1. Field of the Invention
The present invention relates to a thermal printhead.
2. Description of the Related Art
A thermal printhead is used to perform printing on a recording medium such as heat-sensitive paper and thermal transfer ink ribbon, and is one of the constituent components of a printer.
However, such printers have recently been reduced in size dramatically. As a result, an attempt has been made to further reduce the size of the thermal printhead X as well. Accordingly, the size of the thermal printhead X has been reduced relative to the platen roller Pr. In other words, the platen roller Pr is becoming larger in diameter relative to the thermal printhead X. Then, a problem arises in that the platen roller Pr whose diameter has become relatively large interferes with the wires 97. Furthermore, in a construction including a sealing resin (not shown) for protecting the wires 97, there is a likely possibility that the platen roller Pr and the sealing resin will interfere with each other. Thus, as the size of the thermal printhead X is reduced, the interference with the platen roller Pr becomes more of a problem.
In order to overcome the problems described above, preferred embodiments of the present invention provide a thermal printhead that does not with a platen roller, for example, while also achieving a reduction in size.
According to a preferred embodiment of the present invention, the thermal printhead includes a substrate, a resistor layer that defines a plurality of heat-generating portions arranged in a main scanning direction, a common electrode connected to the plurality of heat-generating portions, a plurality of individual electrodes arranged in the main scanning direction, which respectively extend in a sub-scanning direction, which are electrically connected to the common electrode via the plurality of heat-generating portions, and which have pads on respective end portions thereof for bonding wires thereto, a glaze layer that is interposed between the substrate and the resistor layer, the common electrode, and the plurality of individual electrodes, a protective layer that covers the resistor layer, the common electrode, and at least a portion of each of the plurality of individual electrodes, a drive IC that controls the power distribution to the plurality of heat-generating portions, and a plurality of wires that connect the pads of the plurality of individual electrodes and the drive IC, wherein the protective layer has a shape that exposes the pads of the plurality of individual electrodes, and covers a band region located between the drive IC and the plurality of pads.
In such a construction, the portion of the protective layer covering the band region makes it possible to prevent the wires from drooping down. Accordingly, it is possible to avoid undesirable electrical connection or contact of the wires to the adjacent ones of the plurality of individual electrodes. Furthermore, there is no need to form the wires in a shape that defines a large arc. This avoids the interference, for example, with the platen roller of the printer on which the thermal printhead is mounted, and also makes it possible to reduce the size of the thermal printhead.
In a preferred embodiment of the present invention, a plurality of hole portions surrounding each of the pads in the in-plane direction of the substrate are provided in the protective layer. Such a construction avoids undesirable electrical connection of the wires to the adjacent ones of the plurality of individual electrodes. Moreover, most of the end edges of the protective layer forming the hole portions contact the glaze layer. This makes it possible to increase the bonding strength of the end edge of the protective layer compared to a case in which the end edges contact the individual electrodes that are made of metal, for example, and therefore prevents the peeling of the protective layer.
In a preferred embodiment of the present invention, the gap between the end edges of the protective layer and the respective pads is about 1 μm to about 10 μm. Such a construction avoids undesirable electrical connection of the wires and also prevents the peeling of the protective layer.
In a preferred embodiment of the present invention, a sealing resin is further provided which covers at least the IC drive, the plurality of wires, and portions of the plurality of individual electrodes not covered by the protective layer. With such a construction, it is possible to protect the drive IC and the plurality of wires. Furthermore, it is not necessary to provide a dedicated protective layer for covering the plurality of individual electrodes, which is advantageous in terms of simplifying the manufacturing process.
In a preferred embodiment of the present invention, the protruding height of the sealing resin from the substrate in the thickness direction of the substrate is preferably about 0.5 mm or less. Such a construction is preferable for avoiding interference with the platen roller, for example.
In a preferred embodiment of the present invention, the protruding height of the wires from the substrate in the thickness direction of the substrate is preferably about 0.35 mm or less. Such a construction is preferable for avoiding interference with the platen roller, for example.
In a preferred embodiment of the present invention, the thickness of the plurality of pads is preferably about 0.3 μm to about 1.2 μm. With such a construction, sufficient bonding of the wires is possible.
In a preferred embodiment of the present invention, the protective layer includes SiO2 or SiN, and the thickness thereof is about 0.6 μm to about 2.0 μm, and is preferably greater than the thickness of the plurality of pads. Such a construction is preferable for preventing the wires from undesirably drooping down while also avoiding interference of the wires with capillaries used for the bonding of the wires.
In a preferred embodiment of the present invention, an additional protective layer is further provided on the protective layer and which covers at least the resistor layer in the in-plane direction of the substrate. Such a construction makes it possible to promote the transfer of heat, for example, to heat-sensitive paper from the plurality of heat-generating portions.
In a preferred embodiment of the present invention, the drive IC is positioned to the side of the substrate in the sub-scanning direction, and is provided on an additional substrate that is positioned below a surface of the substrate on which the glaze layer is provided. Such a construction makes it possible to prevent the drive IC from greatly protruding from the ceramic substrate in the thickness direction of the substrate.
Other features, elements, processes, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the present invention with reference to the attached drawings.
Preferred embodiments of the present invention will be described below in specific terms with reference to the figures.
For example, the heatsink 10 is made of aluminum, and is used to promote heat-dissipation to the outside of the thermal printhead A1 during printing. As is shown in
The ceramic substrate 1A is preferably a flat, substantially rectangular plate as seen in plan view extending in the main scanning direction x in
The printed wiring board 1B is preferably a flexible laminate of a resin layer and a wiring layer. As is shown in
As is clearly indicated in
The resistor layer 4 is provided on the glaze layer 2, and is made of a metal such as TaSiO2. The portions of the resistor layer 4 not covered by the common electrode 31 and the plurality of individual electrodes 32 define the plurality of heat-generating portions 41. The plurality of heat-generating portions 41 are arranged in the main scanning direction x.
The common electrode 31 and the plurality of individual electrodes 32 are provided on the resistor layer 4 and are made of metal, such as aluminum or gold, having a smaller electrical resistance than the material of the resistor layer 4. The common electrode 31 has a base portion 31a and a plurality of branch portions 31b as shown in
The plurality of individual electrodes 32 are arranged in the main scanning direction x, and each of these individual electrodes 32 has a pad 32a and a band portion 32b. The band portions 32b are portions that extend in the sub-scanning direction y, and these portions 32b face the branch portions 31b of the common electrode 31 on one end thereof with some separation by having the heat-generating portions 41 in between. That is, the portions of the resistor layer 4 that are located between the branch portions 31b and band portions 32b define the heat-generating portions 41. The pads 32a are connected to the other ends of the band portions 32b, and define portions used for the bonding of the wires 71. As is shown in
The protective layer 51 includes SiO2 or SiN, for example, and is arranged so as to cover the heat-generating portions 41, the common electrode 31, and the portions of the plurality of individual electrodes 32 other than the plurality of pads 32a. A plurality of hole portions 51a are provided in the protective layer 51. As is shown in
The protective layer 52 is preferably a band made of hard glass, for example, and as is shown in
The drive IC 6 is used to control the driving of the printing operation of the thermal printhead A1, and has the function of causing desired ones of the plurality of heat-generating portions 41 to generate heat by selectively applying voltage to the plurality of individual electrodes 32. The drive IC 6 is mounted on the printed wiring board 1B. As a result, in the present preferred embodiment, as is shown in
As is shown in
The thermal printhead A1 of the present preferred embodiment can be manufactured, for example, as follows. First, a ceramic substrate 1A is prepared. Next, a glaze layer 2 made of glass is formed on the ceramic substrate 1A. Then, a thin film of TaSiO2 is sputtered on the glaze layer 2 to form a resistor 4. Next, a thin film of aluminum or gold is sputtered so as to cover the TaSiO2 thin film. A mask is formed using a photolithographic technique on the thin films, and etching is performed by utilizing the mask. A common electrode 31, a plurality of individual electrodes 32, and a resistor layer 4 having a plurality of heat-generating portions 41 are obtained by this patterning. Furthermore, a film of SiO2 or SiN is formed so as to cover the electrodes 31, 32 and resistor layer 4, and a plurality of hole portions 51a are formed by performing patterning on this film. As a result, a protective layer 51 is obtained. A protective layer 52 is formed on the protective layer 51 using hard glass. Afterwards, a heatsink 10 is prepared, and the ceramic substrate 1A that has gone through the steps described above and a printed wiring board 1B are joined to the heatsink 10. Then, for example, a drive IC 6 is bonded to the printed wiring board 1B, and the plurality of wires 71 and 72 are bonded. A sealing resin 8 is formed by molding a black epoxy resin material so as to cover the drive IC 6, wires 71 and 72, and the like. The thermal printhead A1 is obtained by the steps described above.
Next, the action of the thermal printhead A1 will be described.
In the present preferred embodiment, as is shown in
As is shown in
Setting the thicknesses of the protective layer 51 and pads 32a at the above-described preferred values is advantageous in terms of avoiding undesirable contact of the wires 71 while also avoiding the interference between the capillaries and protective layer 51.
The position and the shape of the protective layer 52 are designed for being pressed against the platen roller Pr. As a result, heat from the heat-generating portions 41 that are positioned directly beneath the protective layer 52 in
As is shown in
There is absolutely no exposure of the plurality of individual electrodes 32 to the outside of the thermal printhead A1 as a result of applying the sealing resin 8. This is suitable for avoiding an undesirable contact and also preventing the deterioration of the individual electrodes 32. Furthermore, there is no need to provide a dedicated protection layer in order to avoid the exposure of the individual electrodes 32, so that the manufacturing process can be simplified.
The thermal printhead A2 shown in
The thermal printhead of the present invention is not limited to the above-mentioned preferred embodiments. With regard to the specific construction of each component of the thermal printhead of the present invention, design changes can be freely made in various ways.
The shape of the pads of the individual electrodes is not limited to a substantially rectangular shape; any shape that is appropriate for wire bonding (e.g., circular arc shape) may be used. It is sufficient as long as the shape of the hole portions of the protective layer is a shape having an appropriate gap with respect to the pads of the individual electrodes. The arrangement of the pads of the individual electrodes is not limited to a staggered arrangement in two rows; for example, a staggered arrangement in three or more rows or an arrangement in a single row may also be used. The shapes and arrangements of the heat-generating portions and the common electrode and plurality of individual electrodes that are electrically connected by these heat-generating portions are not limited to those of the above-mentioned preferred embodiments. The thermal printhead of the present invention is not limited to a thin film type, and may also be constructed as a thick film-type thermal printhead in which a resistor layer, a common electrode, a plurality of individual electrodes, and the like are formed from thick films.
While the present invention has been described with respect to preferred embodiments thereof, it will be apparent to those skilled in the art that the disclosed invention may be modified in numerous ways and may assume many embodiments other than those specifically set out and described above. Accordingly, it is intended by the appended claims to cover all modifications of the present invention that fall within the true spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2005-239526 | Aug 2005 | JP | national |