Thermal printhead load adjustment mechanism

Information

  • Patent Grant
  • 6353453
  • Patent Number
    6,353,453
  • Date Filed
    Friday, January 7, 2000
    24 years ago
  • Date Issued
    Tuesday, March 5, 2002
    22 years ago
Abstract
A mounting slider bracket for a card printer thermal printhead is supported between a spring and the printhead, and can be adjusted laterally relative to the printhead to shift the center of force that loads the printhead against the ribbon and a card that is being printed. The ability to change the location of the application of force on the printhead permits centering the force when a card of different width is fed from a supply through the printhead. Uniform printing will occur on cards regardless of the width, when properly adjusted by the operator.
Description




BACKGROUND OF THE INVENTION




The present invention relates to a loading device for a thermal printhead so that the load on the printhead and thus the center of force urging the printhead against a thermal transfer ribbon and a substrate on which printing is to occur is controllable and adjustable.




Identification card printers are well known in the art. Dye sublimation and thermal resin printing technology are used to print a photo realistic image on an identification card or substrate made up of plastic or some similar material such as polyester, polyvinyl-chloride (PVC), or PETG.




In the card printing industry, a standard size card has been used by all printer manufacturers when designing the printers. Hoppers to hold cards, pinch or drive rollers to move the cards through the printer, ribbon size, and lamination stations all are designed with the standard size card size of 2.125 inches by 3.375 inches (known in the industry as a CR-80 size card). Some printers, such as the Fargo Electronics Inc. model 4250 have the capability to handle larger size cards, such as cards in sizes of 2.375 inches by 3.625 (known in the industry as a CR-90 card) and 2.625 inches by 3.875 inches (known in the industry as a CR-100 card).




In order to have good image quality, many factors must be designed into the printer. Printing is accomplished by the printhead pixels being fired or heated under control of an outside computing device. The pixels produce heat, and a dye sublimation or thermal resin ribbon is positioned between the printhead and the identification card. As the pixels are fired and heated, the dye on the ribbon releases from the carrier and is sublimated into the identification card, or in the case of thermal resin ribbon, the heat from the pixels causes the resin to release from the carrier and bond to the surface of the identification card. One of the factors in the design of the printer that must be carefully considered is that the printhead in the printer must maintain a suitable pressure on the ribbon and the card so that a uniform transfer of resin or dye is accomplished. If the pressure on the card is unequal across the width of the card, the heat generated by the firing of the pixels in the printhead will be uneven and will cause the dye to sublimate at uneven rates, which results in a card that is not uniform in terms of the print quality since the ink has sublimated or transferred unevenly. The end users of such cards will not accept such print quality.




Since most printers are designed simply to accommodate one size card, that of the CR-80, the manufacturers of the printer have opted to fix the position where the center of force is applied to the printhead to the center of the CR-80 card. In some cases, this option will also work for the larger CR-90 cards since the overall dimensions are not so significantly different from the CR-80 card as to prevent a reasonably even application of the dyes from occurring. However, this is not the case when the card sizes are smaller and vary from the CR-80 card size more widely than do the CR-90 cards. The present printer has the capability to print on varying sizes of card by permitting lateral adjustment of the center of force application.




The invention described is a mechanism that moves the pressure point of the printhead on a horizontal plane so that it can be adjusted to be flexibly centered on a blank identification card of any size as long as it will fit in the size parameters of the printhead.




SUMMARY OF THE INVENTION




The present invention comprises a laterally adjustable mounting for a printhead that permits accurate application of dye sublimation and resin images to a rigid plastic card by insuring that there is an even force distribution over the line on the printhead that engages the card. The mounting permits changing of the lateral position of the center of application of force on the thermal printhead to accommodate centering the force on rigid plastic cards of a variety of widths. The changing of the lateral position of the application force on the thermal printhead optimizes the performance of the thermal printhead printing mechanism for various widths of substrates.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of a printhead including a mounting of the present invention;





FIG. 2

is a view similar to

FIG. 1

with the parts for mounting exploded for showing details of the invention;





FIG. 3

is a side view of the printhead with a side mounting plate removed;





FIG. 4

is a fragmentary enlarged sectional view of the force applying components;





FIG. 5

is a sectional view taken on line


5





5


in

FIG. 4

; and





FIG. 6

is a schematic representation of another way of guiding the slider relative to the spring.











DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENTS




A thermal printhead


10


of an identification card printer, as shown in

FIG. 3

in schematic form at


40


is typically mounted into a printer by attaching two- side mounting brackets


12


to the sides of the printhead


10


by a standard screw


13


and on the top of the printhead by a standard screw


31


designed to fit into screw slots made by the manufacturer of the printhead. The mounting brackets


12


have guide slots


15


and their lower ends allowing for the assembly of the printhead


10


and brackets


12


to be guided to a precise location by fitting over a shaft


42


of a platen


44


associated with the printhead. The assembly of the printhead


10


and the brackets


12


is attached to the printer by means of adjustable screws so that the assembly has the requisite space to allow a ribbon


46


and identification card


48


to pass between the printhead and the platen


44


.




The ribbon


46


is wound on a roller or core


50


which is held in place by two endcaps on springs which allow the core to be inserted or removed easily from the printer


40


. A second core


52


is used to take up the ribbon, and is positioned on a second set of endcaps and also on springs so that the core can be removed. The ribbon cores have a direct current motor


50


A and a friction device with an angular sensor


52


A attached to drive shafts for the cores to move the ribbon forward and the ribbon motion is controlled and predictable. A computer is used for control of the ribbon in a typical printer arrangement well known in the art, for example, in card printers made and sold by Fargo Electronics, Inc. of Eden Prairie, Minn., the assignee of the present application.




An identification card


48


is moved from a card hopper


56


and to and from the printhead by a series of pinch and drive rollers


58


which are driven by stepper motors


60


, in a normal manner. The cards can be driven both forward and rearward, using rollers driving in the manner disclosed in U.S. Pat. No. 5,941,522. Since the ribbon


46


has panels of each printing color (cyan, magenta, yellow, black), card


48


is moved forward as each color panel is printed and then backward to its original starting position so the next panel of color can be applied.




Platen


44


acts as a feed roller and is driven with a motor


43


, to move the card


48


and provide the base or reaction surface on which the card


48


rests while the printing takes place. In order to put pressure on the printhead so that it is held against the ribbon


46


and the card


48


when printing with a sufficient force, a leaf spring


17


is mounted to exert a force on the top of the printhead


10


and has a base end attached to a cross member


62


on the printer frame, in a suitable manner. The spring


17


is a flat, cantilever spring, as shown in

FIGS. 2 and 3

, and is made of a metal or other rigid spring material. Mounting holes


18


are used at the base end for attaching it to the cross member. The other or free end of the spring


17


is bent at a 90° angle to form a flange


20


with a transverse or lateral mounting slot


19


cut into the flange. A second flange or lip


21


is also formed at the lower edge of the flange


20


so that the end of the spring faces away from the printhead.




A loading bracket


39


is formed as a slider that can be moved laterally relative to the printhead, and which is positioned to transfer loads from the spring to the printhead


10


for printing. The slider or bracket


39


has a narrow top rib


22


that has a narrow top edge, as shown, and which is engaged by the spring


17


. The only load transferred from the spring


17


to the slider or bracket


39


is through this top rib


22


, which is centered in a longitudinal direction of the slider or bracket


39


. The slider or bracket


39


also has a recess


38


that is of size to receive the upper portions of the printhead. A surface


38


A is formed at one end of the recess


38


and provides a guiding surface along the backside of a plate


35


which is positioned at the backside of the printhead


10


, and is secured in place on the printhead.




It can be seen in

FIG. 5

that the rib


22


is thinner than the full width of the slider or bracket


39


, and juts upwardly from the bracket so that the spring


17


only contacts the top of the rib


22


. This rib


22


is positioned perpendicular to the printhead and parallel to the direction of movement of the ribbon


46


and identification card


48


. The slider or bracket


39


has a forward slider portion


32


that fits against the flange


20


of the spring


17


, as shown in

FIGS. 3 and 4

. The slider or bracket


39


also has a loading rib or flange


26


in recess


38


that extends from the top surface of the recess downwardly farther than other portions of the recess walls, and is used for transferring spring loads to the printhead. The rib


26


extends transversely along the width of the bracket, as can be seen in FIG.


2


.




In order to transfer the loads from the rib


26


to the printhead itself, the printhead has two mounting plates


27


and


28


which are shown in

FIGS. 3 and 4

. These plates


27


and


28


are formed so that they are contiguous, and held tightly onto the printhead frame with suitable mounting screws


29


and


31


. The plates


27


and


28


have flanges


28


A and


27


A that extend over the printhead and which fit into the recess


38


that is formed in the slider or bracket


39


. The flanges


27


A and


28


A are held together with a screw assembly


31


that holds the top of the printhead


10


steady together so that with the plate


35


there is a rigid structure around the printhead


10


. When it is mounted, the assembly of the plates


27


and


28


allows the printhead to apply pressure along the length of the printhead.




The rear plate


35


connects to the front bracket


27


to provide an outer framework


29


A around the printhead, so that there is a secure mounting.




As stated, the framework


29


A and printhead


10


fit inside the recess


38


of the slider or bracket


39


, so that the bracket


39


can slide along the frame


29


A, with the loading flange


26


bearing against surfaces of the frame such as an upturned rib


27


B on plate


27


, to provide the load application line.




A shouldered screw or bolt


24


threads into the front slider portion


32


of the slider or bracket


39


. The screw or bolt


24


extends through the slot and can be used as a guide for the slider, as well as providing end stops. If desired the screw can be tightened lightly to hold the flange


20


. The friction of the flange against the front surface of the slider flange


32


, will hold the slider bracket


39


adequately relative to the spring


17


in a desired, adjustable lateral position along the slot


19


. In each case it is held by friction and no tools are required. A retainer projection can be molded into the slider either on the front or on the top that would be a guide through a slot with the force or the spring creating enough friction to hold the slider.




Since the flange


26


extends in a downward direction from the rest of the slider or bracket


39


, it is the sole mechanism for transferring pressure or force from the spring


17


to the printhead


10


.




By laterally shifting the slider or bracket


39


along slot


19


and tighten screw


24


, the application line of the spring load for printing applied by the spring


17


onto rib


22


is changed along length of the printhead, and can be made to be off center if desired. Since the cards that are printed are guided along one edge of the printhead


10


, the slider or bracket


39


can be moved laterally so the rib


22


is centered above the card


48


that is moving under the printhead


10


, and permit the operator to center the load or force applied through the rib


22


and flange


26


onto the printhead over the center of the card. The spring will bear against the slider and provide a friction load sufficient to hold the slider without a screw, if desired.




In

FIG. 6

, a modified form of the invention is shown and comprises a flat spring


70


that can be mounted as previously shown onto the framework, and can be used against a slider


72


that works as in the previous form of the invention as well. The slider


72


has a rib


74


in the center, and a molded in headed fastener


76


that extends upwardly, and which can be received in a slot


78


in the spring


70


. The fastener can have a head that is narrow in one direction and long in the other, and then can be placed through the slot


78


and then the spring twisted 90° to hold the fastener in place in the slot. The molded fastener


76


does not exert any tightening force, but the force of the spring bearing against the rib


74


exerts the force onto the printhead as previously described, and the friction between the two parts will hold the slider adequately until it is manually shifted. The spring


70


provides an adequate downward pressure in this manner.




The main reason for the slots


78


and


19


is so that the slider is retained during head replacement and to provide end stops for the slider at the extreme ends of the slider travel.




The operator can quickly change the position of the slider or bracket


39


over the length of the top of the printhead bracket and rib


27


B. Again the flange


20


is not needed on the spring as shown in FIG.


6


.




By doing the adjustment, the printhead pressure can be applied to the center of a card that is not the standard CR-80 card size, as well as to the center of the standard size card.




The amount of movement of the slider or bracket


39


is controlled by the length of slot


19


, and is adequate for accommodating centering the force along the lateral width of cards presently in existence.




Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.



Claims
  • 1. A mounting mechanism for applying pressure to a printhead that has a print line along a selected axis, the mounting mechanism comprising a frame, a spring supported on the frame, the spring having a portion in registry with the printhead, and a slider adjustably secured to the spring and having a portion for engaging the printhead and exerting a spring load onto the printhead, said slider being adjustable relative to the spring for positioning the slider at selected locations for exerting the spring load along the axis of the printhead.
  • 2. The mounting mechanism of claim 1, wherein said slider has a narrow rib extending perpendicular to the axis of the printhead for engaging the portion of the printhead for exerting the force from the spring to the printhead.
  • 3. The mounting mechanism of claim 1, wherein said slider has a rib that extends perpendicular to the selected axis of the printhead, the rib having a narrow surface engaging the spring, the narrow surface being the sole surface for transferring force between the spring and the slider.
  • 4. The mounting mechanism of claim 3, wherein said printhead has a framework including side wall portions and a top portion, the slider being spring loaded against the top portion.
  • 5. The mounting mechanism of claim 4, wherein said slider has a recess for receiving an upper portion of the framework of the printhead.
  • 6. The mounting mechanism of claim 5, wherein said recess in the slider forms a slider flange, the spring being a leaf spring, a slot formed on the leaf spring facing the slider flange, and a member extending through the slot and secured to the slider.
  • 7. The mounting mechanism of claim 1 and means providing a friction force to retain the position of the slider relative to the spring.
  • 8. The mounting mechanism of claim 1, wherein said spring is a flat leaf spring and has a slot for receiving a retainer member to limit travel of the slider.
  • 9. The mounting mechanism of claim 1, wherein said spring is a leaf spring that has a plane, a flange extending substantially perpendicular to the plane of the leaf spring, and the flange being positioned to one side of the slider, a slot formed in the flange extending parallel to the printhead axis, and a member in the slot secured to the slider.
  • 10. A printhead mounting comprising a leaf spring having a lateral width in an axial direction of a printhead, and formed as a cantilever with one end of the leaf spring mounted onto a printer frame supporting the printhead, and a free end of said leaf spring being positioned to apply a force onto the printhead, a slider mechanism for movement in direction of the width of the leaf spring, the slider being adjustably connected to the leaf spring and securable at selected lateral positions, the slider being positioned to rest against the printhead.
  • 11. The printer mounting device of claim 10, wherein said slider has a rib extending perpendicular to an axis of the printhead and wherein the leaf spring rests against the rib to provide a force for urging the slider toward a printhead.
  • 12. The printer mounting device according to claim 10, wherein said leaf spring has a flange bent at substantially 90° to the plane of the leaf spring, a slot being mounted in the flange, and the slider having a surface that rests against the flange, and a retainer extending through the slot and secured to the slider.
  • 13. A combination printhead and spring loading device for urging the printhead toward a platen and supported substrate, the device comprising a printhead having a frame with an upper end portion, a surface on the frame, a slider mounted for sliding in a direction generally parallel to a print line formed by said printhead, and a spring for loading said slider against the surface of the frame, including an adjustable connector for permitting lateral movement of the slider relative to the spring and adjustably fixing the slider to the spring to change the center of force exerted by the spring on the printhead.
  • 14. The device of claim 13, wherein said slider has a narrow rib on an upper surface thereof, and said spring engages the narrow rib and has a surface that will permit lateral movement of the slider.
  • 15. The device of claim 13, wherein said spring is a leaf spring having a surface, a narrow rib on the slider engaging the surface, and the spring having a slot therein for receiving a fastener comprising the adjustable connector that passes through the slot and secures the slider relative to the leaf spring.
Parent Case Info

This application claims benefit of Prov. No. 60/115,017 filed Jan. 7, 1999.

US Referenced Citations (4)
Number Name Date Kind
5448281 Walter et al. Sep 1995 A
5678938 Saito et al. Oct 1997 A
5846003 Mori et al. Dec 1998 A
5902055 Oshino et al. May 1999 A
Foreign Referenced Citations (2)
Number Date Country
6-320829 Nov 1994 JP
8-34146 Feb 1996 JP
Provisional Applications (1)
Number Date Country
60/115017 Jan 1999 US