The present disclosure relates to manufacturing of components for supercapacitors/ultracapacitors and Li-ion batteries, more particularly, relates to deposition apparatus, schemes and recipes for synthesis of electrode materials and components using thermal spray processes in combination with or without subsequent thermal treatment for microstructural modification.
This section provides background information related to the present disclosure which is not necessarily prior art.
Supercapacitors/ultracapacitors are known for their high power density and at the same time relatively high energy density.
Supercapacitors/ultracapacitors exhibit enhanced capacitance over the conventional and electrolytic capacitors because of their non-faradic double layer capacitance as well as faradic pseudo capacitance.
Similarly Li-ion batteries are known for their high energy density for energy storage applications.
Batteries and supercapacitors have many applications in automobiles, electronics, biomedical systems, aerospace systems and other personal applications.
With increasing global demand for alternative energy sources and green technologies there is a considerable requirement for the inexpensive materials and manufacturing technologies. For the past couple of decades different researchers have focused on developing electrodes and solid electrolytes with inexpensive materials while controlling the chemistry, microstructure and particulate size to obtain better performance with enhanced energy or charge storage capacitance.
With particular reference to
Nanostructured and porous electrodes are also of great interest as they enhance total surface area of the electrodes and thereby total energy storage and capacitance.
There are various techniques available to make the electrodes; namely vapor deposition techniques, powder processing routes, wet chemical methods and electrochemical deposition techniques. But these techniques are either expensive or time consuming with multi-step processes for developing capacitors and battery electrodes with liquid/solid electrolytes, as shown in
Therefore, there is a great need as well as an opportunity for the development of a less time consuming and industrially scalable manufacturing technology with least number of processing steps.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
This present disclosure provide for schemes, apparatus and recipes comprising the use of appropriate precursors for supercapacitor/ultracapacitor and Li-ion battery materials which are injected into a hot flame for chemical/thermal treatment and then consolidation into the desired component layers of a supercapacitor/ultracapacitor or a Li-ion battery components on the current collector substrate. The spray/deposition process utilizes precursors in the form of powders/liquids/gases or a combination thereof to obtain different material combinations needed for supercapacitor/ultracapacitor and battery components. If desired, a heat source, such as a laser beam or a heat source or a plasma plume are also used for an in-situ heat treatment or ex-situ heat treatment of the deposited materials for microstructures and phase control required for optimum performance of the supercapacitor/ultracapacitor and Li-ion batteries. This approach offers several advantages in terms of reduced number of process steps, geometric freedom and scalability of the method to large area electrode manufacturing and therefore practicable for industrial scale production.
In some embodiments of this disclosure, the components such as current collectors, electrodes, electrolytes and separator membranes and/or their combination can be manufactured based on the principles of the current teachings, which enables layer by layer fabrication of all the components of the entire capacitor or battery. Thus, complex supercapacitor/ultracapacitor and battery configurations can be achieved where the synthesis of the material and the assembly of the cell are performed in-line.
Other areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure. For purposes of clarity, not every component is labeled in every figure, nor is every component of each embodiment of the disclosure shown.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Non-limiting embodiments of the present disclosure will be described by way of example with reference to the accompanying figures, which are schematic and are not intended to be drawn to scale.
As shown in
As shown in
The manufacturing schemes of the present disclosure provide supercapacitor or battery component films possessing the desired microstructures, morphological features, phase and compositions from chemical and powder precursors, and thus, eliminate processing steps currently practiced in the industry. The spray deposition techniques of the current teachings also enable creation of supercapacitor or battery components on geometrically complex shapes. Spray synthesis of supercapacitor or battery components with or without in-situ or ex-situ thermal treatments can be performed under desired atmosphere (e.g. N2 or N2/H2 or O2 or Ar) according to the current scheme. In some embodiments, the use of fluid precursors ensure homogeneity of component elements and increase the reaction rates during synthesis compared to the solid state reactions commonly practiced in conventional processes, and thus can reduce the processing time.
In
Referring to
The spray device 320, as shown in
The supercapacitor or battery component films obtained according to the principles of the current teachings may or may not contain any polymer binder or additives like conventional electrodes/components used in the industry. The polymer binderless electrodes can operate at higher temperature. However, it is also possible to incorporate polymer binders, if required, in the spray deposited components of supercapacitors and batteries according to the principles of the current teachings.
An exemplary precursor for Co3O4 electrode comprises water and Co-nitrate in a pH adjusted solution. Further, additives can be added, if required in the solution for doping. The resulting molten/semi-molten Co3O4 particles are deposited as a film 410 onto a current collector 420 such as an aluminum foil as illustrated in
An exemplary and non-limiting variation to directly fabricate the electrode film according to the principles of the current teachings starts with the deposition of a metallic cobalt film employing a plasma device 310 of
The benefits of thermal spray process include large throughputs and porous coatings, which provide large surface area for faster reaction/oxidation kinetics in the next step, i.e., in-situ or ex-situ desired oxidation/heat treatment process. Further, the transition metals, such as Co, Ni and Mn sheet metals are expensive compared to their powders (powders are often the end product of their extraction processes, e.g. electrowinning of Mn), and plasma deposition uses the powder precursor. Accordingly, the reaction kinetics are much faster in the plasma sprayed porous coatings compared to the bulk sheet metals. Often oxide scales developed on the bulk metal flake off due to the strain associated with volume change while the plasma sprayed porous coating can accommodate the strain and stay adherent to the substrate. Thus, nanostructured films with superior charge/discharge cyclability and specific capacity can be manufactured cost effectively. Additionally, the absence of polymers or binders can make these electrodes suitable for high temperature supercapacitor and battery applications.
Exemplary electrode films described herein are for illustration purposes only and were obtained according to the principles of the current teachings, and they do not intend to limit the full scope of the possible material systems that can be synthesized following the principles of the present disclosure.
In some embodiments of the current disclosure, multiple spray devices can be employed to deposit the supercapacitor or battery component materials on both sides of the current collector according to the principles of the current teachings in a roll to roll manufacturing configuration 1600 as illustrated in
Solid electrolytes are well suited for battery and supercapacitor operations at various temperatures, including high temperatures. Further they provide a safer operating environment. Most of the solid electrolytes are synthesized through solid state or sol-gel methods and the glassy phase is achieved through rapid quenching from the high temperature annealed state.
According to the principles of direct synthesis from precursors set forth herein, appropriate liquid/solid precursors are introduced into plasma device 320 of
To this end, an exemplary solid electrolyte based on NiO using solid and liquid precursors was directly synthesized according to the principles of the current teachings. The exemplary solution precursor is comprised of Ni-nitrate or Ni-acetate, The TEM image of deposited NiO film described here is shown in
According to the present disclosure, fabrication of electrodes and solid electrolytes sequentially, offers an advantage to build monolithic supercapacitors or batteries. As shown in exemplary embodiments 1800 in
Referring to
Exemplary configurations described herein are for illustration purposes only and they do not intend to limit the full scope of the possible configurations and combinations that can be achieved following the principles of the present disclosure. The principles of current teachings can be applied for individual components such as the electrodes or electrolytes or the separator or any combination thereof.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the invention, and all such modifications are intended to be included within the scope of the invention.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on”, “engaged to”, “connected to” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to”, “directly connected to” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, Layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath”, “below”, “lower”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
This application claims the benefit of U.S. Provisional Application No. 61/420,930, filed on Dec. 8, 2010. The entire disclosures of the above applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61420930 | Dec 2010 | US |