1. Field of the Invention
The invention relates to thermal ratcheting in granular media, packed bed heat storage units.
2. Description of Related Art
Regenerative heat storage units may be used in electricity generating plants and industrial manufactories such as blast furnaces, chemical processing plants, industrial plants needing exhaust air pollution control and some other industrial plants.
Regenerative heat storage units go through thermal charging and discharging cycling of thermal media with sensible heat. Sensible heat is heat that effects changes in temperature of material, in contrast to latent heat which effects changes in material phase (for example, solid, liquid and gas). Heat is always sensible heat in the context of this patent. Thermal media is material in which heat can be stored. Thermal charging and discharging cycling goes from a heat charged state, in which a heat storage unit's thermal media is relatively hot, to a heat discharged state, in which this media is relatively cold, with periods of heat charging and discharging in between.
Definitions Granule, Granular Solid material, Granular Media:
A granule is a compact particle of solid substance with geologist diameter less than fifty millimeters. A geologist diameter of a particle or granule is the greatest straight linear distance between any two points on its outer surface. Granular solid material and granular media are synonymous and are both piled collections of granules.
When a heat storage unit's thermal media is made of a packed bed of granular solid material, heat is transferred to the granular solid material during charging through contact with relatively hotter heat transfer fluid that flows through interstitial passages between the piled granules. During discharging of such a heat storage unit, heat is transferred from the granular solid material (cooling it) through contact with relatively cooler heat transfer fluid flowing through interstitial passages between the granules.
When a heat storage unit's thermal media is made of a packed bed of granular solid material, thermal charging and discharging cycling drives vertical settling of the granules making up the packed bed of granular media. Vertical settling can occur at a packed bed's wall boundaries and this potentially leads to destructive thermal ratcheting.
Destructive thermal ratcheting of packed bed heat storage units is (a) the gradual downward rearrangement (through many thermal charging and discharging cycles) of loose granules of the bed at the bed's wall regions, that (b) causes increased thermal contraction stresses on the storage unit's walls to the point that (c) these increased stresses cause structural failure of the walls. Downward rearrangement of loose bed granules during thermal ratcheting occurs by (i) gap spaces opening up between the bed and its wall due to differences in the thermal expansions of the bed and its wall and (ii) loose bed granules settling downward into gap spaces.
Destructive thermal ratcheting of granular media, packed bed heat storage units.
A solution to the problem of thermal ratcheting in packed bed heat storage units is illustrated in
The invented solution acts while thermal charging and discharging cycling in the heat storage unit drives responsive thermal cycling of the storage unit's walls by contact between the wall and the unit's granular thermal media and heat transfer fluid and by thermodynamics. This coupled cycling in conjuction with any differential thermal expansions of the walls and the granular media packed bed drives another coupled cycling process in which gaps between the walls and the packed repeatedly widen and narrow. When these gaps next to the walls are wide granules from the packed bed can fall or settle downwards. However, the invented solutions protusions limit the extent of the downward movement of granules during periods of wide gaps. Later in the wall gap cycling, when the gaps narrow, the protusions are pushed (relatively) further into the packed bed. As this happens the protrusions push granules upwards (like a shovel-face pushed into a pile of pebbles pushes pebbles upwards). Over multiple cycles of limited settling/falling downwards of granules with following shovel-like pushing upwards of granules there is little or no net vertical movement of the granules.
By stopping thermal ratcheting, it avoids the destruction of the containing walls of packed bed heat storage units using thermal media made of loose, granular solid material.
It allows thermal media to be made of cheap, non-self-supporting thermal media, such as beds of pebbles, in thermally cycling heat storage units.
a illustrates the thermal ratchet stopping shovel wall at one extreme of a thermal charging and discharging cycle.
b illustrates the thermal ratchet stopping shovel wall at the other extreme of a thermal charging and discharging cycle.
The invention works within granular media, packed bed heat storage units and the process of repeated cycles that such heat storage units are driven through.
A granular media, packed bed heat storage unit comprises at least (i) a packed bed of granular media of granules, (ii) heat transfer fluid wherein the fluid can flow in the interstitial passages between the granules and (iii) one or more walls wherein these walls contain and are in contact with both of the packed bed and the heat transfer fluid; in addition, one or more devices capable of forcing the heat transfer fluid to flow through the interstitial spaces between the granules need to be available for such a heat storage unit to be operated.
Definition of a Thermal Charging and Discharging Cycle:
A thermal charging and discharging cycle is a driven process of four steps operated in a consecutive order within a granular media, packed bed heat storage unit wherein the consecutive order of steps is (i) heat charging step, (ii) heat storing step, (iii) heat discharging step and (iv) heat discharged step. Wherein, a thermal charging and discharging cycle process may be driven by forcing flows of alternately relatively hot heat transfer fluid or alternately relatively cold heat transfer fluid through the interstitial passages between the granules of the granular media. Further wherein, a thermal charging and discharging cycle process may also be driven by either turning these forced heat transfer fluid flows off and on or by reducing or increasing any temperature differences between flowing heat transfer fluid and the granular media this fluid flows in. Further wherein, the following happens in the four steps:
Substantial net heat exchanges can occur from the heat transfer fluid to the granular media during a heat charging step. While, during a heat discharging step substantial net heat exchanges can occur from the granular media to the heat transfer fluid. During a heat discharged step or a heat storing step there is little or no net heat exchange between the heat transfer fluid and the granular media.
Definition of Thermal Charging and Discharging Cycling:
Thermal charging and discharging cycling is a driven process wherein individual, driven thermal charging and discharging cycles are repeated one after another, such that, the heat discharged step of one cycle is followed by the heat charging step of the next cycle.
Definition of Responsive Driven Wall Thermal Cycling:
Responsive driven wall thermal cycling is a process of cycling changes in temperature of walls of a heat storage unit such that this heat storage unit is in the process of thermal charging and discharging cycling. Responsive driven wall thermal cycling occurs in response to the cycling changes in temperatures of the heat storage unit's granular media and heat transfer fluid since the walls are in contact with the granular media and heat transfer fluid and the laws of thermodynamics are obeyed.
a and
The wall gap cycle includes two half cycles that are referred to in this specification and following claims as “wall gap widening half cycles” and “wall gap narrowing half cycles,” each form a half of a wall gap cycle and they are alternately passed from one to the other as multiple wall gap cycles are completed. The time period illustrated by
a and
Features of the invention are protrusions 40 protruding from the wall 30 into the packed bed 20. These protrusions 40 act through relative movements in periods of cycles: Going from the period in a cycle of
Referring to
The protrusions extend horizontally in and/or out of the plane of the section
In alternate embodiments of the invention, the tips 42 (in
In
The main body of the wall 30 may have a vertical interface 31 (as in
The protrusions should be made of materials that can withstand the mechanical wear on the protrusions from contact with and relative movement with the granules of the packed occurring in the temperature cycling environment of a regenerative heat storage unit. Appropriate materials to make the protrusions out of are metals and ceramics which have a Mohs hardness of 6.0 or more; examples include high to ultra-high carbon (0.6-2.0 percent carbon, by mass) steel, cast iron (2.0+ percent carbon content, by mass), tungsten and high temperature porcelains (for example, alumina porcelain, with alumina mass content above 30 percent and alumina plus silica mass content above 80 percent, and zirconia porcelain, with zirconia mass content above 30 percent and zirconia plus alumina plus silica mass content above 80 percent) and even harder ceramics such as silicon nitride, tantalum carbide, silicon carbide, tungsten carbide, titanium carbide and boron carbide.
10. The apparatus of claim 9 wherein the protrusions can be made from a material selected from the group consisting of carbon steel with a carbon content between 0.6 and 2.0 percent, cast iron with a carbon content above 2.0 percent, tungsten, alumina porcelains with alumina content above 30 percent and alumina plus silica contents above 80 percent and zirconia porcelains with zirconia content above 30 percent and zirconia plus alumina plus silica contents above 80 percent, silicon nitride, tantalum carbide, silicon carbide, tungsten carbide, titanium carbide and boron carbide.
The protrusions should be firmly attached or integral to the walls.
For preventing thermal ratcheting, it is not necessary to have protrusions from horizontal bottoms of heat storage units and, again, it is not necessary to have protrusions above the packed bed of these storage units.
The invention is useful to regenerative heat storage units that might be used in electricity generating plants and industrial manufactories such as blast furnaces, chemical processing plants and any other plants using regenerative heat storage. The invention applies to heat storage units whose principal thermal media are packed beds made of granular solid material.
This patent application claims priority from the U.S. Provisional Patent with Application No. 61/748,296, filed on Jan. 2, 2013, which is incorporated herein by reference in its entirety.