1. Field of Invention
This invention relates to a solid heat storage medium that is connected to a heat source and has a solid heat storage area with passages extending through the heat storage area. This invention further relates to a method of storing heat energy in the heat storage medium.
2. Description of the Prior Art
Power plants for producing electricity from various energy sources including wind turbines, solar energy, nuclear energy hot exhaust gases from industrial plants as well as other sources of electricity are known. The Bellac U.S. Pat. No. 5,384,489 describes a wind powered electricity generating system including wind energy storage whereby wind energy is used to heat a heat transfer fluid. After being heated, the heated fluid is added to an insulated storage tank. The heated thermal fluid is used to generate electricity during periods of low wind speed and or high electricity demand. The heated thermal fluid is introduced to a heat exchanger and is used to create steam in a vapourizer chamber. The steam is then directed to a steam powered electricity generator. The thermal dynamic conversion efficiency of the storage and recovery system described in the Bellac patent is said to be low. Various fluids are suggested as the heat transfer fluid, including water. The storage tank is not pressurized and the heat transfer fluid is in liquid form as the heat transfer fluid is stated to be at atmospheric pressure.
Previous systems are inefficient and cannot be used to store heat energy at high temperatures. For example, the system described in the Bellac patent cannot be used to store energy at temperatures exceeding the boiling point of the heat transfer fluid.
It is an object of the present invention to provide a solid heat storage medium that can be repeatedly heated to high temperatures and cooled without failure or reduction in efficiency. It is a further object of the present invention to provide a heat storage medium that can be heated by electricity and the temperature to which it can be heated is not limited by the heat capacity, boiling point or chemical stability of a heat transfer fluid.
A heat storage medium for use with a fluid in storing and supplying heat energy produced by electricity comprises a three dimensional structure. The three dimensional structure contains electric heaters embedded in the structure. The heaters are connected to a source of electricity to provide heat energy to the storage medium. The heat storage medium contains a plurality of passages connected to permit the fluid to flow through the passages to remove heat energy from the heat storage medium.
A heat storage medium for use with a fluid is used to store and supply heat energy. The heat storage medium comprises a heat storage area having a solid heat transfer medium therein, with passages extending through the heat storage medium. The passages are connected to permit the fluid to flow through the heat storage medium to charge or discharge the heat storage medium based on the temperature of said fluid relative to the temperature of said heat transfer medium.
A method of storing heat energy in a heat storage medium comprises embedding electric heaters in said heat storage medium, connecting the heaters to a supply of electricity to provide heat energy to the heat storage medium and activating or deactivating said heaters as required, storing the heat energy in the heat storage medium, the heat storage medium containing a plurality of passages to receive a fluid and causing the fluid to flow through the passages to remove heat energy from the heat storage medium.
In
In
The solid heat storage medium can be heated to higher temperatures exceeding 100° C. and preferably to temperatures in the range of 200° C. to 900° C. When fluid is located in the channels and the fluid is at a lower temperature than the heat storage area, heat will flow from the heat storage area to the fluid as the heat storage medium discharges. During discharge, the electric heaters will not be operating. When the heat storage medium is being charged, the electric heaters will be operating and there will be preferably no fluid flowing through the channels.
The flow of fluid through the channels is controlled by a controller (not shown). Preferably, the heat storage area is hot enough to vaporize the fluid and preferably the fluid is water/steam that becomes saturated or superheated between the inlet and the outlet of the heat storage medium. The electric heaters are interspersed throughout the heat storage area. The heat storage medium has insulation on an outer surface thereof, but the insulation has been omitted from the drawings as it is conventional. The heat storage medium is sized and operated at a sufficiently high temperature to convert any water at the inlet into steam at the outlet and, preferably, water, wet or saturated steam enters the inlet and superheated steam exits from the outlet. The solid heat storage area can be constructed of various suitable materials including steel, iron, copper, rocks, soapstone, lava rock, firebrick, alumina brick, magnesia brick, clay brick, brick, manufactured brick, ceramics or other solid material or particulate matter. The electric heaters are preferably electrical resistance heaters but induction heaters, microwaves or other sources of heat from electricity can be used. For example, bricks that are used to store heat in the heat storage area can be designed to be electric heaters. The solid medium can include broken pieces and is chosen to withstand a broad range of temperature change without a phase change and can withstand repeated changes in temperature without breaking down. In addition, the material of the solid heat storage area must be able to receive and store heat energy.
The channels can be arranged in a continuous serpentine or straight path inside the heat storage area. Instead of one channel extending through the heat storage medium, several channels can be used. Insulation is applied to maintain the heat within the heat storage medium for as long as reasonably possible. While other heat transfer fluids can be used, water or substantially water is preferred. Additives can be added to the water to maintain the water at a sufficient quality.
In
In
In operation, the heat storage medium 10 is preferably charged when there is no fluid flowing through the channels 16 by electricity heating the electric heaters. The heat generated by the electric heaters is stored in the heat storage area. The heat storage medium 10 discharges when fluid flows through the channels. Usually, during discharge, the electric heaters do not operate as the heat energy from the heat storage medium is often used to produce electricity or another type of energy during peak power periods.
The thermal storage medium 24 is charged by fluid flowing through the channels 26 where that fluid has a higher temperature than the temperature of the heat storage area 28. The heat is stored in the heat storage area 28. The heat storage medium 24 discharges when a fluid flowing through the channels 26 has a lower temperature than the temperature of the heat storage area 28. Heat from the storage area is transferred to the fluid flowing though the channels 26. Preferably, in the charging cycle, the fluid is steam or a steam/water combination and in the discharging cycle, the fluid in the inlet is water. Unlike a heat exchanger, only one fluid flows through the channels of the heat storage medium 24 at a time and that fluid is either used to charge the heat storage medium or to discharge the heat storage medium.
A controller (not shown) controls the operation of the heat storage medium 10 and another controller controls the operation of the heat storage medium 24. Preferably, the two heat storage media 10, 24 are interconnected and are controlled by one controller. When high temperatures are used in the heat storage medium (ie. equal to or greater than substantially 300° C.), the channels 16 are preferably high pressure channels. While the heat storage medium can be heated by electric heaters or by fluid flowing through the channels, heating by electric heaters is preferred.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2006/000013 | 1/6/2006 | WO | 00 | 7/6/2007 |
Number | Date | Country | |
---|---|---|---|
60641453 | Jan 2005 | US |