This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2009-216338 filed on Sep. 18, 2009, the entire contents of which are incorporated herein by reference.
Embodiments described herein relate generally to a thermal printing apparatus equipped with a thermal head incorporating a plurality of heating elements divided into several blocks, and a control method thereof.
Typically, a thermal printing apparatus employs a thermal head incorporating therein a plurality of heating elements arranged in a line, which may be divided into a plurality of blocks. It has been known that temperature differences between the divided blocks in the thermal head cause unevenness in the printed result, hampering high-quality printing. Some approaches to cope with this problem are known.
According to an embodiment, a thermal printing apparatus is provided. The thermal printing apparatus may comprise a thermal head having a plurality of heating elements arranged in a line. The thermal printing apparatus may further comprise a control unit configured to determine conduction times of the heating elements based on print rates respectively assigned to the plurality of heating elements. The control unit may be further configured to compensate each of the determined conduction times based on the conduction times of the heating elements other than the respective heating element to determine a plurality of compensated conduction times. The control unit may control each of the plurality of heating elements based on the respective one of the plurality of compensated conduction times to enable the head to perform printing on a recording medium.
Hereinafter, embodiments described herein will be described in further detail by way of example with reference to the accompanying drawings.
Referring to
As shown in
In one embodiment, the thermal recording medium 26 may be a thermal paper having a color developing layer on its substrate, which may develop color when subject to heat. As shown in
Print data may be controlled by serial signals DIN1-DIN3. In the embodiment illustrated in
In the meantime, as shown in the timing diagram of
While this approach is less likely to produce the jagged appearance in the printed result as shown in
Now, a detailed description of the off-time based compensation process of the standard print conduction time in accordance with an embodiment will be given with reference to
As shown in
Prior to staring the printing operation, the CPU 12, which is programmed with the process programs stored in the ROM 13 or the RAM 14, may issue a command to instruct the outside air temperature detecting unit 41 to detect an ambient temperature, and a command to instruct the power-supply voltage detecting unit 42 to detect a power-supply voltage to be applied to the thermal head 23 (act11). Thereafter, the CPU 12 may determine the standard print conduction times based on the two pieces of information as detected and by looking up a temperature table storing the characteristics of the thermal recording medium 26 to be used (act 12). In this case, the standard print conduction times as determined in this way may take different values depending on the characteristic of the thermal recording medium 26, a resistance value of the thermal head 23, pressure applied upon the thermal head 23 by the platen roller 25 or the like. As such, the CPU 12 may be programmed to read out and use experimentally predetermined numerical values from the RAM 14, etc.
Subsequently, the CPU 12 may detect the total number of print dots in one print line by referencing the image memory, such as the RAM 14 (act 13), and determine a division number based on the number of print dots whose simultaneous activation is allowed by the power-supply capacity (act 14). In one embodiment, the division number may be determined based at least in part on the power-supply capacity to be used. The criterion of determining the division number will be explained below.
For printing of print dots less than 40% of a total 384 number of print dots (153 dots or lower): batch manner of activation
For printing of print dots greater than or equal to 40% of a total 384 number of print dots and less than 60% of a total 384 number of print dots (154-230 dots): two division activation
For printing of print dots greater than or equal to 60% of a total 384 number of print dots (231 dots or higher): three division activation
Thereafter, the CPU 12 may further compensate the standard print conduction times, as determined at act 12, based on a temperature of the thermal head 23 detected at the head temperature detecting unit 43 and an amount of fine adjustment of concentration, by which the conduction times will be increased or decreased (act 15). In one embodiment, the head temperature detecting unit 43 may include a thermistor mounted on the thermal head 23. In one embodiment, the amount of fine adjustment of concentration may be provided by a concentration fine adjustment compensating unit 44. In another embodiment, the user may input a numerical value by using the input device 21, such as a keyboard or a control panel, to set the amount of fine adjustment of concentration. The inputted numerical value indicating the amount of fine adjustment of concentration may be stored in a memory area of the RAM 14.
Then, at act 16, the number of print dots for each of the macro blocks as determined by the division number and a compensation time may be determined and the determined compensation time may be added to the standard print conduction time. Specifically, the CPU 12 may invoke a block print number detecting unit 45 to detect the number of print dots for each of the macro blocks based on an image signal provided as print data. The CPU 12 may store the number of print dots in the memory area of the RAM 14 for the purpose of reading out the same later. The CPU 12 may determine the compensation time based on the number of print dots for each of the macro blocks detected at the block print number detecting unit 45. The CPU 12 may then add the compensation time to the standard print conduction time. The compensation time may be predetermined experimentally based on the characteristics of the thermal head 23 to be used or the power-supply capacity. Experimentally determining the compensation time may involve measuring a voltage drop caused by a change in print rate and determining a print conduction time, which can ensure that uniform concentration is maintained even with a change in print rate.
Thereafter, the CPU 12 may perform off-time based print conduction time compensation. Note that the off-time for a particular macro block, which is equal to the time period with the print conduction time determined above for the respective macro block being excluded, corresponds to a sum of the print conduction times for other macro blocks. Thus, when a print rate of the particular macro block is small and those of other macro blocks are larger, the off-times for other macro blocks may become longer out of proportion than the print conduction time for the particular macro block. As a result, the macro blocks may have deviations in terms of print conduction time. Thus, to alleviate the deviation problem in print conduction time, the CPU 12 may compensate the print conduction time for the particular macro block based on the off-time for the particular macro block (i.e., a sum of the print conduction times for other macro blocks) (act 17).
Finally, the CPU 12 may calculate a total sum of the print conduction times for the macro blocks based on the compensated print conduction times, and may further determine, as one dot formation time, an amount of time obtained by multiplying the total sum by an iteration number in one print line (act 18), The CPU 12 may allow the thermal head 23 to form an image on the thermal recording medium 26, based on the determined amount of time, under the control of the head controller 19.
As used in this application, entities for executing the actions can refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution. For example, an entity for executing an action can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and a computer. By way of illustration, both an application running on an apparatus and the apparatus can be an entity. One or more entities can reside within a process and/or thread of execution and an entity can be localized on one apparatus and/or distributed between two or more apparatuses.
The program for realizing the functions can be recorded in the apparatus, can be downloaded through a network to the apparatus and can be installed in the apparatus from a computer readable storage medium storing the program therein. A form of the computer readable storage medium can be any form as long as the computer readable storage medium can store programs and is readable by the apparatus such as a disk type ROM and a solid-state computer storage media. The functions obtained by installation or download in advance in this way can be realized in cooperation with an OS(Operating System) or the like in the apparatus.
Hereinafter, an explanation of a specific embodiment of the off-time based compensation process of a standard print conduction time, which is performed at act 17, will be given with reference to
In the embodiment illustrated in
Since the standard print conduction time is divided into three time intervals, the standard print conduction time is set to 1200 μsec (at an ambient temperature of 20° C. and a head temperature of 20° C.). Further if the standard print conduction time is compensated based on the number of print dots, the standard print conduction times may be obtained as follows:
Referring to
This may be accounted for by the fact that the off time of each macro block varies depending on the print rates of the macro blocks other than the respective macro block. The varying off times for the macro blocks may result in different start temperatures of the thermal head as measured prior to the conduction thereof, thereby leading to different peak temperatures. Compensating the temperature difference in each macro block may require compensating the standard print conduction time based on the off-times of the macro blocks other than the respective macro block. This may allow the temperatures to be uniform in the interval, during which each macro block is conducted.
A description of an illustrative embodiment of a value obtained by the off-time based compensation of a standard print conduction time will be given with reference to
In the embodiment illustrated in
Thus, the off-time between the pulses in each block may be derived as follows:
In accordance with an illustrative embodiment, with the compensation of the standard print conduction time based on the off-times in the macro blocks, it is possible to optimize print concentration in each block, to thereby prevent concentration unevenness.
Specifically, as shown in
For example, the CPU 12 may add 1% of the off-time for each block to the standard print conduction time of the respective macro block by performing the functions of the programs stored in the ROM 13 and the RAM 14. While the percentage of the off time to be added to the standard print conduction time may be set to 1%, it may not be limited thereto. For example, the percentage may depend on the type of thermal head or head pressure of the thermal printer. As such, an optimal percentage value may be experimentally determined by means of actual measurements. The standard print conduction times of the macro blocks with 1% of the respective off-times for those macro blocks added thereto are as follows:
For example, if the macro block tends to make the temperature of the thermal head lowered due to a long off-time, an additional amount of time proportional to the long off-time is allocated to the respective macro block. Such allocation may allow the standard print conduction time to be increased by the additional amount of time, elevating the temperature of the thermal head. Conversely, when the macro block tends to make the temperature of the thermal head rise due to a relatively short off-time, an additional amount of time proportional to the relatively short off-time is allocated to the respective macro block. Such allocation may allow the standard print conduction time to be decreased by the additional amount of time, making the temperature of the thermal head relatively low.
As such, it will be readily appreciated that although differences in print rate between the macro blocks may cause differences in off-time, the off-time based compensation of the standard print conduction time may allow the temperature differences between the STBs to be alleviated. For example, from
Therefore, in accordance with the illustrated embodiment above, an amount of time determined based on the off-time may be added to the standard print conduction time. This may compensate variations in off-time, which may be caused by the differences in standard print conduction time between the macro blocks, which in turn is caused by different print rates. Thus, in the illustrated embodiment, it is made possible to obtain a high-quality printed result with only slight print unevenness by overcoming a problem associated with a temperature difference of the thermal head between the macro blocks.
It will be readily appreciated that compensation of the print conduction times for a particular macro block based on the print rates or the print conduction times for other macro blocks may be differently implemented depending on the type of thermal recording medium or thermal head, etc. to be used in conjunction with the illustrated embodiment.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2009-216338 | Sep 2009 | JP | national |