 61 prefetches the printing data 50 (see
At S22, the CPU 61 determines whether or not a heating start point in the current printing cycle T has come. If it is determined that a heating start point has come (YES at S22), the CPU 61 shifts the process to S23. If it is determined that a heating start point has not yet come (NO at S22), the CPU 61 stands by until the heating start point comes.
At S23, the CPU 61 determines whether or not the current printing target is an odd line data array. If it is determined the current printing target is an odd line data array (YES at S23), the CPU 61 shifts the process to S31. If the current printing target is an even line data array (NO at S23), the CPU 61 shifts the process to S24.
Here, the tape printing apparatus 1 directed to the second embodiment changes the configuration of a printing cycle T depending on whether the current printing target is an odd line data array or an even line data array. From now on, the above feature will be discussed referring to
Further, the heating period H is made up of a continued energization period Ec and a chopping energization period Ei. The continued energization period Ec is a time period in which energization to heater elements 41A is continuously performed to heat up the heater elements 41A. The chopping energization period Ei is a time period in which energization and non-energization to heater elements 41A are switched at predetermined time intervals so that the energization to the heater elements 41A is intermittently performed to heat up the heater elements 41A. A heating period H directed to the second embodiment is configured to have the chopping energization period Ei after the continued energization period Ec.
If the current printing target is an odd line data array, the printing cycle T is set to have a heating period H closer to the start of the printing cycle T, and have a non-heating period C after the elapse of the heating period H (see
The energization control process program will be discussed again, referring back to
When shifting to S25, based on the arrangement of dots conforming to the heating condition at the even line data array which is a printing target, the CPU 61 starts continued energization (i.e., continued energization period Ec) to the corresponding heater elements 41A. Then, the CPU 61 shifts the process to S26.
At S26, the CPU 61 determines whether the continued energization period Ec has ended or not. Specifically, the CPU 61 determines whether a predetermined time period has elapsed since the start of the continued energization period Ec. If it is determined that the continued energization period Ec has ended (YES at S26), the CPU 61 shifts the process to S27. If it is determined that the continued energization period Ec has not yet ended (NO at S26), the CPU 61 shifts the process to S28.
At S27, with the elapse of the continued energization period Ec, the CPU 61 starts chopping energization (i.e., a chopping energization period). Specifically, based on the arrangement of the dots conforming to the heating condition in an even line data array which is a printing target, the CPU 61 switches energization or non-energization to the corresponding heater elements 41A at predetermined intervals, for performing intermittent energization to the heater elements 41A. Then, the CPU 61 shifts the process to S29.
At S28, the CPU 61 executes a next line data transfer process. In the next line data transfer process (S28), the CPU 61 transfers a printing line data array 55 of the next printing target to the thermal head 41. Specifically, the CPU 61 transfers to the thermal head 41A pulse data based on odd line data of the next printing target. Then, the CPU 61 returns the process to S26. In
At S29, the CPU 61 determines whether the chopping energization period Ei has ended or not. Specifically, the CPU 61 determines whether a predetermined period has elapsed since the start of the chopping energization period Ei. If it is determined that the chopping energization period Ei has ended (YES at S29), the CPU 61 shifts the process to S30. If it is determined that the chopping energization period Ei has not yet ended (NO at S29), the CPU 61 puts the process in a standby state until the chopping energization period Ei ends.
At S30, the CPU 61 ends the heating period H along with the end of the chopping energization period Ei. Then, the CPU 61 shifts the process to S32. With the end of the heating period H, the printing cycle T directed to the even line data array ends. That is, as illustrated in
As discussed above, if the printing target is an odd line data array (YES at S23), the CPU 61 shifts the process to an odd line energization process (S31). In the odd line energization process (S31), the CPU 61 sets a printing cycle T and performs an energization control (energization to the heater elements 41A with respect to the heating period H) targeting the odd line data array. Details of the odd line energization process (S31) will be discussed later. When the odd line energization process (S31) ends, the CPU 61 shifts the process to S32.
After shifting to S32, the CPU 61 determines the printing based on the printing data 50 has ended or not. If it is determined that the printing based on the printing data 50 has ended (YES at S32), the CPU 61 ends the energization control process program. If there exists a printing line data array 55 which has not yet become a printing target (NO at S32), the CPU 61 shifts the process to S33.
At S33, the CPU 61 determines that the printing target is an odd line data array. If the printing target is an odd line data array (YES at S33), the CPU 61 shifts the process to S34. If the printing target is an even line data array (NO at S33), the CPU 61 returns the process to S22 and performs a printing process of the next printing line data array 55 (which is an odd line data array).
At S34, the CPU 61 executes other processes. Here, the CPU 61 provides a non-heating period C in a printing cycle T directed to an odd line data array which is a printing target. Then, the CPU 61 returns the process to S22. Accordingly, in the printing cycle directed to an odd line data array, the heating period C is arranged closer to the end of the printing cycle T (see
Next, an odd line energization process program according to the second embodiment will be discussed in detail referring to
At S41, the CPU 61 starts measuring at a first correction timer. As illustrated in
At S42, the CPU 61 determines whether the continued energization period Ec in the printing cycle T directed to the odd line data array which is a printing target has ended or not. If it is determined that the continued energization period Ec has ended (YES at S42), the CPU 61 shifts the process to S45. If it is determined that the continued energization period Ec has not yet ended (NO at S42), the CPU 61 shifts the process to S43.
Shifting to S43, the CPU 61 determines whether or not the first correction period D has ended, based on the value of the first correction timer. If it is determined that the first correction period D has ended (YES at S43), the CPU 61 shifts the process to S44. If it is determined that the first correction period D has not yet ended (NO at S43), the CPU 61 stands by until the first correction period D ends.
At S44, the CPU 61 executes a continued energization process program. In the continued energization process program (S44), the CPU 61 starts continued energization to the corresponding heater elements 41A (that is, continued energization period Ec), based on the arrangement of dots which conform to the heating condition in the odd line data array which is a printing target. Then the CPU 61 returns the process to S42.
Upon printing the printing data 50, with respect to the first printing line data array 55 (that is, the odd line data array which comes first in the order), the CPU 61 performs the determination of S43, while setting a standard time for the determination with respect to the first correction period D to be “0”. Thereby, in the printing cycle T directed to the odd line data array, the continued energization period Ec can be started concurrently with the start of the printing cycle T, and it can be made to have a configuration similar to that of
At S45, the CPU 61 starts a chopping energization (that is, the chopping energization period Ei) with the end of the continued energization period Ec. Specifically, based on the arrangement of the dots which conform to the heating condition in an even line data array which is a printing target, the CPU 61 switches energization or non-energization to the corresponding heater elements 41A in predetermined intervals for performing intermittent energization to the heater elements 41A. Then, the CPU 61 shifts the process to S46.
At S46, the CPU 61 starts measuring at a second correction timer. As illustrated in
At S47, the CPU 61 determines whether the chopping energization period Ei in the printing cycle T directed to the odd line data array which is a printing target has ended or not. Specifically, the CPU 61 performs the determination based on whether a process of S49 to be later described has been executed or not. If it is determined that the chopping energization period Ei has ended (YES at S47), the CPU 61 shifts the process to S50. If it is determined that the chopping energization period Ei has not yet ended (NO at S47), the CPU 61 shifts the process to S48.
Shifting to S48, the CPU 61 determines whether or not the start of the second correction period F has come, based on the value of the second correction timer. If it is determined that the start of the second correction period F has come (YES at S48), the CPU 61 shifts the process to S49. If it is determined that the second correction period F has not yet ended (NO at S48), the CPU 61 returns the process to S47, and continues the chopping energization until the start of the second correction period F comes.
Upon printing the printing data 50, with respect to the first printing line data array 55 (that is, the odd line data array which comes first in the order), the CPU 61 performs the determination of S48, while setting a standard time for the determination with respect to the second correction period F to be “a predetermined value (e.g., a value indicating the same moment as the end of the heating period H of FIG. 12A).” Thereby, the printing cycle T directed to the odd line data array can be made to have a configuration similar to that of
Shifting to S49, the CPU 61 performs a chopping energization end process. In the chopping energization end process (S49), triggered by the start of the second correction period F, the CPU 61 ends the chopping energization period Ei. Here, the CPU 61 sets a flag indicating that the chopping energization period Ei has ended. Accordingly, the CPU 61 in the above S47 determines whether or not the chopping energization period Ei has ended based on the existence or non-existence of the flag.
At S50, the CPU 61 ends the heating period H with the end of the chopping energization period Ei. Then, the CPU 61 shifts the process to S51. With the end of the heating period H, all the time periods in the printing cycle T directed to the odd line data array are terminated, except the non-heating period C. In the printing cycle T directed to the odd line data array, the non-heating period C is realized by S34 and S22 as described above. Thereby, as depicted in
At S51, the CPU 61 executes a next line data transfer process. In the next line data transfer process (S51), the CPU 61 transfers a printing line data array 55, which is the next printing target (that is, an even line data array), to the thermal head 41. Then, the CPU 61 ends the odd line energization process program, and shifts the process to S32, which is an energization control process program (see
Next, there will be described a relation between a temperature of a thermal head 41 and a printing cycle T based on the energization control process program and on the odd line energization process program, referring to
First, in the printing cycle T directed to the odd line data array which comes first (the left portion of
In the printing cycle T of the even line data array which comes second (the center portion of
In a printing cycle T of the odd line data array which comes third (the right portion of
Incidentally, a configuration of a printing cycle T of the even line data array which comes fourth is the same as the above-described printing period directed to the even line data array which comes second. That is, a non-heating period C in the fourth printing cycle T follows the sequence of the second correction period F and the non-heating period C in the third printing cycle T. Accordingly, a longer non-heating period C can be secured so that the tape printing apparatus 1 can sufficiently decrease the temperature of the thermal head 41, and can prevent printing quality from being deteriorated due to heat storage of the thermal head 41.
As has been described, the tape printing apparatus 1 directed to the second embodiment controls energization to heating elements 41A aligned in a thermal head 41 in a unit of a printing line data array 55 making up printing data 50, in each printing cycle T, for performing printing based on the printing data 50. The printing cycle T is made up of a heating period H and a non-heating period C.
Further, the tape printing apparatus 1 alternately changes the configuration of a printing cycle T, by distinguishing an odd line data array and an even line data array based on a printing order in printing data 50. In a printing cycle T directed to an odd line data array, a heating period H (a continued energization period Ec and a chopping energization period Ei) is set closer to the start of the printing cycle T, and following the elapse of the heating period H, a non-heating period C is provided. Meanwhile, in the printing cycle T directed to an even line data array, a non-heating period C is set closer to the start of the printing cycle T, and following the elapse of the non-heating period C, a heating period H is provided. Accordingly, in the continuation of a printing cycle T directed to an odd line data array and a printing cycle T directed to an even line data array, non-heating periods C are consecutively provided (see
In addition, the tape printing apparatus 1 provides a first correction period D before a continued energization period Ec in a printing cycle T directed to an odd line data array which becomes a printing target consecutive to an even line data array, thus making it possible to shorten a continued energization period Ec in the printing cycle T, as well as to lengthen a non-heating period C in the printing cycle T. Accordingly, the tape printing apparatus 1 can dissipate the heat stored in the thermal head 41 satisfactorily and can prevent occurrence of trailing etc. in a printed result. Further, the tape printing apparatus 1 can cope with the high-speed printing without using a special component (such as a component with high withstand voltage). Moreover, the tape printing apparatus 1 can efficiently utilize heat generated during a printing cycle T directed to an even line data array, so that excellent printing can be achieved even if there is shortened a heating period H directed to an odd line data array which immediately follows the even line data array.
Further, the tape printing apparatus 1 provides a second correction period F before a chopping energization period Ei in a printing cycle T directed to an odd line data array which becomes a printing target consecutive to an even line data array, thus making it possible to shorten a chopping energization period Ei in the printing cycle T, as well as to lengthen a non-heating period C in the printing cycle T. Accordingly, the tape printing apparatus 1 can dissipate the heat stored in the thermal head 41 satisfactorily and can prevent occurrence of trailing etc. in a printed result. Further, the tape printing apparatus 1 can cope with the high-speed printing without using a special component (such as a component with high withstand voltage). Moreover, the tape printing apparatus can efficiently utilize heat generated during the printing cycle T directed to an even line data array, so that excellent printing can be achieved even if there is shortened a heating period H directed to an odd line data array which immediately follows the even line data array.
Although an embodiment of the present disclosure have been described in detail, it should be understood that it is not limited to the above embodiment, and that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention. For example, in the second embodiment, a first correction period D and a second correction period F are provided in a printing cycle T directed to an odd line data array which becomes a printing target consecutive to an even line data array, so as to shorten both the continued energization period Ec and the chopping energization period Ei, however, this disclosure is not limited to this embodiment. That is, it may be configured to shorten only the continued energization period Ec, or may be configured to shorten only the chopping energization period Ei.
Further, the second embodiment is discussed referring to an example in which the thermal printer directed to the present disclosure is applied to the tape printing apparatus 1, however, this disclosure is not limited to a tape printing apparatus. The present disclosure can be applied to various kinds of apparatuses if printing is performed therein through using a thermal head 41 where a plurality of heater elements 41A are arranged in lines and through selectively energizing each of the plurality of heater elements 41A.
While presently exemplary embodiments have been shown and described, it is to be understood that this disclosure is for the purpose of illustration and that various changes and modifications may be made without departing from the scope of the disclosure as set forth in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2010-084498 | Mar 2010 | JP | national |
2010-084499 | Mar 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4127883 | Mestdagh | Nov 1978 | A |
4567488 | Moriguchi et al. | Jan 1986 | A |
4880325 | Ueda et al. | Nov 1989 | A |
4892425 | Shimizu et al. | Jan 1990 | A |
4915516 | Shimizu et al. | Apr 1990 | A |
4927278 | Kuzuya et al. | May 1990 | A |
4983058 | Nagae | Jan 1991 | A |
5188469 | Nagao et al. | Feb 1993 | A |
5203951 | Hattori et al. | Apr 1993 | A |
5223939 | Imaizumi et al. | Jun 1993 | A |
RE34521 | Shimizu et al. | Jan 1994 | E |
5277503 | Nagao | Jan 1994 | A |
5348406 | Yoshiaki et al. | Sep 1994 | A |
5350243 | Ichinomiya et al. | Sep 1994 | A |
5374132 | Kimura | Dec 1994 | A |
5411339 | Bahrabadi et al. | May 1995 | A |
5419648 | Nagao et al. | May 1995 | A |
5429443 | Kobayashi et al. | Jul 1995 | A |
5466076 | Kobayashi et al. | Nov 1995 | A |
5494362 | Kobayashi et al. | Feb 1996 | A |
5538352 | Sugiura | Jul 1996 | A |
5540510 | Sims et al. | Jul 1996 | A |
5564843 | Kawaguchi | Oct 1996 | A |
5593237 | Nozaki et al. | Jan 1997 | A |
5620268 | Yamaguchi et al. | Apr 1997 | A |
5653542 | Sugimoto et al. | Aug 1997 | A |
5659441 | Eckberg et al. | Aug 1997 | A |
5727888 | Sugimoto et al. | Mar 1998 | A |
5730536 | Yamaguchi | Mar 1998 | A |
5771803 | Takami | Jun 1998 | A |
5813773 | Kawai | Sep 1998 | A |
5825724 | Matsumoto et al. | Oct 1998 | A |
5964539 | Yamaguchi et al. | Oct 1999 | A |
6042280 | Yamaguchi et al. | Mar 2000 | A |
6048118 | Martinez et al. | Apr 2000 | A |
6059469 | Hirumi | May 2000 | A |
6116796 | Yamaguchi et al. | Sep 2000 | A |
6132120 | Yamaguchi et al. | Oct 2000 | A |
6168328 | Ueda et al. | Jan 2001 | B1 |
6190069 | Yamaguchi et al. | Feb 2001 | B1 |
6196740 | Yamaguchi et al. | Mar 2001 | B1 |
6317156 | Nagasaki et al. | Nov 2001 | B1 |
6334724 | Yamaguchi et al. | Jan 2002 | B2 |
6406202 | Unno et al. | Jun 2002 | B1 |
6435744 | Dunn et al. | Aug 2002 | B1 |
6476838 | Italiano | Nov 2002 | B1 |
6485206 | Takahashi | Nov 2002 | B1 |
6520696 | Huss et al. | Feb 2003 | B2 |
6709179 | Yamaguchi et al. | Mar 2004 | B2 |
6801233 | Bhatt et al. | Oct 2004 | B2 |
7121751 | Harada et al. | Oct 2006 | B2 |
7128483 | Harada et al. | Oct 2006 | B2 |
D534203 | Harada et al. | Dec 2006 | S |
7166558 | Bhatt et al. | Jan 2007 | B2 |
D542334 | Harada et al. | May 2007 | S |
7304658 | Naito et al. | Dec 2007 | B2 |
7388686 | Saquib et al. | Jun 2008 | B2 |
7791626 | Busch et al. | Sep 2010 | B2 |
7830455 | Hsieh et al. | Nov 2010 | B2 |
7965308 | Jauert et al. | Jun 2011 | B2 |
8045288 | Ota et al. | Oct 2011 | B2 |
8098269 | Busch et al. | Jan 2012 | B2 |
8109684 | Yamaguchi | Feb 2012 | B2 |
8162553 | Vandermeulen | Apr 2012 | B2 |
8164609 | Liu et al. | Apr 2012 | B2 |
20020006303 | Yamaguchi et al. | Jan 2002 | A1 |
20020012558 | Huss et al. | Jan 2002 | A1 |
20020047063 | Kaneda et al. | Apr 2002 | A1 |
20040233269 | Tsubota | Nov 2004 | A1 |
20050172981 | Byun | Aug 2005 | A1 |
20060204304 | Hioki et al. | Sep 2006 | A1 |
20060233582 | Horiuchi | Oct 2006 | A1 |
20060239743 | Naito | Oct 2006 | A1 |
20070009306 | Harada et al. | Jan 2007 | A1 |
20070035610 | Naito | Feb 2007 | A1 |
20070041772 | Harada et al. | Feb 2007 | A1 |
20070070168 | Mindler et al. | Mar 2007 | A1 |
20070237562 | Kato et al. | Oct 2007 | A1 |
20080050160 | Yamaguchi et al. | Feb 2008 | A1 |
20080080922 | Vandermeulen | Apr 2008 | A1 |
20080181708 | Yamaguchi et al. | Jul 2008 | A1 |
20080226373 | Yamaguchi et al. | Sep 2008 | A1 |
20080310904 | Yamaguchi et al. | Dec 2008 | A1 |
20090016795 | Caveney et al. | Jan 2009 | A1 |
20090202283 | Kumazaki et al. | Aug 2009 | A1 |
20110058884 | Kato et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
0329369 | Aug 1989 | EP |
0511602 | Nov 1992 | EP |
0629509 | Dec 1994 | EP |
0644506 | Mar 1995 | EP |
0684143 | Nov 1995 | EP |
0734878 | Oct 1996 | EP |
1199179 | Apr 2002 | EP |
1284196 | Feb 2003 | EP |
1516739 | Mar 2005 | EP |
1700705 | Sep 2006 | EP |
1707395 | Oct 2006 | EP |
2236304 | Oct 2010 | EP |
58-139415 | Sep 1983 | JP |
6-328800 | Nov 1984 | JP |
60-99692 | Jun 1985 | JP |
63-166557 | Jul 1988 | JP |
63-203348 | Aug 1988 | JP |
63-254085 | Oct 1988 | JP |
3-093584 | Apr 1991 | JP |
3-120680 | May 1991 | JP |
3063155 | Sep 1991 | JP |
5-16342 | Mar 1993 | JP |
3-118672 | Sep 1993 | JP |
5-78565 | Oct 1993 | JP |
5-80765 | Nov 1993 | JP |
5-294051 | Nov 1993 | JP |
6-12053 | Feb 1994 | JP |
6-21953 | Mar 1994 | JP |
6-124406 | May 1994 | JP |
6-152907 | May 1994 | JP |
6-53560 | Jul 1994 | JP |
6-183117 | Jul 1994 | JP |
6-191081 | Jul 1994 | JP |
6-210889 | Aug 1994 | JP |
H06-74348 | Oct 1994 | JP |
7-1805 | Jan 1995 | JP |
7-9743 | Jan 1995 | JP |
7-25123 | Jan 1995 | JP |
7-47737 | Feb 1995 | JP |
7-314866 | Feb 1995 | JP |
7-61009 | Mar 1995 | JP |
7-69497 | Mar 1995 | JP |
7020725 | Mar 1995 | JP |
7-89196 | Apr 1995 | JP |
7-101133 | Apr 1995 | JP |
7-108702 | Apr 1995 | JP |
H07-089115 | Apr 1995 | JP |
7-137327 | May 1995 | JP |
7-40456 | Jul 1995 | JP |
7-237314 | Sep 1995 | JP |
7-251539 | Oct 1995 | JP |
7-276695 | Oct 1995 | JP |
7-276695 | Oct 1995 | JP |
7-290803 | Nov 1995 | JP |
7-314864 | Dec 1995 | JP |
H07-314865 | Dec 1995 | JP |
8-25768 | Jan 1996 | JP |
8-39909 | Feb 1996 | JP |
8-58211 | Mar 1996 | JP |
8-118738 | May 1996 | JP |
8-252964 | Oct 1996 | JP |
8-267839 | Oct 1996 | JP |
8-290618 | Nov 1996 | JP |
2596263 | Apr 1997 | JP |
9-134557 | May 1997 | JP |
9-141986 | Jun 1997 | JP |
9-188049 | Jul 1997 | JP |
9-188050 | Jul 1997 | JP |
10-056604 | Feb 1998 | JP |
10-181063 | Jul 1998 | JP |
11-78188 | Mar 1999 | JP |
11-105351 | Apr 1999 | JP |
11-129563 | May 1999 | JP |
11-263055 | Sep 1999 | JP |
3543659 | Sep 1999 | JP |
2000-25251 | Jan 2000 | JP |
2998617 | Jan 2000 | JP |
2000-43336 | Feb 2000 | JP |
2000-85224 | Mar 2000 | JP |
2000-103129 | Apr 2000 | JP |
2000-103131 | Apr 2000 | JP |
2000-135843 | May 2000 | JP |
2000-198258 | Jul 2000 | JP |
2001-11594 | Jan 2001 | JP |
2001-48389 | Feb 2001 | JP |
4-37575 | May 2001 | JP |
2001-121797 | May 2001 | JP |
2001-310540 | Nov 2001 | JP |
2001-319447 | Nov 2001 | JP |
2002-42441 | Feb 2002 | JP |
3266739 | Mar 2002 | JP |
2002-104568 | Apr 2002 | JP |
2002-179300 | Jun 2002 | JP |
2002-308481 | Oct 2002 | JP |
2002192769 | Oct 2002 | JP |
2002-367333 | Dec 2002 | JP |
3357128 | Dec 2002 | JP |
2003-048337 | Feb 2003 | JP |
2003-251902 | Sep 2003 | JP |
2003-285522 | Oct 2003 | JP |
4-133756 | May 2004 | JP |
2004-291591 | Oct 2004 | JP |
2004-323241 | Nov 2004 | JP |
2005-088597 | Apr 2005 | JP |
2005-231203 | Sep 2005 | JP |
2005-280008 | Oct 2005 | JP |
2005297348 | Oct 2005 | JP |
4061507 | Nov 2005 | JP |
2006096030 | Apr 2006 | JP |
2006-142835 | Jun 2006 | JP |
2006-182034 | Jul 2006 | JP |
2006-240310 | Sep 2006 | JP |
2006-248059 | Sep 2006 | JP |
2006-272895 | Oct 2006 | JP |
2006-272977 | Oct 2006 | JP |
2006-289991 | Oct 2006 | JP |
2007-196654 | Aug 2007 | JP |
2007-296863 | Nov 2007 | JP |
4003068 | Nov 2007 | JP |
5-63067 | Apr 2008 | JP |
2008-80668 | Apr 2008 | JP |
2008-509823 | Apr 2008 | JP |
2008083432 | Apr 2008 | JP |
2008-229855 | Oct 2008 | JP |
2009-28976 | Feb 2009 | JP |
2009-509812 | Mar 2009 | JP |
2009-184832 | Aug 2009 | JP |
5-155067 | Mar 2010 | JP |
2011-110843 | Jun 2011 | JP |
2011-110845 | Jun 2011 | JP |
2011-110848 | Jun 2011 | JP |
5-54225 | Oct 2012 | JP |
2000032401 | Jan 2000 | WO |
03080350 | Oct 2003 | WO |
2006024913 | Mar 2006 | WO |
2006090842 | Aug 2006 | WO |
2009107534 | Sep 2009 | WO |
Entry |
---|
Japanese Office Action of JP 2010-084500 dated Jul. 13, 2012. |
Japanese Office Action of JP 2010-084501 dated Jul. 3, 2012. |
Japanese Office Action of JP 2010-084502 dated Jul. 3, 2012. |
Notification of reasons for rejection issued in the related Japanese Application No. 2009-088241, Nov. 15, 2011, JPO, Japan. |
International Preliminary Report on Patentability of PCT/JP2009/071812 dated Aug. 14, 2012. |
Japanese Office Action of JP 2009-086172 dated Sep. 11, 2012. |
Japanese Office Action of JP 2009-088449 dated Sep. 11, 2012. |
Japanese Office Action of JP 2010-084500 dated Jul. 3, 2012. |
European Communication of EP 10711477.9 dated Sep. 6, 2012. |
NZ Examination Report of NZ 596044 dated Sep. 28, 2012. |
International Preliminary Report on Patentability in PCT/JP2009/071568 on Nov. 15, 2011. |
International Preliminary Report on Patentability in PCT/JP2010/055324 on Nov. 15, 2011. |
International Preliminary Report on Patentability in PCT/JP2010/055326 on Nov. 15, 2011. |
International Preliminary Report on Patentability in PCT/JP2010/050253 on Nov. 15, 2011. |
Japanese Office Action in JP 2010-041323 on May 22, 2012. |
Japanese Office Action in JP 2010-084499 on Jun. 12, 2012. |
Japanese Office Action in JP 2008-331639 on Mar. 27, 2012. |
Japanese Office Action in JP 2008-331638 on Mar. 27, 2012. |
Japanese Office Action in JP 2009-156405 on Mar. 27, 2012. |
Japanese Office Action in JP 2009-156406 on Mar. 27, 2012. |
Japanese Office Action in JP 2009-156407 on Mar. 27, 2012. |
Japanese Office Action in JP 2009-270221 on Mar. 27, 2012. |
Japanese Office Action in JP 2009-086239 on May 8, 2012. |
Japanese Office Action in JP 2009-086222 on Jun. 12, 2012. |
International Preliminary Report on Patentability in PCT/JP2010/055310 on Apr. 1, 2012. |
Japanese Office Action of JP 2009-270056 dated Nov. 13, 2012. |
Japanese Office Action of JP 2009-297502 dated Nov. 13, 2012. |
Number | Date | Country | |
---|---|---|---|
20110242255 A1 | Oct 2011 | US |