The present invention relates generally to fastener-driving tools used for driving fasteners into workpieces, and specifically to combustion-powered fastener-driving tools, also referred to as combustion tools or combustion nailers.
Combustion nailers are known in the art for use in driving fasteners into workpieces, and examples are described in commonly assigned patents to Nikolich U.S. Pat. Re. No. 32,452, and U.S. Pat. Nos. 4,522,162; 4,483,473; 4,483,474; 4,403,722; 5,197,646; 5,263,439 and 5,713,313, all of which are incorporated by reference herein. Similar combustion-powered nail and staple driving tools are available commercially from ITW-Paslode of Vernon Hills, Ill. under the IMPULSE® and PASLODE® brands.
Such tools incorporate a tool housing enclosing a small internal combustion engine. The engine is powered by a canister of pressurized fuel gas, also called a fuel cell. A battery-powered electronic power distribution unit produces a spark for ignition, and a fan located in a combustion chamber provides for both an efficient combustion within the chamber, while facilitating processes ancillary to the combustion operation of the device. Such ancillary processes include: mixing the fuel and air within the chamber; turbulence to enhance the combustion process; scavenging combustion by-products with fresh air; and cooling the engine. The engine includes a reciprocating piston with an elongated, rigid driver blade disposed within a single cylinder body.
A valve sleeve is axially reciprocable about the cylinder and, through a linkage, moves to close the combustion chamber when a work contact element at the end of the linkage is pressed against a workpiece. This pressing action also triggers a fuel-metering valve to introduce a specified volume of fuel into the closed combustion chamber.
Upon the pulling of a trigger switch, which causes the spark to ignite a charge of gas in the combustion chamber of the engine, the combined piston and driver blade is forced downward to impact a positioned fastener and drive it into the workpiece. The piston then returns to its original or pre-firing position, through differential gas pressures created by cooling of residual combustion gases within the cylinder. Fasteners are fed magazine-style into the nosepiece, where they are held in a properly positioned orientation for receiving the impact of the driver blade.
The above-identified combustion tools incorporate a fan in the combustion chamber. This fan performs many functions, one of which is cooling. The fan performs cooling by drawing air though the tool between firing cycles. This fan is driven by power supplied by an onboard battery and, to prolong battery life, it is common practice to minimize the run time of the motor. Also, short fan run time reduces fan motor wear (bearings and brushes), limits sound emitting from the tool due to air flow, and most importantly limits dirt infiltration into the tool. To manage fan ‘on time’, combustion tools typically incorporate a control program that limits fan ‘on time’ to 10 seconds or less.
Combustion tool applications that demand high cycle rates, or prolonged use, or require the tool to operate in elevated ambient temperatures often cause tool component temperatures to rise. This leads to a number of performance issues. The most common is an overheated condition that is evidenced by the tool firing but no fastener driven. This is often referred to as a “skip” or “blank fire.” As previously discussed, the vacuum return function of a piston is dependent on the rate of cooling of the residual combustion gases. As component temperatures rise, the differential temperature between the combustion gas and the engine walls is reduced. This increases the duration for the piston return cycle to such an extent that the user can open the combustion chamber before the piston has returned, even with a lockout mechanism installed. The result is the driver blade remains in the nosepiece of the tool and prevents advancement of the fasteners. Consequently, a subsequent firing event of the tool does not drive a fastener.
Another disadvantage of high tool operating temperature is that there are heat-related stresses on tool components. Among other things, the internal lubricating oil has been found to have reduced lubricating capacity with extended high temperature tool operation. Accordingly, elevated operational temperatures often require more frequent tool maintenance, necessitating unwanted tool downtime.
For general operating conditions of combustion nailers, the default fixed interval fan run time is adequate. For cases where more frequent use of the nailer warrants improved temperature control, the option of extended fan run time based on engine temperature has proven effective. However, there is a need for additional tool controls for situations where extended use of the tool generates temperature levels beyond the cooling effect of the extended fan run time. Such extended use of the nailer will eventually cause malfunction or breakdown.
Thus, there is a need for a combustion-powered fastener-driving tool which addresses the effects of elevated temperatures generated during high frequency or prolonged use, which is aggravated by high ambient temperatures. In addition, there is a need for a combustion-powered fastener-driving tool that manages tool operating temperatures within accepted limits to prolong performance, maintain relatively fast piston return to the pre-firing position, and extend component life.
The above-listed needs are met or exceeded by the present thermal regulation control for a combustion nailer which features a method for preventing further operations of the nailer during a cool down cycle. This can be referred to as “advanced cooling mode”. In the present advanced cooling mode, a control circuit prevents the operation of the nailer during a cool down period, which period can be either a set duration or can extend until a designated lower temperature threshold is reached. If the control circuit determines that the nailer should enter into “advanced cooling mode”, the normal operating functions of the nailer are interrupted. This is performed by the control circuit failing to generate required optic switch driver signals, rendering the switches ineffective or disabling an electronic fuel injection apparatus. Without any switch inputs, no drive events can be initiated. Thus, no electronic fuel injection, change of operating modes or driver signals to other electronic controls will be generated during this period.
While the nailer is temporarily disabled, its overall useful operating time is extended. It has been shown that a 3-4 minute cool down period during tool disablement allows the nailer to resume normal operation for an extended period based on frequency of use. Without this function, the operation of an overheated nailer can be intermittent for more than 15 minutes.
More specifically, a combustion nailer includes a combustion-powered power source, at least one fan associated with the power source, at least one temperature sensor in operational proximity to the power source for sensing power source temperature, and a control system operationally associated with the power source, and the at least one temperature sensor for disabling the power source by disabling at least one main tool function upon the sensing of a predetermined temperature threshold sensed by the at least one temperature sensor.
In another embodiment, a combustion nailer includes a combustion-powered power source, at least one fan associated with the power source, at least one temperature sensor in operational proximity to the power source for sensing power source temperature, and a control system operationally associated with the power source and the at least one temperature sensor for disabling at least one of optic switch modulation and fuel injection function upon the sensing of a predetermined temperature threshold sensed by the at least one temperature sensor. Upon the control system disabling the at least one tool function, the control system is configured for energizing the fan while the control system monitors the temperature sensor and a preset timer is run, the fan energization having a duration of the lesser of the at least one temperature sensor reading the preset temperature and the expiration of a preset time on the timer.
Referring now to
Through depression of a trigger 26 associated with a trigger switch 27 (shown schematically and hidden), an operator induces combustion within the combustion chamber 18, causing the driver blade 24 to be forcefully driven downward through a nosepiece 28 (
Included in the nosepiece 28 is a workpiece contact element 32, which is connected, through a linkage 34 to a reciprocating valve sleeve 36, an upper end of which partially defines the combustion chamber 18. Depression of the tool housing 12 against the workpiece contact element 32 in a downward direction as seen in
Through the linkage 34, the workpiece contact element 32 is connected to and reciprocally moves with, the valve sleeve 36. In the rest position (
Also, as is known in the art, the spark plug 46 is activated based on operating conditions of the chamber switch 44 and the trigger switch 27, which are both optic switches, a suitable type being disclosed in U.S. Pat. No. 5,191,209 which is incorporated by reference.
Firing, combustion or activation (the terms are used interchangeably) is enabled when an operator presses the workpiece contact element 32 against a workpiece. This action overcomes the biasing force of the spring 38, causes the valve sleeve 36 to move upward relative to the housing 12, closing the gap 40, sealing the combustion chamber 18 and activating the chamber switch 44. This operation also induces a measured amount of fuel to be released into the combustion chamber 18 from a fuel canister 50 (shown in fragment).
In a mode of operation known as sequential operation, upon a pulling of the trigger 26, the spark plug 46 is energized, igniting the fuel and air mixture in the combustion chamber 18 and sending the piston 22 and the driver blade 24 downward toward the waiting fastener for entry into the workpiece. An alternate mode of operation is referred to as repetitive firing, in which ignition is achieved by the closing of the chamber switch 44, since the trigger 26 is already pulled and the associated trigger switch 27 is closed. As the piston 22 travels down the cylinder 20, it pushes a rush of air which is exhausted through at least one petal, reed or check valve 52 and at least one vent hole 53 located beyond the piston displacement (
To manage those cases where extended tool cycling and/or elevated ambient temperatures induce elevated power source temperature, at least one temperature sensor 60, 60′ such as a thermistor (shown hidden in
A target threshold temperature where elevated temperature levels increase tool malfunctions is selected based upon the proximity of the temperature sensor 60, 60′ to the components of the power source 14, the internal forced convection flow stream, and desired cooling effects to avoid nuisance fan operation. Excessive fan run time unnecessarily draws contaminants into the tool 10 and depletes battery power. Other drawbacks of excessive fan run time include premature failure of fan components and fan-induced operational noise of the tool 10. For demanding high cycle rate applications and/or when elevated ambient temperatures present temperature-related tool malfunction issues, temperature controlled forced convection will yield more reliable combustion-powered nail performance and will also reduce thermal stress on the tool.
Referring now to
Beginning at the START prompt 70, upon turning on the tool 10, the program 66 performs normal tool operation such as turning on the fan 48 upon the workpiece contact element 32 being pressed against the workpiece, the supply of fuel to the combustion chamber 18, the energization of the spark plug 46 and associated warning indicators and alarms. These functions are represented generally by Main Operating System 72. Upon the program 66 activating a spark at the spark plug 46 at 74, the program checks to see if the chamber switch 44 is open at 76. If the switch 44 is closed, the tool 10 will fire. The program 66 cycles at 78 here until the switch 44 is open.
At that point, the program 66 obtains a temperature reading at 80 from the temperature sensor 60, 60′. The program 66 has a preset acceptable tool upper range operating temperature, which in the preferred embodiment is 90° C., however other values are contemplated depending on the tool, area of use, or other known factors. The selected temperature is determined on the basis of a threshold at which temperature-related operational problems begin to occur in the tool 10. If, at step 81, the sensor 60, 60′ indicates that the temperature is less than the threshold temperature, the program 66 returns to main operating system functions at 72, indicating that acceptable tool operating temperatures exist.
However, if the sensed temperature is equal to or exceeds the threshold temperature of 90° C., the tool 10 risks temperature-induced malfunctions and the program 66 changes to a SWITCH CONTROL mode at 82. Referring now to
Upon disabling of the optic switches, the program 66 then energizes the fan 48 at step 86 for a preset time, preferably four minutes, however other periods are contemplated depending on the circumstances. As described above, periods of 2-3 minutes have provided satisfactory cooling in some instances. The four minute period has been found to be acceptable for tool cooling in the absence of additional combustion cycles. The cooling occurs through fan induced cooling convection.
To indicate the status of the tool 10 to the operator, an indicator 88 (
In one embodiment, the indicator is a lens 90 enclosing an LED 91 (
The indicator 88 is energized at step 92. Next, the program 66 checks whether one of two conditions is met: either the temperature is equal to or falls below a reduced or lower threshold, 50° C., or a 4 minute timer determining fan run time has expired. More specifically, at step 93 the temperature is read from sensor 60, 60′ and at step 94 the program 66 determines whether the power source temperature is below the lower threshold. If it has, the tool 10 is cool enough to resume operation and, at step 96, the indicator 88 is turned off, and at 98 the fan 48 is turned off. The program 66 then reverts to the normal operating procedure, going to START at 70. The tool 10 is thus revived from its disabled condition.
If the sensed temperature is not below the threshold, the program 66 checks at 100 whether the fan run timer has expired. If not, the program 66 cycles until either the temperature is reduced sufficiently or the timer has expired. Once the fan run timer expires, the indicator 88 is turned off at 102, the fan is turned off at 104 and the program reverts to START at 70.
Referring now to
More specifically, the first portion of the program 110 is identical to the program 66 as far as steps 70 to 81. However, if the sensed temperature is equal to or exceeds the threshold temperature of 90° C. at step 81, the tool 10 is subject to temperature-induced malfunctions and the program 110 changes to a FUEL CONTROL mode at 112.
Referring now to
The remaining operational steps of the program 110 are identical to the program 66, as reflected in the schematic of
If the sensed temperature is not below the threshold, the program 110 checks at 100 whether the fan run timer has expired. If not, the program 110 cycles until either the temperature is reduced sufficiently or the timer has expired. Once the fan run timer expires, the indicator 88 is turned off at 102, the fan is turned off at 104 and the program reverts to START at 70.
While particular embodiments of the present thermal regulation control for a combustion nailer has been described herein, it will be appreciated by those skilled in the art that changes and modifications may be made thereto without departing from the invention in its broader aspects and as set forth in the following claims.
The present application claims priority under 35 USC § 120 from U.S. Ser. No. 60/684,001 filed May 23, 2005.
Number | Name | Date | Kind |
---|---|---|---|
6123241 | Walter et al. | Sep 2000 | A |
6796476 | Birk et al. | Sep 2004 | B2 |
6886730 | Fujisawa et al. | May 2005 | B2 |
7021251 | Ohmori et al. | Apr 2006 | B2 |
20040182336 | Ohmori et al. | Sep 2004 | A1 |
20050173485 | Moeller et al. | Aug 2005 | A1 |
20050224024 | Granacher et al. | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
0 818 280 | Jan 1998 | EP |
20040873725 | Sep 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060260568 A1 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
60684001 | May 2005 | US |