The present invention relates generally to an imaging apparatus, and more specifically to a thermal processor for thermally developing an imaging material employing a radiant heat source.
Light sensitive photothermographic or heat sensitive film generally includes a base material, such as a thin polymer or paper, which is coated, typically on one side, with an emulsion of heat sensitive material, such as dry silver. Once such film has been subjected to photostimulation to form a latent image thereon, such as via a laser of a laser imager, a thermal processor is employed to develop the latent image through application of heat. Generally, such film is processed or developed at a temperature in the vicinity of 120 degrees centigrade for a required development time. In order to produce a high quality developed image, heat transfer to the photothermographic film must be controlled during the development process. If heat transfer is not uniform during development, visual artifacts, such as non-uniform density and streaking, may occur. If heat is transferred too quickly, the base of some types of film can expand too quickly, resulting in expansion wrinkles that create visual artifacts in the developed image.
Several image processing machines have been developed for thermally processing photothermographic film in efforts to achieve optimal heat transfer to the photothermographic film during development. One type of thermal processor is commonly referred to as a drum processor which employs a rotating heated drum to transfer heat to the film as it wraps around at least a portion of a circumference of the drum during processing. One type of drum processor employs a drum which is heated by an electric blanket heater coupled to an interior surface of the drum, and a series of pressure rollers positioned about a segment of the external circumference of the drum. During development, rotation of the drum draws the photothermographic film between the drum and the pressure rollers, with the pressure rollers typically holding the emulsion side of the film in contact with the drum. As the film is wrapped around at least a portion of the exterior circumference of the drum as it passes through the processor, thermal energy is transferred from the drum to the film so as to heat and maintain the film at a desired development temperature for a desired development time.
However, during operation of the processor, heat loss from the drum is not uniform and, if not compensated for, can result in visual artifacts in the developed film. For example, during idle times (when no film is being processed), heat is lost more rapidly near the ends of the drum than in the middle portion of the drum. Conversely, during processing, because the film has a width which is less than that of the drum, as heat is transferred to the film more heat is lost from the middle portion of the drum than is lost at the ends of the drum. In attempts to maintain a uniform temperature across the width of the drum at all times, some electric blanket heaters with only a single zone are configured with a varying watt-density so as to provide more thermal energy at the drum ends as compared to the drum middle (e.g. end vs. middle watt-density). Other electric blanket heaters employ multiple, individually controllable heat zones which are controlled so as to provide more heat to the end portions of the drum during idle times and to provide more heat to the middle portion during processing.
While electric blanket heaters are effective at maintaining an even temperature across a width of the drum during both processing and idle times, blanket heaters can be expensive relative to the cost of an image processor as a whole, particularly for low volume processors (i.e. processors intended for use in environments having low volume film processing requirements). In light of the above, there is a need for a cost effective photothermographic film processor that provides even film heating during processing.
An object of the present invention is to provide a processor employing a drum heated by a radiant heater for thermally developing photothermographic film.
Another object of the present invention is to compensate for non-uniform heat loss from the drum so that a development temperature of an external surface of the drum is substantially uniform across the longitudinal width and about the circumference of the drum.
These objects are given only by way of illustrative example, and such objects may be exemplary of one or more embodiments of the invention. Other desirable objectives and advantages inherently achieved by the disclosed invention may occur or become apparent to those skilled in the art. The invention is defined by the appended claims.
According to one aspect of the invention, there is provided a thermal processor including a rotatable hollow drum including a drum core having an interior surface and an exterior surface, and a radiant heater positioned within an interior of the drum and configured to provide radiant energy to heat the drum. At least one radiant energy absorption characteristic of the interior of the drum varies across a longitudinal width of the drum so that selected areas of the interior of the drum absorb more radiant energy than other areas of the interior of the drum so as to compensate for non-uniform heat loss from the drum and to provide the exterior surface of the drum core at a desired temperature which is substantially uniform across a longitudinal width of the drum core.
According to one aspect of the invention, the at least one radiant energy absorption characteristic is an emissivity of the interior surface of the drum core, and wherein the emissivity of the interior surface of the drum core varies across the lateral width of the drum core.
According to one aspect of the invention, the emissivity is greater at end portions of the interior surface of the drum core relative to a middle portion of the interior surface of the drum core.
According to one aspect of the invention, the at least one radiant energy absorption characteristic is a surface area of the interior surface of the drum core, and wherein the surface area per unit of length of the interior surface is varied across a longitudinal width of drum core.
According to one aspect of the invention, there is provided a method of operating a thermal processor for thermally developing photothermographic film. The method includes positioning a radiant heater within an interior of a rotating hollow drum, the radiant heat providing radiant energy to heat the hollow drum, and modifying radiant energy absorption characteristics of an interior surface of the hollow drum so that selected areas of the interior surface of the drum absorb more radiant energy than other areas of the interior surface of the drum in order to compensate for non-uniform heat loss from the hollow drum so that the exterior surface of the hollow drum has a temperature which is substantially uniform across a longitudinal width of the drum.
According to one aspect of the invention, there is provided a thermal processor for thermally developing photothermographic film including a rotatable hollow drum including a drum core having an interior surface and an exterior surface, a radiant heater positioned within an interior of the drum and configured to provide radiant energy to heat the drum, and a temperature sensor mounted to and extending about a circumference of a middle portion of the interior surface of the drum core and having opposing ends which are offset from and overlapping one another, wherein the temperature sensor is embedded within an insulating material, and wherein the insulating material facing the interior of the drum core has an overcoat layer with an emissivity less than that of interior surface of the middle portion of the drum core.
By non-uniformly heating the drum core across its longitudinal width so as to compensate for non-uniform heat loss from the drum core, a substantially uniform temperature is achieved across the longitudinal width of the exterior surface of the drum so that when a sheet of photothermographic film is thermally developed, the photothermographic film is uniformly processed across a width of the sheet (i.e. the cross-web processing is uniform). Further, by accurately measuring the temperature of the drum about its circumference, the circumferential temperature of the drum can be accurately controlled so that the photothermographic film is processed uniformly along its length (i.e. the down-web processing is uniform).
The foregoing and other objects, features, and advantages of the invention will be apparent from the following more particular description of the embodiments of the invention, as illustrated in the accompanying drawings. The elements of the drawings are not necessarily to scale relative to each other.
In operation, media supply system 32 provides, such as from a film cassette, an unexposed photothermographic film, such as film 44, to exposure system 34 along a transport path 46. Exposure system 34 exposes a desired photographic image on film 44 based on image data (e.g. digital or analog) to form a latent image of the desired photographic image on film 44. In one embodiment, exposure system 34 exposes the desired photographic image via a laser imager. Processing system 36 receives the exposed film 44 from exposure system 34, and drum-type processor 40 heats exposed film 44 using thermal energy provided by radiant heater 42 to thermally develop the latent image. Processing system 36 subsequently cools and delivers developed film 44 along transport path 46 to output system 38 (e.g. an output tray or sorter) for access by a user.
According to one embodiment, drum-type processor 40 includes upper and lower covers 62 and 64 which are spaced from processor drum 50 and pressure rollers 60 and which define an entrance 66 at which an entrance guide 68 is positioned and an exit 70 at which an exit guide 72 is positioned. During operation, drum-type processor 40 is driven so as to rotate in a direction as indicated by directional arrow 74. A sheet of exposed film 44, having a latent image exposed thereon, is received along transport path 46 from exposure system 34 (see
According to one embodiment, as will be described in greater detail below, drum-type processor 40 includes a temperature sensor 80, positioned within the interior of processor drum 50, and a controller 82. According to one embodiment, temperature sensor 80 is mounted to interior surface 53 of drum core 52. During operation of processor 40, controller 82 receives a temperature signal 84 from temperature sensor 80 and controls radiant heater 42, via a control signal 86, to maintain a temperature of exterior surface 54 and coating 58 at a desired temperature (e.g. the development temperature of film 44). According to one embodiment, controller 82 controls the amount of radiant thermal energy 56 provided by radiant heater 42 by turning radiant heater “on” and “off”.
As described above, conventional drum-type processors for thermally typically employ blanket heaters mounted to the inside surface of the drum core, wherein the blanket heaters have zones with different power densities or separately controllable zones in order to precisely apply heat and compensate for non-uniform heat loss from the drum (e.g. more heat loss at drum ends during idle times, and more heat loss from central portions of the drum during film processing). As described below, radiant type heaters, such as radiant heater 42, do not themselves readily provide such precise heating control.
As illustrated by
While the reflecting of radiant energy in this fashion tends to heat drum core 52 substantially uniformly along a given circumference, in contrast to electric blanket heaters, it is difficult to precisely control exactly where the radiant energy from radiant heater 42 is directed. As will be described in greater detail below, it is difficult to maintain end portions and a middle portion of drum core 52 at a same temperature across a longitudinal width of drum core 52.
It is noted that, according to one embodiment, end caps 90a, 90b are formed from a thermoplastic material and act as hubs or pinions about which processor drum 50 rotates. According to one embodiment, the ends of radiant heater 42 are mounted to end caps 90a, 90b. In one embodiment, radiant heater 42 is electrically connected via a brush-type connector or sliding-type connector to an external power supply such that radiant heater 42 rotates with drum core 52 and end caps 90a, 90b. In one embodiment, radiant heater 42 is coupled to end caps 90a, 90b via bushings or bearing-type connectors such that radiant heater 42 remains stationary during rotation of drum core 52 and end caps 90a, 90b.
With reference to
Unless compensated for, these relative differences and changes in heat flow across the width, Wd, of drum core 52 can cause temperature differences between middle portion 88 and end portions 89a, 89b which, in turn, can result in a non-uniform heat transfer across a width (W) of film 44 (see
Q=s*e*Fab*A*(Ta4−Tb4); Equation I
wherein
Q=heat (watts),
s=Stefan-Boltzman constant,
A=surface area;
Fab=view factor from Point “a” to Point “b” based on A;
Ta=temperature at Point “a”; and
Tb=temperature at Point “b”.
According to one embodiment, with reference to
While requirements may change depending upon the reflectivity/emissivity of heat shield 96a, 96b and on the conductivity Q5 of drum core 52, according to one embodiment, the emissivity of end portions 89a, 89b is in a range that is 2 to 4 times greater than middle portion 88 of drum core 52. According to one embodiment, middle portion 88 has an emissivity of 0.4 and end portions 89a, 89b have an emissivity of 0.8. According to one embodiment, an emissivity of end portions 89a, 89b is in a range from 0.1 to 0.9. According to one embodiment, the emissivity of end portions 89a, 89b is great than middle portion 88 of drum core 52 such that end portions 89a, 89b absorb approximately three times the radiant energy absorbed at middle portion 88.
According to one embodiment, a width of each of the end portions 89a, 89b is in a range from about 5 to 10 percent of the width, Wd, of drum core 52. For example, according to such an embodiment, when drum core 52 has a width, Wd, of 16-inches, the width of each of the end portions 89a, 89b will be in a range from about 0.75 to 1.5 inches. According to one embodiment, a width of each of the end portions 89a, 89b is in a range from about 5 to 15 percent of the width Wd of drum core 52. For example, according to such an embodiment, when drum core 52 has a width Wd of 400 millimeters, the width of each of the end portions 89a, 89 will be in a range from approximately 20 to 60 millimeters. According to one embodiment, the width of each of the end portions 89a, 89b is selected so as to overlap each edge of the maximum width film to be processed on drum core 52 by approximately 25 millimeters.
According to one embodiment, the surface area per unit of length of the interior surface 53 is varied across the longitudinal width of drum core 52 between end caps 90a and 90b. According to one embodiment, the interior surface 53 at end portions 89a, 89b is grooved, as illustrated at 94, such that surface area per unit length across the longitudinal width of drum core 52 is greater at end portions 89a, 89b than at middle portion 88. Due to the increased surface area, the interior surface 53 at end portions 89a, 89b of drum core 52 will absorb more radiant energy per unit length in than middle portion 88. For example, with reference to Equation I, if the surface area per unit length of end portions 89a, 89b is twice that of middle portion 88 due to the addition of grooves 94, approximately twice the amount of thermal energy will be absorbed per unit length at end portions 89a, 89b of drum core 52 relative to middle portion 88. Again, although grooves 94 are shown at one end portion, 89b, of drum core 52, it is noted that grooves 94, when employed, are applied to both end portions 89a and 89b.
With reference to
By employing using the above described techniques, either alone or one or more in combination with one another, to vary one or more radiant energy absorption characteristics of the interior of drum 50, additional radiant energy is directed to and absorbed by end portions 89a, 89b of drum core 52. As illustrated by
While the above primarily regards varying the radiant energy absorption characteristics of the interior of drum core 52 (e.g. emissivity) so as to achieve uniform cross-web processing, it is also important to achieve a uniform down-web processing (i.e. in a direction about the circumference of drum core 52) as film 44 is developed. According to one embodiment, to achieve a uniform down-web processing, the emissivity levels of the interior of drum core 52 are kept at sufficiently low levels so that radiant energy reflects or “bounces around” the drum such that radiant energy is evenly distributed about the radial circumference of drum core 52 (e.g. see
According to one embodiment, to achieve uniform down-web thermal processing of the film, drum core 52 is formed from aluminum, which has desirable heat transfer characteristics that evenly conducts and distributes heat about the surface of drum core 52. Another technique for achieving uniform down-web processing is to accurately monitor the temperature about the circumference of drum core 52 and to adjust the power provided to radiant heater 42 based on such measurements.
Temperature sensor 80 and insulating material 106 can block radiant energy from being absorbed by drum core 52 and create a “cold” ring around the circumference of drum core 52 which could potentially create image artifacts in developed films. As such, width W of temperature sensor 80 and insulating material 106 should be kept as narrow possible, but width W is dependent on thickness Td of drum core 52. According to one embodiment, width W of temperature sensor 80 and insulating material 106 must not be more than twice a thickness Td of drum core 52.
According to one embodiment, insulating material 106 is covered with a low-emissivity overcoat layer 108, to shield temperature sensor 80 from radiant energy from radiant heater 42 which, again, would otherwise skew the temperature measurements of drum core 52 provided by temperature sensor 80. According to one embodiment, overcoat layer 108 is an aluminum foil. According to one embodiment, the emissivity of overcoat layer 108 is lower than that of adjacent interior surfaces of drum core 52. For example, according to one embodiment, interior surfaces in middle portion 88 of drum core 52 have an emissivity of 0.4 and overcoat layer 108 has an emissivity of 0.2. By employing temperature sensor 80 as described above, accurate temperature measurements can be obtained about the entire circumference of drum core 52. The power provided to radiant heater 42 can be adjusted based on such temperature measurements to adjust the amount of radiant energy provided and maintain drum core 52 at a desired temperature about its entire circumference, thereby improving uniformity of the down-web processing of the film.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
This is a Divisional of U.S. patent application Ser. No. 13/154,626, entitled “THERMAL PROCESSOR EMPLOYING RADIANT HEATER” by Brearey et al., filed on Jun. 7, 2011, which claimed priority to Provisional U.S. Patent Application Ser. No. 61/416,826, entitled “THERMAL PROCESSOR UTILIZING RADIANT HEATER” by Brearey et al., filed Nov. 24, 2010, the disclosure of all applications being incorporated by reference in this application.
Number | Name | Date | Kind |
---|---|---|---|
3436523 | Umahashi et al. | Apr 1969 | A |
3632984 | Brownscombe | Jan 1972 | A |
3739143 | Amundson et al. | Jun 1973 | A |
5839043 | Okabayashi et al. | Nov 1998 | A |
5975772 | Imai et al. | Nov 1999 | A |
5990461 | Stumpf et al. | Nov 1999 | A |
6020909 | Kocher et al. | Feb 2000 | A |
6122476 | Bowler, Jr. | Sep 2000 | A |
6324376 | Koguchi | Nov 2001 | B1 |
6898410 | Boss | May 2005 | B2 |
6978110 | Nakayama | Dec 2005 | B2 |
7079801 | Nakayama | Jul 2006 | B2 |
7167193 | Goetzke et al. | Jan 2007 | B2 |
7399947 | Rassatt et al. | Jul 2008 | B2 |
20030095818 | Nakayama | May 2003 | A1 |
20050061792 | Kagawa et al. | Mar 2005 | A1 |
20060289418 | Konishi et al. | Dec 2006 | A1 |
20080124148 | Kim et al. | May 2008 | A1 |
Number | Date | Country |
---|---|---|
1846458 | Oct 2006 | CN |
0 460 207 | May 1995 | EP |
0 915 395 | May 1999 | EP |
S59-061863 | Apr 1984 | JP |
09-134086 | May 1997 | JP |
H09-166935 | Jun 1997 | JP |
2005-085682 | Mar 2005 | JP |
2008-139825 | Jun 2008 | JP |
Entry |
---|
Chinese Search Report for Application No. 201110394113.0, filed Nov. 23, 2001, pp. 2. |
Number | Date | Country | |
---|---|---|---|
20140126895 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
61416826 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13154626 | Jun 2011 | US |
Child | 14151096 | US |