The disclosure relates generally to a detection system for detecting battery failure and more particularly to a detection system for detecting thermal runaway of batteries within enclosures, for example, batteries used with electric vehicles,
As Li-ion battery technology improves, battery energy density has continued to increase and this in turn increases the risk of battery failures. Li-ion battery thermal runaway is a critical safety issue for electric vehicles. For example, the proposed global technology regulation No. 20 by the United Nations on Electric Vehicle Safety (EVS) requires an advanced warning 5 minutes prior to the evolution of hazardous conditions caused by thermal runaway.
Referring to
Turning back to
However, if left unhindered, or if the heat cannot be dissipated faster than it is being generated, this can result in a rapid increase in temperature, release of flammable and hazardous gases during venting, flames, and possibly explosion. This can especially be problematic for vehicles having large format battery systems, as shown in
Sensors have been developed to detect thermal runaway. However, simple gas sensors, such as a hydrocarbon sensor, can only detect electrolyte gas concentration, and also suffer from cross sensitivity to other gases as well as substantial drift and so make poor long-life thermal runaway detection sensors.
There is therefore a need for a robust early detection system for detecting thermal runaway in mobile and stationary applications that is fast and reliable.
No admission is made that any reference cited herein constitutes prior art. Applicant expressly reserves the right to challenge the accuracy and pertinence of any cited documents and information.
A detection system is disclosed that addresses the challenges of fast, robust thermal runaway detection within a battery enclosure that is generally agnostic to electrochemistry, cell packaging (cylindrical, prismatic, or pouch), cell size, as well as battery configuration (series/parallel) by identifying attributes of initial cell venting that are shared between numerous design types and responding to venting gases of a failing cell.
During thermal runaway decomposition reactions, the cell converts substantial cathode and electrolyte material into gas and vents the pressurized gas mixture in time spans of seconds when the faulted cell is at a high State of Charge,
Also disclosed in the use of such systems for the detection (e.g., early detection) of thermal runaway, thereby, for example, helping to prevent cell-to-cell propagation of thermal runaway originating from a single cell. In one embodiment, a cell venting is detected. In one embodiment, thermal runaway is detected.
In other examples of the disclosure, at least one additional sensor is provided for detecting a secondary condition of the battery and providing information on a rate of progression of the cell venting and thermal runaway in real time including pressure or temperature, wherein said microcontroller provides a rate of progression of the thermal runaway based on the provided information from said secondary sensor. The at least one additional sensor can detect a pressure or temperature in the battery compartment housing to determine rate of progression of the venting/thermal runaway. A sensor housing can be provided to enclose the at least one sensor and the at least one secondary sensor. Output from the primary gas sensor and the secondary gas sensor allows for differentiation between electrolyte leakage and venting/thermal runaway. The system software can be embedded within the sensor microcontroller to determine if threshold levels for thermal runaway have been exceeded and to send an alarm to the battery management microcontroller or charging system controller.
In yet other example embodiments, the threshold levels for thermal runaway are selected from: (i) a carbon dioxide level of greater than about 10,000 ppm; (ii) a hydrogen level of greater than about 40,000 ppm; (iii) a carbon dioxide level above its lower explosive limit; (iv) a hydrogen level above its lower explosive limit; and (v) any combination of thereof. A multichip printed circuit board can be provided to be mounted on battery management controller printed circuit board. A power management system can be provided that allows for fast data acquisition mode during active battery system charging/discharging, and reduced acquisition rate/lower power mode when the battery system is neither charging nor discharging. The detection system can send a wake-up command to the main battery system controller upon detection of venting/thermal runaway. The sensor system can include multiple gas sensors selected from more than one hydrogen sensor, more than one carbon monoxide sensor, more than one carbon dioxide sensor, and any combination of any of the foregoing, for redundancy in safety critical applications. The detection system can also include a humidity sensor, a pressure sensor, a temperature sensor, or any combination thereof.
In another example embodiment, a method is provided for detecting a thermal runaway condition of a battery within a battery enclosure. The method includes providing a detection system as described above, measuring and/or analyzing one or more gases venting from the battery, and determining if the analyzed gas levels are at or above a predetermined threshold level that indicates thermal runaway of the battery. The gases analyzed can include hydrogen, carbon monoxide, carbon dioxide, or any combination thereof.
This summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter. It is to be understood that both the foregoing general description and the following detailed description are exemplary and are intended to provide an overview or framework to understand the nature and character of the disclosure.
The accompanying drawings are incorporated in and constitute a part of this specification. It is to be understood that the drawings illustrate only some examples of the disclosure and other examples or combinations of various examples that are not specifically illustrated in the figures may still fall within the scope of this disclosure. Examples will now be described with additional detail through the use of the drawings, in which:
In describing the illustrative, non-limiting embodiments illustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, the disclosure is not intended to be limited to the specific terms so selected, and it is to be understood that each specific term includes all technical equivalents that operate in similar manner to accomplish a similar purpose. Several embodiments are described for illustrative purposes, it being understood that the description and claims are not limited to the illustrated embodiments and other embodiments not specifically shown in the drawings may also be within the scope of this disclosure.
The Battery Thermal Runaway Detector is predisposed within the void airspace of a typical battery enclosure, for example as shown in
The enclosure protects the battery cells and modules from water, debris, and to protect users and occupants from the electrical hazards within the enclosure. Enclosure void space volumes (the volume of air space within the enclosure) can vary from as little as a few liters to as much as 200 or more liters, typically containing air. The battery enclosure is generally provided with air venting features inclusive of a single or multiple small openings that allow for pressure equilibrium inside and outside the enclosure to prevent strain and damage to the pack. These openings are generally protected with hydrophobic membranes that allow for air exchange but prevent the direct flow of liquid water into the enclosure. The enclosure may also include valves or similar devices to allow over pressure from a thermal runaway to safely vent from the enclosure, reducing risk of explosion and harmful shrapnel.
Turning to
In one embodiment of any of the detection systems described herein, the primary gas detector 100 comprises one or more sensors for the detection of decomposition products formed during thermal runaway.
For example, in one embodiment of any of the detection systems described herein, the primary gas detector 110 comprises one or more sensors, and in one embodiment comprises one or more of: a CO2 sensor, a carbon monoxide (CO) sensor, a HF sensor, a H2 gas sensor and/or a water vapor sensor.
In one embodiment of any of the detection systems described herein, the primary gas detector 110 comprises a CO2 sensor, a CO sensor, a HF sensor, a H2 gas sensor and a water vapor sensor.
In one embodiment of any of the detection systems described herein, the primary gas detector 110 comprises a CO2 sensor, a CO sensor, a HF sensor, and a H2 gas sensor.
In another embodiment of any of the detection systems described herein, the primary gas detector 110 comprises a CO2 sensor, a CO sensor, a H2 gas sensor and a water vapor sensor.
In another embodiment of any of the detection systems described herein, the primary gas detector 110 comprises a CO2 sensor, a CO sensor, and a H2 gas sensor.
In another embodiment of any of the detection systems described herein, the primary gas sensor 110 examines the unique physical properties of the sensed gas without chemically interacting with it, thereby providing for a reliable and robust primary sensor.
In another embodiment of any of the detection systems described herein, the primary gas detector 110 further comprises one or more secondary gas sensors for the detection of one or more gases that are vented from a cell prior to thermal runaway (e.g., during initial cell venting of gas products of SEI decomposition and electrolyte).
For example, in one embodiment of any of the detection systems described herein, the primary gas detector 110 further comprises one or more secondary gas sensors for the detection of one or more of: methane, ethane, oxygen, nitrogen oxides, volatile organic compounds, esters, hydrogen sulfide, sulfur oxides, ammonia, chlorine, propane, ozone, ethanol, hydrocarbons, hydrogen cyanide, combustible gases, flammable gases, toxic gases, corrosive gases, oxidizing gases, and/or reducing gases.
In another embodiment of any of the detection systems described herein, the primary gas detector 110 further comprises one or more secondary gas sensors for the detection of one or more of: CH4, C2H2, C2H4, C2H6, diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylene carbonate (EC), ethyl methyl carbonate (EMC), C4H10, C3H6, C3H8 and/or POF3.
In one embodiment of any of the detection systems described herein, the gas detector 100 comprises one or more primary sensors for the detection of decomposition products formed during thermal runaway and one or more secondary gas sensors for the detection of one or more gases than are vented from a cell prior to thermal runaway (e.g., during initial cell venting of gas products of decomposition and electrolyte).
The detectors/sensors 110-116 are positioned about the enclosure, and any suitable combination of detectors and/or sensors 110-116 can be utilized.
The thermal runaway detection system 100 also contains a voltage regulator 120 that provides and regulates sufficient power to operate the sensors 110-116, microcontroller or microprocessor 118, and communications transceiver 122. The sensor elements 110-116 are electrically connected to the microcontroller 118 within the detection system 100. The microcontroller 118 interprets the sensor output from each of the sensors 110-116 and provides necessary signal conditioning to convert the raw sensor signals to engineering values for each component. The values are then transmitted to the communications transceiver 122, which provides a data stream of sensor information to the battery management system master controller or other electronic monitoring system.
When a CO2 gas sensor 110 is used as one of the primary gas sensors 110, it detects carbon dioxide levels in the enclosure (
In one embodiment of any of the detection systems described herein, the primary gas sensor 110 for the detection of CO2 is an infrared (e.g., near-dispersive infrared) spectroscopy sensor.
For example, in one embodiment of any of the detection systems described herein, the gas sensor 110 provides the output to the processing device 118, which can determine if the sensed condition exceeds a predetermined threshold or if there is a rapid change in the sensed condition.
In one embodiment of any of the detection systems described herein, the predetermined threshold for the detection of carbon dioxide concentration signaling the triggering of a thermal runaway event is greater than about 1,000 ppm, such as greater than about 10,000 ppm, greater than about 20,000 ppm, greater than about 30,000 ppm, greater than about 40,000 ppm, greater than about 50,000 ppm, greater than about 60,000 ppm or greater than about 75,000 ppm. In one embodiment of any of the detection systems described herein, the predetermined threshold for the detection of carbon dioxide concentration signaling the triggering of a thermal runaway event is greater than about 10,000 ppm.
Thus, in one embodiment of any of the detection systems described herein, the system indicates that a thermal runaway event has occurred when the concentration of carbon dioxide detected by the sensor is greater than about 1,000 ppm, such as greater than about 10,000 ppm, greater than about 20,000 ppm, greater than about 30,000 ppm, greater than about 40,000 ppm, greater than about 50,000 ppm, greater than about 60,000 ppm or greater than about 75,000 ppm. In one embodiment of any of the detection systems described herein, the system indicates that a thermal runaway event has occurred when the concentration of carbon dioxide detected by the sensor is greater than about 10,000 ppm.
In a similar fashion, background concentrations of hydrogen in atmospheric air are generally around 200 to 300 ppb. Under battery cell venting conditions, hydrogen concentrations inside the battery enclosure can easily exceed 140,000 ppm, also providing a robust signal to noise ratio for gas detection, as shown in
In one embodiment of any of the detection systems described herein, the primary gas sensor 110 for the detection of H2 is a thermal conductivity sensor.
In one embodiment of any of the detection systems described herein, the predetermined threshold for the detection of hydrogen concentration signaling the triggering of a thermal runaway event is about greater than about 200 ppb, such as greater than about 300 ppb, greater than about 1 ppm, greater than about 100 ppm, greater than about 1,000 ppm, greater than about 10,000 ppm, greater than about 40,000 ppm greater than about 50,000 ppm, greater than about 100,000 ppm or greater than about 150,000 ppm. In one embodiment of any of the detection systems described herein, the predetermined threshold for the detection of hydrogen concentration signaling the triggering of a thermal runaway event is greater than about 40,000 ppm.
Thus, in one embodiment of any of the detection systems described herein, the system indicates that a thermal runaway event has occurred when the concentration of hydrogen detected by the sensor is greater than 200 ppb, such as greater than about 300 ppb, greater than about 1 ppm, greater than about 100 ppm, greater than about 1,000 ppm, greater than about 10,000 ppm, greater than about 50,000 ppm, greater than about 100,000 ppm or greater than about 150,000 ppm. In one embodiment of any of the detection systems described herein, the system indicates that a thermal runaway event has occurred when the concentration of hydrogen detected by the sensor is greater than 40,000 ppm.
In one embodiment of any of the detection systems described herein, the system indicates that a thermal runaway event has occurred when the concentration of hydrogen detected by the sensor is above its lower explosive limit (4%).
In one embodiment of any of the detection systems described herein, the system indicates that a thermal runaway event has occurred when the concentration of CO detected by the sensor is above its hazardous limit and/or its lower explosive limit (12.5%).
The use of the principle of thermal conductivity for hydrogen and non-dispersive Infrared measurement of CO2 primary sensors are robust, absolute measurement devices that have limited cross sensitivity to other gases, making them ideal for this application where there is little or no opportunity to recalibrate or service the devices in the field. This is generally due to the selection of measurement principles based on physical behaviors unique to these gas molecules, while not chemically interacting with the target gases or other gases in the environment.
In one embodiment of any of the detection systems described herein, the secondary gas sensor is a MOx or Pellistor based sensor (e.g., for the detection of hydrocarbons).
The pressure sensor 112 detects the gas pressure levels in the void space of the battery enclosure. Nominal air pressure within the enclosure approximates atmospheric pressure. During thermal runaway venting, the pressure may rise abruptly if the venting phase is highly energetic, as in the case of a cell that is at 100 percent state of charge as shown in
The temperature sensor 116 detects the temperature within the enclosure void space, and like the pressure sensor 112, can be used in conjunction with the gas sensor 110 to estimate the rate of progression of the thermal runaway (
In one embodiment, the temperature sensor 116 detects temperatures in the range of from about 100° C. to about 1200° C., such as from about 600° C. to about 1000° C.
The relative humidity sensor 114 monitors the humidity within the void space of the enclosure and can also be used in conjunction with the gas sensor 110 to observe substantial changes in water vapor within the enclosure indicative of the formation of water vapor due to the decomposition reaction products.
The detection system 100 can be utilized for a variety of suitable applications. In the embodiment shown in
The sensors 110-116 each output a sensed signal to a processing device, such as the microcontroller 118. The microcontroller 118 converts the analog sensor signal to engineering values and transmits that data, such as in the form of an alarm signal or output signal, to the Battery Management System via a wired or wireless transceiver 122. The microcontroller 118 can also determine if the values from the sensors 110-116 exceed a critical threshold value for that sensor to indicate cell venting as well as provide algorithms to determine if the sensors 110-116 are operating normally and within specifications. The detection system 100 may utilize redundant sensors 110-116 to meet Safety Index Levels.
One or more of the sensors 110-116 are located in a free space within the battery enclosure (
As shown and described, the detection system addresses the problem of robust detection of thermal runaway in lithium ion batteries, where the outgassing precursor to thermal runaway can occur in timespans of seconds or hours. The detection system measures multiple physical parameters of the outgassing event that can allow detection of rapid thermal runaway as well as slower events. The multiple detection technology reduces the risk of false positive and missed detection errors and provides sufficient redundancy to meet market safety requirements. The system measures, at a minimum, hydrogen and/or carbon dioxide concentration, and may be supplemented with air pressure and or temperature and humidity in the enclosure.
In other variants, the detection system could also include hydrocarbon detection of the electrolyte, including methane, esters, and ethane gases. During the initial cell venting that precedes thermal runaway, vented gases include H2, CO, CO2, and hydrocarbons in sufficient concentration to be detected by the individual sensors. By combining them into a single sensor platform with signal conditioning and analysis, it is possible to determine with relative certainty that the event is a single cell undergoing thermal runaway, and by monitoring the gases simultaneously, determine the difference between less urgent electrolyte leakage and more urgent thermal runaway condition. The use of the principle of thermal conductivity for hydrogen and non-dispersive Infrared measurement of CO2 sensor are robust, absolute measurement devices that have limited cross sensitivity to other gases, making them ideal for this application where there is little or no opportunity to recalibrate or service the devices in the field.
Referring more specifically to
The sensors 110-116 immediately send the sensed outputs to the microcontroller 118 in real time without delay or manual intervention. The sensors 110-116 can send sensed outputs to the microcontroller 118 continuously or at intermittent random or predetermined periods (such as several times a second).
In the example embodiment of
At T=2 in the example embodiment of
Turning to
Turning to
Thus, the microcontroller 118 uses the sensed outputs from the gas, pressure, RH, and/or temperature sensors 110, 112, 114, 116, respectively, to determine if there is a thermal runaway event or other condition within the battery enclosure. The microcontroller 118 can base that determination on a single sensed output, or on a combination of sensed outputs. For example, the microcontroller 118 can determine based on the presence of a gas spike alone, that a thermal runaway might be occurring and then refer to the sensed pressure output and/or the sensed temperature output to determine if the thermal runaway event is cascading to additional cells throughout the pack by utilizing a combination of gas measurement to determine initial thermal runaway event and monitoring for increases in pressure or temperature to assess the magnitude of the event. Increasing temperature or pressure within the pack coincident with high gas concentration levels are indicative that countermeasures have not isolated the event to a single cell, and generate an alert escalating a response. For example, the initial alert could be to notify the vehicle owner to take the vehicle in for service as soon as possible, and the escalating alert could be to notify the vehicle occupants to bring the vehicle to the side of the road, exit the vehicle and the BMS would shut the vehicle down except for the heat exchanger system to try to slow the process down. However, if the temperature and pressure do not increase, the microcontroller 118 can determine that the thermal event has ceased and has been isolated to a single cell or group of cells, and not generate an alert escalating the response. Thus, in the example given, the alert would continue to notify the vehicle owner to have the vehicle serviced.
It is noted that a microcontroller 118 is provided to receive the sensed outputs, determine spikes and send an alarm to the battery controller via the transceiver 122. However, the microcontroller operation can instead be performed by the battery controller itself, and sensed outputs can be transmitted, via the transceiver, to the battery controller. And responsive action signals can be sent directly from the battery controller to the cells, via the transceiver 122.
Advantages of the detection system 100 include, for example, the use of known, validated and field proven sensor technology, leveraging a specific combination of sensors to allow for layering of the detection mechanisms related to chemical and thermal physics of phenomena associated with the thermal runaway event. The system requires little, if any customization to be suited for various xEV enclosure size/cell configuration/electrochemistry. The system also has very fast time response (generally 3 to 5 seconds) in an environment where positive detection of thermal runaway requires fast response with minimal risk of missed/false detection. The system is compact and can be operated in multiple modes for reduced parasitic power consumption when the battery enclosure is neither actively charging nor discharging. These modes can be controlled within the sensor assembly 100 utilizing information received from the battery Management system on active mode (either driving or charging, where fast detection is critical and power consumption less important, or in passive mode, where power consumption is critical and sampling rate can be reduced to reduce device power consumption.
The system and methods of the present invention include operation by one or more processing devices, including the microprocessor 118. It is noted that the processing device can be any suitable device, such as a processor, microprocessor, controller, application specific integrated circuit (ASIC), or the like. The processing devices can be used in combination with other suitable components, such as a display device, memory or storage device, input device (touchscreen), wireless module (for RF, Bluetooth, infrared, WiFi, etc.). The information may be stored on a computer medium such as a computer hard drive, or on any other appropriate data storage device, which can be located at or in communication with the processing device. The entire process is conducted automatically by the processing device, and without any manual interaction. Accordingly, unless indicated otherwise the process can occur substantially in real-time without any delays or manual action.
In another aspect, the present disclosure relates to a method of detecting thermal runaway of a battery (e.g., detecting thermal runaway of one or more battery cells) within an enclosure.
In one embodiment, the method comprises:
In one embodiment, the gases analyzed comprise hydrogen, carbon monoxide, carbon dioxide, or any combination thereof.
In one embodiment, any of the detection systems and/or methods described herein do not i) receive a sensor signal, ii) evaluate the sensor signal relative to a threshold, or iii) generate an alert based on a result of the evaluation, or any combination of the foregoing.
In another embodiment, any of the detection systems and/or methods described herein do not monitor an ambient gas in an ambient gas environment.
It will be apparent to those skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings that modifications, combinations, sub-combinations, and variations can be made without departing from the spirit or scope of this disclosure. Likewise, the various examples described may be used individually or in combination with other examples. Those skilled in the art will appreciate various combinations of examples not specifically described or illustrated herein that are still within the scope of this disclosure. In this respect, it is to be understood that the disclosure is not limited to the specific examples set forth and the examples of the disclosure are intended to be illustrative, not limiting.
As used in this specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents, unless the context clearly dictates otherwise. Similarly, the adjective “another,” when used to introduce an element, is intended to mean one or more elements. The terms “comprising,” “including,” “having” and similar terms are intended to be inclusive such that there may be additional elements other than the listed elements.
Additionally, where a method described above or a method claim below does not explicitly require an order to be followed by its steps or an order is otherwise not required based on the description or claim language, it is not intended that any particular order be inferred. Likewise, where a method claim below does not explicitly recite a step mentioned in the description above, it should not be assumed that the step is required by the claim.
This application is a continuation-in-part of U.S. application Ser. No. 17/021,711, filed on Sep. 15, 2020, and claims the benefit of U.S. Provisional Application No. 63/202,962, filed on Jul. 1, 2021, the entire contents of each of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
63202962 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17021711 | Sep 2020 | US |
Child | 17475986 | US |