This disclosure relates generally to thermal spray assemblies and methods of using them to deposit material on a substrate, particularly but not exclusively for depositing a hard layer onto a steel body, such as a tool for mining, earth boring or road milling.
International patent application, publication number WO/2013/178550 discloses a method for making a construction comprising a steel substrate body coated with a layer of relatively harder material. The method may include providing a plurality of granules comprising iron (Fe), silicon (Si) and a source of carbon (C), in which the relative quantities of the Fe, Si and are selected such that the combination of the Fe, Si and C has a phase liquidus temperature of at most about 1,280 degrees Celsius; and depositing the granules onto the substrate body by means of a thermal spray assembly. The thermal spraying process will involve heating the granules to a temperature of at least about 1,350 degrees Celsius at a mean rate of at least about 100 degrees Celsius per second, and the cooling of the granules to less than about 1,000 degrees Celsius at a mean rate of at least about 20 degrees per second on contact with the substrate body.
There is a need to provide an apparatus and method for efficiently spraying material having a relatively low melting point, granules for use with the thermal spray device and methods of using it.
Viewed from a first aspect, there is provided a thermal spray assembly for transforming precursor material into a layer of deposited material joined to a substrate body; comprising a plasma torch for producing a plasma jet from a plasma nozzle and a feeder mechanism for guiding the precursor material into the plasma jet in use and being capable of providing a feeder orifice when in an open condition; the feeder mechanism comprising a distribution chamber configured for guiding moving precursor material azimuthally around the plasma torch, a plurality of deflector structures configured for deflecting the precursor material from the distribution chamber and guiding it into a guide chamber configured for guiding the precursor material to the plasma jet in use. When the thermal spray assembly is in the assembled condition, it may be referred to as a thermal spray device.
Various arrangements and combinations are envisaged for thermal spray assemblies, both in the assembled and in non-assembled states, non-limiting and non-exhaustive examples of which are described below.
In some example arrangements, the feeder mechanism may comprise a moveable guide mechanism and be configured such that the guide chamber is capable of guiding the precursor material to the feeder orifice, through which the precursor material can move from the guide chamber and enter the plasma jet at a variable mean distance from the plasma nozzle in response to movement of the guide mechanism.
In some example arrangements, the deflector structures may comprise projections spaced apart from each other and extending from the distribution chamber to the guide chamber.
In some example arrangements, the deflector structures may be arranged such that the precursor material can be deflected into the guide chamber, distributed substantially uniformly azimuthally within the guide chamber.
In some example arrangements, the thermal spray assembly may comprise at least two elements capable of being coupled together, one element comprising the plasma torch and the other element comprising a containment vessel for accommodating the plasma torch; the elements being cooperatively configured such that the feeder mechanism will be formed when the elements are coupled together.
In some example arrangements, the feeder mechanism can be put in a closed condition, in which precursor material will be prevented from entering the plasma jet.
In some example arrangements, the feeder mechanism can be configured such that different portions of the precursor material can simultaneously be directed into the plasma region from a plurality of directions converging on the plasma jet.
In some example arrangements, the volume of the guide chamber may converge with closer proximity to the feeder orifice.
In some example arrangements, the guide chamber may be bounded by inner and outer cone surfaces of respective inner and outer bodies, the inner and outer cone surfaces defining respective cone angles that differ by 4 to 10 degrees.
In some example arrangements, the feeder orifice may have an annular form when in an open condition, extending azimuthally around the axis of the plasma jet in use.
In some example arrangements, the thermal spray assembly may be for plasma transferred arc (PTA) operation.
In some example arrangements, the guide mechanism can be arranged operative to alter the path of precursor material that has passed through the feeder orifice.
In some example arrangements, the position of the feeder orifice relative to the plasma torch, and or the size and or shape of the feeder orifice can be varied in response to arrangement of the guide mechanism.
In some example arrangements, the guide mechanism may be coterminous with the feeder orifice such that the guide mechanism provides the feeder orifice with a moveable boundary.
In some example arrangements, the guide mechanism can be moved axially relative to the plasma torch, the axis defined by the direction of the plasma jet in use.
In some example arrangements, the guide mechanism may comprise a moveable sleeve extending azimuthally about the plasma torch.
In some example arrangements, the guide mechanism can be arranged such that the feeder orifice can provide an axial displacement of up to 1 millimetre (mm) between opposite boundaries of the feeder orifice, the axial displacement being aligned with the direction of the plasma jet in use.
In some example arrangements, the feeder mechanism may be configured such that the guide mechanism provides an outer boundary of the guide chamber and the plasma torch provides an inner boundary of the guide chamber.
In some example arrangements, the feeder orifice may be provided as a gap between a boundary of the guide mechanism and the plasma torch.
In some example arrangements, the guide chamber may extend azimuthally around the plasma torch when the thermal spray assembly is in the assembled state.
While wishing not to be bound by a particular theory, the temperature within the plasma jet will likely vary with axial distance from the plasma nozzle, and a suitable mean distance from the plasma nozzle at which given precursor material may enter the plasma jet may depend to some extent on the melting point, or eutectic phase temperature of the precursor material. In some examples, the precursor material may be in granulated form, such as powder or granules comprising respective aggregations of grains. The precursor material may comprise a plurality of different materials, which may be combined within each granule and or within different granules.
A method of using a disclosed thermal spray assembly in the assembled state (in other words, a method of using a disclosed thermal spray device) can be provided, the method including providing precursor material capable of melting at a temperature of less than 1,300 degrees Celsius, and introducing it into the feeder mechanism by means of a flowing carrier fluid; arranging the moveable guide mechanism such that the precursor material enters the plasma jet sufficiently far away from the plasma nozzle that it does not adhere to the thermal spray device on melting in the plasma jet.
In some examples, the guide mechanism may comprise a sleeve that extends all the way around the plasma torch and is axially moveable relative to the plasma torch, the feeder orifice may be provided as an annular axial gap, a boundary of which is coterminous with a boundary of the sleeve such that the axial gap is variable in response to axial movement of the sleeve; and in which the precursor material may be capable of melting at a temperature of 1,000 and 1,300 degrees Celsius; and the method may include arranging the sleeve such that the axial gap of the feeder orifice is 0.2 to 0.5 mm.
In some examples, the combined precursor material may melt at no less than about 800 or 1,000 degrees Celsius. If the melting point of the precursor material is too low, there is a risk that material may evaporate while within the plasma jet and be lost to the thermal spray process. In some examples, the (combined) precursor material may be capable of melting at a temperature of at most about 1,300 degrees Celsius, less than 1,280 degrees Celsius or at most about 1,200 degrees Celsius.
In some examples, the precursor material may be suitable for depositing a hard layer of material onto a steel body, the hard layer having Vickers hardness of at least 800 HV10; the precursor material being transformed into the hard material by being thermally sprayed onto the steel body.
In some examples, the precursor material may comprise a combination of iron (Fe), silicon (Si), a source of carbon (C) and grains comprising metal carbide material, in which the relative quantities of the Fe, Si and C are selected such that the combination of the Fe, Si and C has a phase liquidus temperature of at most about 1,300 degrees Celsius, less than 1,280 degrees Celsius or at most about 1,200 degrees Celsius.
The method may include using a disclosed example thermal spray device for spraying material onto a body of a tool comprising or consisting of steel. For example, the tool body may be for a pick for pavement degradation or mining, or a drill bit for boring into rock. In some examples, the tool body may be for some other tool or component at risk of being worn or corroded in use. In general, the method may include depositing a relatively harder layer onto a wear part.
In some examples, the precursor material is suitable for depositing a hard layer of material having hardness substantially greater than that of the steel comprised in the body. The deposited material may form a layer that is capable of reducing the rate of corrosion and or mechanical wear of the tool body in use.
With reference to
The arrangement of the feeder orifice 70 is variable, such that the precursor material 60 can be selectively fed into any of various zones within the plasma region 50, having different respective mean axial distances from the plasma nozzle 28 (an example zone 80 is illustrated in
In the particular example illustrated in
In the example shown in
The plasma torch 20 may comprise a central cathode 24, which may comprise tungsten (W) metal, and a plasma nozzle 28 at least partly surrounding the cathode 24 and defining at least part of a chamber 27 within which the cathode 24 is located, the cathode 24 and plasma nozzle 28 configured to be capable of generating an electrical arc between them. In use, inert gas 25 such as argon (Ar) will flow past the cathode 24 towards the plasma nozzle 28. The cathode 24, plasma nozzle 28 and chamber 27 are configured such that the inert gas 25 can be ionised and a pilot plasma jet 50A generated proximate the plasma nozzle 28, the pilot plasma jet 50A projecting outwards from the chamber 27, into the spray orifice 40 and towards the substrate 100. When the thermal spray assembly is positioned sufficiently near the substrate 100 and operating conditions are achieved, a transfer plasma jet 50B will be generated and extend between the cathode 24 and the substrate 100, projecting beyond the spray orifice 40. The temperature within the pilot plasma jet 50A may be about 15,000 degrees Celsius and that within the transfer plasma jet 50B may be about 3,000 to about 4,000 degrees Celsius. In general, the temperature within the plasma jet 50A, 50B will vary substantially at different axial positions in the plasma jet, being different axial distances from the plasma nozzle 28.
In general, precursor material 60, which may be in in granular form, and which will likely have been selected such that it can be transformed by the thermal spray operation into the material to be deposited onto the substrate 100. In use, the precursor material 60 will be introduced into the thermal spray assembly and conveyed into the guide chamber 34, in which it may be further conveyed along convergent paths towards the feeder orifice 70 and ultimately the plasma jet 50B. The flux of the granules 60 converging on the plasma jet 50B will generally be controllable. As used herein, a flux of the granules can be expressed in terms of number of granules passing through a plane per unit time, and incorporates aspects of velocity and spatial density of the granules. The flux of granules 60 injected into the plasma jet 50B will be affected by the area defined by the feeder orifice 70, the density of the granules 60 within the carrier gas and the velocity of the granules 60 towards the plasma jet 50B. The velocity of the granules 60 can be controlled by the flow rate of the carrier fluid and a convergent configuration of the guide chamber 34.
When the granules 60 are injected into the plasma jet 50B, their temperature will increase very rapidly, potentially permitting the precursor material to undergo phase changes and chemical reactions as may be necessary for desired material to be deposited onto the substrate 100. A jet 90 of material may be ejected at relatively high velocity from the thermal spray assembly towards the substrate 100. When the material strikes the substrate 100, it may tend to ‘splat’ onto the substrate, begin cooling and, depending on the reaction and phase change kinetics, form the desired material in the solid state, attached to the substrate 100.
It will likely be important to control parameters such as the composition and mechanical properties of the granules, the flow rate of the carrier fluid, the number density of the granules within the carrier fluid, the flux of the granules injected into the plasma, the potential difference between the cathode and anode and substrate, the electric current of the pilot and transfer plasma arcs, the flow rate of the inert gas, the dispersion of the granules azimuthally about the plasma torch and the feeder orifice, and the configuration of the guide chamber.
With reference to
In the closed condition as shown in
In the open condition as shown in
In some examples, precursor material may be introduced continuously into the thermal spray assembly by means of a fluid carrier medium, such as Ar gas, within which the precursor material may be dispersed and suspended. The precursor material and the carrier fluid may be distributed by the feeder mechanism to disperse the precursor material azimuthally within the guide chamber 34 and consequently azimuthally about the spray orifice 40 and the plasma jet in use. A shielding gas chamber 39 will provide gas through a plurality of orifices surrounding the plasma jet in use for shielding the plasma jet and the material being sprayed from oxygen in the air.
With reference to
The feeder mechanism may comprise certain features of the first, second and third elements 20, 120, 130, when assembled, and the precursor material will be conveyed through channels and or chambers formed by communicating spaces between these elements. For example, the second element 120 may comprise a circumferential channel, which will define part of a distribution chamber 36 when housed within the housing cavity 132 of the third element 130, which will form a boundary of the distribution chamber 36. The distribution chamber 36 will be capable of guiding precursor material generally azimuthally around the plasma torch 20. A plurality of mutually spaced-apart deflector structures 38 arranged azimuthally around the plasma torch 20, adjacent the distribution chamber 36, in the form of radial projections from the second housing 120, will deflect circulating precursor material 60C into deflection channels 37 and guide the deflected precursor material 62 generally axially into the guide chamber. The third element 130 may comprise an inlet 31A orifice for introducing the precursor material and a carrier fluid into the distribution chamber 36, and an outlet orifice 31B for permitting carrier fluid and potentially some of the precursor material to escape from the thermal spray assembly, potentially for re-use.
In use, the precursor material 60A and carrier fluid may be introduced into the distribution chamber 36 and be guided to circulate within the distribution chamber 36 as circulating precursor material 60C. An effect of the precursor material 60C circulating within the distribution chamber 36 will likely be to distribute the precursor material 60C substantially uniformly around the plasma torch 20 (azimuthally). Some of the circulating precursor material 60C will strike the sides of the deflector structures 38 and be conveyed along generally axial paths 62 within deflection channels 37, into the guide chamber (not shown in
With reference to
With reference to
A non-limiting example of thermal spray device and its use to deposit a relatively hard layer of material onto a steel body will be described below in more detail.
A first plurality of granules having combined mass of 200 kg was prepared as follows:
The granules of the first plurality (which may also be referred to as the ‘first granules’) were substantially deficient in iron and would not have been viable for thermally spraying and fusing them successfully onto a substrate body, even though the body comprised steel. While it might be theoretically possible to spray the iron-deficient first granules onto the substrate without introducing additional granules comprising Fe, using Fe present in the steel plate on which the granules are to be sprayed, the energy required to do this would likely be very high.
The size distribution of the first granules was such that the d(10) value was 90 microns, the median size (d(50)) was 141 microns and the d(90) size was 221 microns (in other words, 10%, 50% and 90% of the granules were less than or equal to 90, 141 and 221 microns in diametrical size, respectively). A sample of five granules was randomly selected for destructive mechanical testing. Each granule was placed on a rigid stage and a rigid plate was slowly pressed against the granule at a constant speed, thus compressing it with an increasing force of as little as 50 millinewtons (mN) and a maximum of 2,000 Newtons (N), until the granule broke. Since the mechanical properties of the granules will likely depend on the size of the granule, the tested granules had diametrical size of 125 to 160 microns. And mean diameter of 141±14 microns. The failure load of the granules was measured to be 6.0±2.3 Newtons (N) and the compressive strength of the granules was 402.6±187.9 megapascals (MPa), taking loading deformation of the granules into account. The number frequency N distribution of the granules as a function of Vickers hardness H (HV10) is shown in
A second plurality of granules consisting of commercially Fe grains prepared by means of water atomisation was provided (in particular, Hoganas™ ABC 100.30 was used) and sieved to extract the grains falling in the size range of about 60 to 180 microns. The compressive strength of the Fe granules of the second plurality was not measured because of their irregular shape as a result of the water atomisation (if the second granules had been made by means of gas atomisation, they would likely have been more spherical and their compressive strength might have been measured; the flowability of the second plurality of granules would likely have been enhanced to some degree as well).
The first and second granules were blended together at a mass ratio of 75:25 to provide a combined plurality of granules comprising about 35 mass percent Fe overall.
The combined granules were then spayed onto a steel plate by means of the example plasma transferred arc (PTA) thermal spray device of a kind described above with reference to
The thickness of the deposited layer was about 3 millimetres (mm) and had a hardness of 1,000±100 Vickers units. A micrograph showing the microstructure of the layer is shown in
The wear resistance of the deposited layer was measured using the ASTM G65 test and compared to those of three different grades of cobalt-cemented tungsten carbide (Co-WC) material, comprising 8, 10 and 15 mass percent (%) cobalt (Co). In this test, three machine tool inserts comprising each of the above mentioned grades of cemented carbide were used to machine the layer of material deposited onto the steel plate in the example described above. When the tool comprising 8 mass percent Co was applied to the deposited layer, substantially the same volume of material (about 3.8 cubic millimetres) was removed from both the tool and the layer, indicating that the wear resistance of the material deposited as described in the example was comparable to that of this grade of cemented carbide material. The volume removed from the cemented carbide grades comprising 10 and 15 mass percent (%) cobalt (Co) were 9.1 mm3 and 12.2 mm3, respectively, indicating that the material comprised in the layer was significantly more resistant to wear than these grades.
In a second example, the relative content of the iron (Fe) was increased to 20 mass %, compared to 15 mass % in the first example described above, the precursor material used to make the granules in the second example comprising 20 mass % Fe, 13 mass % chromium carbide (Cr3C2), 3 mass % Si and about 64 mass % WC grains. Although it was possible to manufacture and thermally spray the first granules in the second examples, it was substantially more difficult to break up the sintered aggregation produced in the sintering heat treatment step.
In a third example, the relative content of the iron (Fe) was decreased to 10 mass %, compared to 15 mass % in the first example described above, the precursor material used to make the granules in the second example comprising 10 mass % Fe, 6.67 mass % Cr3C2, 3 mass % Si and about 80 mass % WC grains. Although it was relatively easier to break up the sintered aggregation produced in the sintering heat treatment, it was substantially more difficult to achieve density of the granules.
In a fourth example, the first and second granules as described in the first example were combined in the ratio of 60:40 (as opposed to the ratio of 75:25 in the first example), thus resulting in a substantially larger amount of Fe being included in the combined precursor materials that were thermally sprayed. This was found to result in a substantially softer deposited layer.
In a fifth example, the first and second granules as described in the first example were combined in the ratio of 90:10 (as opposed to the ratio of 75:25 in the first example), thus resulting in a substantially reduced amount of Fe being included in the combined precursor materials that were thermally sprayed. In some cases, this may result in a substantially softer deposited layer. However, the exact composition of the substrate and the degree to which it may melt on contact with the material being deposited.
In some examples, a steel substrate may be relatively small and or thin and a relatively low level of power may likely need to be applied in the thermal spraying process in order to avoid or reduce the risk of damaging the steel. In such cases, molten iron group metal from the steel will unlikely be available for reacting with the sprayed material and a relatively higher proportion of the second plurality of granules (comprising the iron group metal) will likely be used.
In other examples, the steel substrate may be relatively large and therefore it may be possible to apply a relatively high level of power in the thermal spraying process. In such cases, the higher power may result in a film of molten iron group metal from the steel forming on the substrate, which may be available for reacting with the sprayed material. It may also be less likely for larger substrates to be significantly distorted by the increased heating due to the higher thermal spray power. In such cases, a relatively lower proportion of the second plurality of granules (comprising the iron-group metal) may be used.
In general, the combination of the first and second pluralities of granules, in which the second plurality comprises or consists of iron group metal such as Fe or Co may be adjusted depending on the shape, size and composition of the substrate being coated. If too much molten iron group metal is made available at the substrate surface, the coating may not be sufficiently hard. For example, excessive iron group metal may arise if the proportion of the granules comprising or consisting of the iron group metal is too high, and or if too much melting of the substrate occurs as a result of excessively high thermal spraying power
Various potential aspects of at least certain of the disclosed example arrangements, granules and methods will be briefly discussed.
In some examples, the thermal spray assembly may be used to spray transformed precursor material onto a substrate and deposit a layer of material onto it, in which the layer may comprise material having substantially different properties from those of the substrate. For example, the layer may be harder or be more resistant to wear than is the substrate, which may comprise steel. For example, the granules may comprise chemical elements, chemical compounds, ceramic grains or alloys, at least some of which may chemically react with each other or undergo phase change when injected into the plasma in use and subjected to the very high temperatures within the plasma for a relatively short period, transported by the plasma jet to the substrate surface and relatively rapidly cooled to a substantially lower temperature. When injected into the plasma, reactions and phase changes within the granules may begin to take place very rapidly, resulting in one or more intermediate materials arising between the plasma torch and the substrate, having characteristics substantially different from those of the granules and the deposited material.
Certain disclosed example thermal spray assemblies may have the aspect that the risk of precursor or intermediate material becoming attached to and potentially blocking the spray orifice can be reduced or substantially eliminated. This risk will likely be greater when the precursor or intermediate materials may tend to become at least partly molten at a relatively low temperature. Consequently, disclosed example thermal spray assemblies likely have the aspect of being suitable for use with granules comprising combined precursor materials having a relatively low eutectic temperature (in other words, a relatively low minimum melting point corresponding to a particular mass ratio of constituent materials). In some examples, the risk of the spray orifice becoming blocked or distorted by attached materials may be reduced or eliminated by adjusting the guide chamber and the feeder orifice, and thus controlling the flux of precursor material granules incident on the plasma. In some examples, this may be achieved by moving the containment housing axially and or radially relative to the plasma torch. Consequently, disclosed thermal spray assemblies may have extended working lives when used to spray such materials.
Certain disclosed example thermal spray assemblies may have the aspect of reduced risk of degradation of certain constituents of precursor material, such as by oxidation or other potentially undesired chemical reactions that may occur at high temperature within the plasma. For example, the risk of degradation of tungsten carbide (WC) grains, such as the significant reduction in the size of the grains as a result of exposure to high temperature in the plasma, may be substantially reduced.
While wishing not to be bound by a particular theory, adjustment of the feeder orifice, for example by moving the containment housing, may have the effect of modifying the mean axial position of the flux of precursor material granules within the plasma. For example, when the precursor material contains constituents that are likely to become molten at a relatively low temperature or in order to reduce the risk of degradation of the precursor material, the feeder orifice may be adjusted such that a higher proportion (or substantially all) of the precursor material granules are directed towards a region of the plasma having a relatively lower temperature.
In addition, disclosed example granule distribution mechanisms are also likely to have the aspect of reducing the risk of the spray orifice becoming blocked or distorted by attached materials by the granules being sufficiently uniformly distributed azimuthally within the guide chamber and consequently around the plasma.
Other aspects of disclosed thermal spray assemblies may include enhanced uniformity of material deposition over relatively long periods of time, reduced plasma and pilot current in operation, making it possible for deposit relatively thin layers (4-5 mm) and vary parameters as desired; and increased rate of delivery of powder to the plasma jet (in terms of mass per unit time), making it feasible to deposit layers of up to 7 to 8 mm in a single operation. Disclosed example thermal spray assemblies and methods of thermal spraying or laser cladding using disclosed example granules will likely have the aspect that relatively large bodies, having a cross section dimension of at least about 30 centimetres (cm), and or bodies having relatively complex shapes can be coated relatively efficiently with protective material, particularly but not exclusively for protection from abrasive or corrosive wear. It will likely be possible to provide coatings having relatively uniform thickness and quality.
Disclosed example thermal spray assemblies comprising both a disclosed circumferential distribution chamber, deflection structures, guide chamber and an adjustable feeder orifice will likely have the aspect of substantially reduced risk of blockage of the orifice and increased likelihood of effective deposition of material of the substrate.
Disclosed example methods may have the aspect of resulting in a very effective hard face structure intimately welded onto the body, and disclosed bodies may have improved wear retardation behaviour in use.
Certain precursor materials used for thermal spray deposition of wear protection layers may have a relatively low melting point (a low eutectic phase temperature) of at most about 1,300 degrees Celsius, less than 1,280 degrees Celsius or at most about 1,200 degrees Celsius when in combination, which may increase the difficulty and reduce the efficiency of thermally spraying it. Providing the precursor material in the form of more than one plurality of granules, in which the granules of each plurality comprise different composition or other characteristics may have the aspect of permitting the compositions and certain properties of the granules, such as their melting points and flow behaviour, to be selected for enhanced behaviour within the feeder mechanism of the thermal spray device. Additionally or alternatively, it may have the aspect of enhancing the efficiency or ease of manufacture of the granules.
An example of wear protective material capable of being deposited onto certain bodies by means of thermal spraying comprises iron group metal such as iron (Fe), chromium (Cr), silicon (Si) and carbon (C), and the precursor material may have a eutectic phase temperature of at most about 1,300 degrees Celsius, less than 1,280 degrees Celsius or at most about 1,200 degrees Celsius. If a single plurality of granules is used for thermally depositing a layer of the material, each comprising the combination of materials exhibiting a eutectic phase temperature of at most about 1,300 degrees Celsius, less than 1,280 degrees Celsius or at most about 1,200 degrees Celsius, the amount of the iron group metal may be relatively high, potentially raising challenges in the manufacture of the granules. Too high a content of the iron group may increase the risk that the combined precursor materials may melt at a premature stage in the manufacture of the granules, which will make it very difficult to break up the resulting strong, solidified aggregation held together by the solidified iron group metal. Preparing the first plurality of granules comprising substantially less of the iron group metal that will ultimately need to be presented to the plasma jet can substantially reduce this risk and make it easier to granulate heat-treated precursor material. However, if the composition used to make the first plurality of granules contains too low a quantity of the iron group metal, then the strength of the aggregation of the material prepared at a stage of the manufacture of the granules will likely too low and it will be difficult to achieve strong enough granules. If the first plurality of granules is made using too little of the iron group metal, manufacture of the granules may be easier and or more efficient. The deficit in the iron group metal can be made up by introducing a second plurality of granules comprising or consisting of the iron group metal into the feeder mechanism of the thermal spray device, such that granules from both or all pluralities are present in the plasma, capable of contacting each other and melting. The second plurality may consist of commercially available grains of the iron group metal, of an appropriate size.
If the precursor grains or granules sufficiently large, then the precursor material may tend to flow more uniformly and predictably through the feeder mechanism and the risk of gains becoming lodged in corners or small spaces will likely be reduced. If the grains or granules are too large, they may not pass through the various orifices, channels and chambers of the feeder mechanism, and may result in blockages. If the size distributions and mean sizes of granules of more than one plurality are substantially different, the granules may have different flow characteristics and consequently may not pass through the feeder mechanism at similar rates, for example, and the relative quantities of the granules reaching the plasma jet may not be as desired or may be irregular.
Certain terms and concepts as used herein will be briefly explained below.
As used herein, thermal spraying processes include coating a body with a layer of material, in which molten phase material produced by heating precursor material (which may also be referred to as coating precursor, or ‘feedstock’) is sprayed onto a surface, thus depositing coating material onto the surface of the body. The feedstock material can be heated by various means, such as plasma or arc, or chemical means. In general, thermal spraying can potentially provide relatively thick coatings of about 20 microns to several mm (depending on the process and feedstock) over a relatively large area at high deposition rate. The precursor material may be in granular form, and will be heated to a molten or semi-molten state and finely divided (also referred to as ‘atomised’) droplets of the molten or semi-molten material are accelerated towards the body to be coated. The coating will likely arise from accumulation of the droplets on the body, which solidify as a plurality of flattened grains, which may be referred to as lamellae. Various operating parameters are likely to affect the properties of the coating, including the composition, form and physical properties of the precursor material, the plasma gas composition and flow rate, the energy input, the distance between the torch and the substrate (which may also be referred to as the offset distance) and cooling of the substrate.
In arc plasma spraying methods, a high temperature plasma jet emanating from a plasma torch can be generated by arc discharge and ionisation of a suitable gas passing between an anode and cathode. The temperature within the plasma will likely vary and may exceed about 10,000 degrees Celsius. Feedstock comprising precursor material may be in the form of powder or granules and conveyed by a feeder mechanism into the arc plasma. A tungsten electrode may be located within a chamber of the plasma torch and inert gas may be forced to flow past the electrode and through an orifice of a constrictor nozzle, producing a plasma jet extending through the orifice. Shield gas may be introduced surrounding the constrictor nozzle to protect the plasma jet from the ambient atmosphere. The feedstock granules may be provided dispersed in an inert carrier gas such as argon (Ar) and guided into the plasma jet. Other methods of thermal spraying include detonation spraying, wire arc spraying, flame spraying and high velocity oxy-fuel coating spraying (HVOF).
In plasma transferred arc (PTA) processes, a ‘pilot arc’ can be generated between a central electrode and a surrounding water-cooled nozzle comprising copper, and a ‘transferred arc’ can be generated between the electrode and the body being coated. Relatively high plasma arc density can be achieved in PTA processes by the ionisation of argon (Ar) gas passing through the pilot arc, which usually burns permanently during thermal spraying operation. The temperature of the transferred arc can be increased by ‘throttling’ to obtain a plasma column having a temperature of about 8.000 to 18.000 degrees Celsius and the transferred arc plasma jet may cause a surface region of the body to melt if it comprises metal, such as steel. An arc ignition device will likely be used to generate a spark between the cathode and the anode proximate the constrictor nozzle, so that a pilot plasma (which may also be referred to as a ‘non-transferred arc’) will be generated when the gas flows through the constrictor nozzle. The pilot arc will form a low resistance pathway between the cathode and the substrate to facilitate the subsequent generation of a transfer arc. PTA operating parameters can be adjusted to provide layers having thickness from about 1 to at least about 3 mm, at a rate of 1 to 13 kilograms per hour (kg/h) depending on the torch, powder and application.
As used herein, a hard face structure is a structure such as, but not limited to, a layer joined to a substrate to protect the substrate from wear or corrosion resistance, for example. The hard face structure exhibits a substantially greater wear resistance than does the substrate, and may be metallurgically fused to the substrate.
Number | Date | Country | Kind |
---|---|---|---|
1409693.7 | May 2014 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/061396 | 5/22/2015 | WO | 00 |