The present invention relates to a thermal printhead used for printing on e.g. thermal paper.
Patent Document 1: JP-A-7-186429
Generally, to enable clear printing, the surface of thermal paper is made smooth. Examples of such surfacing techniques include the application of coating agent to thermal paper. Conventionally, however, the thermal paper having a smooth surface tends to stick to the protective film 94 when pressed against the thermal printhead X. When such a phenomenon (called “sticking”) occurs, the thermal paper cannot be smoothly slid relative to the thermal printhead X, which may result in deterioration in printing quality.
Moreover, the above-described coating agent is generally hydrophilic and tends to absorb moisture in the air. Thus, when the thermal paper is pressed against the protective film 94, the moisture which has been absorbed in the coating agent may seep out between the thermal paper and the protective film 94. Conventionally, such moisture also causes the sticking of the thermal paper to the protective film 94.
The present invention has been proposed under the circumstances described above. It is, therefore, an object of the present invention is to provide a thermal printhead which is capable of preventing sticking.
According to a first aspect of the present invention, there is provided a thermal printhead comprising a substrate and a heating resistor element formed on the substrate and elongated in the primary scanning direction. The thermal printhead further includes an electrode for applying current to the heating resistor element, and a protective film covering the heating resistor element and the electrode and including a contact surface for coming into contact with a recording medium. The contact surface of the protective film is made irregular to reduce contact area with the recording medium.
Preferably, the protective film includes a first layer directly covering the heating resistor element and the electrode, a second layer formed on the first layer, and a third layer formed on the second layer to come into contact with the recording medium. For instance, in this case, the first layer is made of glass, the second layer is made of porous glass including a plurality of pores, and the third layer is made of a water repellent material. The third layer partially enters each of the pores of the second layer.
Preferably, the third layer is made of polyimide resin.
In a thermal printhead according to a second aspect of the present invention, the protective film includes a first layer directly covering the heating resistor element and the electrode and a second layer formed on the first layer. The second layer comprises a plurality of projecting elements spaced from each other.
Preferably, each of the projecting elements has a rectangular cross section, and a diagonal of the rectangular cross section is parallel to the secondary scanning direction which is perpendicular to the primary scanning direction.
Preferably, in the thermal printhead according to the second aspect of the present invention, the protective film includes a third layer covering the second layer and having water repellency. For instance, in this case, the second layer is made of either of SiC and a composite material of C and SiC, whereas the third layer is made of polytetrafluoroethylene.
Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings.
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
The substrate 1 is made of e.g. a ceramic material. A glaze layer (not shown) is formed on the substrate 1 to provide a smooth surface. The glaze layer also functions to prevent heat from escaping from the heating resistor element 3 to the substrate 1.
The electrodes 2A and 2B are made of a metal such as Au and have different electrical polarities. The electrode 2A includes a plurality of comb-teeth-shaped extensions 21 extending in the secondary scanning direction y, and the electrode 2B also has similar extensions 22. The extensions 21 and 22 are alternately arranged in the primary scanning direction x. The electrodes 2A and 2B are connected to a non-illustrated drive IC. The electrodes 2A and 2B may be formed by printing Au resinate paste into a predetermined shape and then baking the paste.
The heating resistor element 3 is made of e.g. ruthenium oxide. The heating resistor element 3 extends in the primary scanning direction to cross the extensions 21 and 22. In this arrangement, the heating resistor element 3 includes a plurality of portions (unit heating portions) each sandwiched between adjacent extensions 21 and 22. When current is applied to a selected one of the unit heating portions by the drive IC, the unit heating portion generates heat. Due to the heat, a region of the thermal paper corresponding to one dot is colored, whereby printing is performed. The heating resistor element 3 may be formed by printing paste containing ruthenium oxide into a predetermined shape and then baking the paste.
The protective film 4 protects the electrodes 2A, 2B and the heating resistor element 3. As shown in
The second layer 42 is made of e.g. glass and laminated on the first layer 41. As shown in
As shown in
The advantages of the thermal printhead A1 will be described below.
According to the embodiment described above, since the surface (which is to come into contact with paper) of the protective film 4 is formed with recesses 4a, the contact area between the protective film 4 and the thermal paper is small. As a result, the conventional problems of sticking and deterioration in printing quality are prevented. Further, by preventing the sticking, the feed speed of thermal paper (and hence the printing speed) can be increased.
Moreover, even when moisture which has been absorbed in the coating agent of the thermal paper seeps out, the moisture is retained in the recesses 4a. This prevents the protective film 4 and the thermal paper from strongly sticking to each other due to moisture. Particularly, the use of polyimide resin, which has water repellency, as the material of the third layer 43 is advantageous for preventing moisture from being retained at the contact portion between the protective film 4 and the thermal paper. Alternatively, as the material of the third layer 43, a material which has an appropriate level of water repellency and provides a smooth surface may be used instead of polyimide resin.
As shown in
As shown in
As shown in
In the thermal printhead A2 having the above-described structure, the contact area between the protective film 4 and the thermal paper is small, similarly to the first embodiment. This is advantageous for preventing the sticking. Although dust may be formed due to the rubbing between the protective film 4 and the thermal paper, such dust is retained in the space between adjacent projecting elements 44a. Thus, deterioration in printing quality is prevented.
In the thermal printhead A2, the diagonal 44d of each projecting element 44a is parallel to the secondary scanning direction y, and any side of the rectangular cross section is not parallel to the primary scanning direction x. Thus, the projecting element 44a comes into contact (via the third layer 45) with the thermal paper, which is being transferred in the secondary scanning direction y, from its apex. This is suitable for achieving smooth feed of the thermal paper.
Moreover, since the second layer 44 is made of SiC or C—SiC, the carbon content is relatively large. The larger the carbon content of a material is, the more likely PTFE, which forms the third layer 45, adheres to the material. Thus, the third layer 45 strongly adheres to the second layer 44. Further, since SiC and C—SiC has a high thermal conductivity, the heat from the heating resistor element 3 is efficiently transferred to the thermal paper. It is to be noted that, in the present invention, the third layer 45 of the protective film 4 according to the second embodiment can be eliminated. In this case, the projecting elements 44a constituting the second layer 44 directly come into contact with the thermal paper. In this variation, the formation density of the projecting elements 44a (i.e., the number of projecting elements per unit area) is so set that the thermal paper is not damaged by the projecting elements 44a when the paper is being transferred. Further, even when any of the projecting elements 42a has a defect (e.g. breakage or release from the first layer 41), it does not have an adverse effect on other projecting elements 42a.
The projecting elements 44a are not limited to those having a rectangular cross section. For instance, projecting elements which are polygonal or circular in cross section may be employed. The materials of the second layer 44 and the third layer 45 are not limited to those described above. For instance, the second layer 44 may be made of silane coupler, whereas the third layer 45 may be made of polyimide resin. The third layer 45 made of polyimide resin exhibits good water repellency and achieves smooth sliding relative to the thermal paper. Polyimide resin and silane coupler can be bonded strongly to each other.
Number | Date | Country | Kind |
---|---|---|---|
2006-171267 | Jun 2006 | JP | national |
2006-172346 | Jun 2006 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2007/062263 | 6/19/2007 | WO | 00 | 12/17/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/148663 | 12/27/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4835550 | Sato et al. | May 1989 | A |
6236423 | Yamaji | May 2001 | B1 |
6445402 | Kinjyo et al. | Sep 2002 | B1 |
7443409 | Sako | Oct 2008 | B2 |
20100066798 | Yamade et al. | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
62-193845 | Aug 1987 | JP |
7-186429 | Jul 1995 | JP |
2000-141729 | May 2000 | JP |
2002-370397 | Feb 2002 | JP |
2002-103661 | Apr 2002 | JP |
WO 2005105462 | Nov 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20090174757 A1 | Jul 2009 | US |