This disclosure relates generally to a cooling system.
Cooling systems cycle a refrigerant to cool various spaces. For example, a refrigeration system may cycle refrigerant to cool spaces near or around a refrigeration unit.
According to one embodiment, a system includes a high side heat exchanger, a flash tank, a first load, a second load, and a thermal storage tank. The high side heat exchanger is configured to remove heat from a refrigerant. The flash tank is configured to store the refrigerant from the high side heat exchanger and discharge a flash gas. The first load is configured to use the refrigerant from the flash tank to remove heat from a first space proximate to the first load. The second load is configured to use the refrigerant from the flash tank to remove heat from a second space proximate to the second load. The thermal storage tank is configured, when a power outage is determined to be occurring, to receive the flash gas from the flash tank, and remove heat from the flash gas.
According to another embodiment, a method includes removing heat from a first space proximate to a first load using a refrigerant from a flash tank. The method also includes removing heat from a second space proximate to a second load using the refrigerant from the flash tank. The method further includes removing heat from the refrigerant using a high side heat exchanger. The method also includes storing the refrigerant from the high side heat exchanger in the flash tank. The method further includes discharging the flash gas from the flash tank. The method also includes removing heat from the flash gas using a thermal storage tank when a power outage is determined to be occurring.
According to yet another embodiment, a system includes a flash tank, a first load, a second load, and a thermal storage tank. The flash tank is configured to store a refrigerant and discharge a flash gas. The first load is configured to use the refrigerant from the flash tank to remove heat from a first space proximate to the first load. The second load is configured to use the refrigerant from the flash tank to remove heat from a second space proximate to the second load. The thermal storage tank is configured, when a power outage is determined to be occurring, to receive a flash gas from the flash tank and remove heat from the flash gas.
Certain embodiments may provide one or more technical advantages. For example, an embodiment may use a thermal storage tank to keep flash gas and refrigerant in the system cool during a power outage. As a result, the thermal storage tank may minimize loss of refrigerant from the cooling system when the system is without power. In some embodiments, the cooling system may remove heat from the thermal storage tank when the cooling system has power. Certain embodiments may include none, some, or all of the above technical advantages. One or more other technical advantages may be readily apparent to one skilled in the art from the figures, descriptions, and claims included herein.
For a more complete understanding of the present disclosure, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
Embodiments of the present disclosure and its advantages are best understood by referring to
Cooling systems may cycle a refrigerant to cool various spaces. For example, a refrigeration system may cycle refrigerant to cool spaces near or around refrigeration loads. In certain installations, such as at a grocery store for example, a refrigeration system may include different types of loads. For example, a grocery store may use medium temperature loads and low temperature loads. The medium temperature loads may be used for produce and the low temperature loads may be used for frozen foods. The compressors for these loads may be chained together. For example, the discharge of the low temperature compressor for the low temperature load may be fed into the medium temperature compressor that also compresses the refrigerant from the medium temperature loads. The discharge of the medium temperature compressor is then fed to a high side heat exchanger that removes heat from the compressed refrigerant.
In conventional cooling systems, when there is a power outage, refrigerant in the system absorbs heat from the environment. As a result, refrigerant in the system increases in pressure. Pressure may continue to increase until a valve releases refrigerant from the cooling system to release pressure in the system. As a result, refrigerant from the cooling system may be lost when there is a power outage. Refrigerant may then need to be replaced.
The present disclosure contemplates use of a thermal storage tank to keep refrigerant in the system cool during a power outage. When there is not a power outage, the system may keep the thermal storage tank cold by cycling the refrigerant already in the system through the thermal storage tank.
The system will be described in more detail using
High side heat exchanger 105 may remove heat from a refrigerant. When heat is removed from the refrigerant, the refrigerant is cooled. This disclosure contemplates high side heat exchanger 105 being operated as a condenser, a fluid cooler, and/or a gas cooler. When operating as a condenser, high side heat exchanger 105 cools the refrigerant such that the state of the refrigerant changes from a gas to a liquid. When operating as a fluid cooler, high side heat exchanger 105 cools liquid refrigerant and the refrigerant remains a liquid. When operating as a gas cooler, high side heat exchanger 105 cools gaseous refrigerant and the refrigerant remains a gas. In certain configurations, high side heat exchanger 105 is positioned such that heat removed from the refrigerant may be discharged into the air. For example, high side heat exchanger 105 may be positioned on a rooftop so that heat removed from the refrigerant may be discharged into the air. As another example, high side heat exchanger 105 may be positioned external to a building and/or on the side of a building.
Flash tank 110 may store refrigerant received from high side heat exchanger 105. This disclosure contemplates flash tank 110 storing refrigerant in any state such as, for example, a liquid state and/or a gaseous state. Refrigerant leaving flash tank 110 is fed to low temperature load 120 and medium temperature load 115. In some embodiments, a flash gas and/or a gaseous refrigerant is released from flash tank 110. By releasing flash gas, the pressure within flash tank 110 may be reduced. When system 100 loses power, refrigerant of system 100 increases in temperature. As a result, pressure in flash tank 110 increases. As a result, when system 100 loses power, flash tank 110 releases additional flash gas and/or gaseous refrigerant. This results in loss or reduction of refrigerant from system 100 when system 100 loses power.
System 100 may include a low temperature portion and a medium temperature portion. The low temperature portion may operate at a lower temperature than the medium temperature portion. In some refrigeration systems, the low temperature portion may be a freezer system and the medium temperature system may be a regular refrigeration system. In a grocery store setting, the low temperature portion may include freezers used to hold frozen foods, and the medium temperature portion may include refrigerated shelves used to hold produce. Refrigerant may flow from flash tank 110 to both the low temperature and medium temperature portions of the refrigeration system. For example, the refrigerant may flow to low temperature load 120 and medium temperature load 115. When the refrigerant reaches low temperature load 120 or medium temperature load 115, the refrigerant removes heat from the air around low temperature load 120 or medium temperature load 115. As a result, the air is cooled. The cooled air may then be circulated such as, for example, by a fan to cool a space such as, for example, a freezer and/or a refrigerated shelf. As refrigerant passes through low temperature load 120 and medium temperature load 115, the refrigerant may change from a liquid state to a gaseous state as it absorbs heat.
Refrigerant may flow from low temperature load 120 and medium temperature load 115 to compressors 130 and 135. This disclosure contemplates system 100 including any number of low temperature compressors 135 and medium temperature compressors 130. The low temperature compressor 135 and medium temperature compressor 130 may increase the pressure of the refrigerant. As a result, the heat in the refrigerant may become concentrated and the refrigerant may become a high pressure gas. Low temperature compressor 135 may compress refrigerant from low temperature load 120 and send the compressed refrigerant to medium temperature compressor 130. Medium temperature compressor 130 may compress refrigerant from low temperature compressor 135 and medium temperature load 115. Medium temperature compressor 130 may then send the compressed refrigerant to high side heat exchanger 105.
As shown in
When a power outage occurs, refrigerant in system 100 absorbs heat from the environment and may transition from a liquid to a gas. The components of system 100 however may not be able to operate to remove that heat from the refrigerant due to the power outage. As a result, the pressure of the refrigerant increases, which causes the pressure in system 100 to increase. Pressure may continue to increase until an escape valve releases refrigerant from the system. As a result, refrigerant is lost from system 100, and must be replaced.
As illustrated in
As illustrated in
As in system 100, flash tank 110 may store refrigerant received from high side heat exchanger 105. This disclosure contemplates flash tank 110 storing refrigerant in any state such as, for example, a liquid state and/or a gaseous state. Flash tank 110 may store the refrigerant from high side heat exchanger 105 and discharge a flash gas. In system 200, refrigerant leaving flash tank 110 may be directed to first load 220, second load 215, and/or thermal storage tank 250. In some embodiments, a flash gas and/or a gaseous refrigerant is released from flash tank 110 to thermal storage tank 250.
Refrigerant may flow from first load 220 and second load 215 to compressors of system 200. This disclosure contemplates system 200 including any number of compressors. In some embodiments, refrigerant from first load 220 flows to first compressor 225. Refrigerant from second load 215 and first compressor 225 flows to second compressor 230. As illustrated in
As illustrated in
This disclosure contemplates system 200 including any number of components. For example, system 200 may include any number of loads 215 and/or 220. As another example, system 200 may include any number of compressors 225 and/or 230. As a further example, system 200 may include any number of thermal storage tanks 250. As yet another example, system 200 may include any number of high side heat exchangers 105 and flash tanks 110. This disclosure also contemplates cooling system 200 using any appropriate refrigerant. For example, cooling system 200 may use carbon dioxide refrigerant.
As illustrated in
As illustrated in
As in system 100, flash tank 110 may store refrigerant received from high side heat exchanger 105. In certain embodiments, when a power outage is determined to be occurring, flash tank 110 also stores condensed liquid from thermal storage tank 250. This disclosure contemplates flash tank 110 storing refrigerant in any state such as, for example, a liquid state and/or a gaseous state. In system 300, refrigerant leaving flash tank 110 is fed to first load 220 and/or second load 215 when system 300 has power. Refrigerant from flash tank 110 is fed to first load 220, second load 215 and/or thermal storage tank 250 when system 300 does not have power. As in system 100, flash tank 110 may store the refrigerant from high side heat exchanger 105 and discharge a flash gas.
Refrigerant may flow from second load 215 and/or thermal storage tank 250 to compressors of system 300. This disclosure contemplates system 300 including any number of compressors. In some embodiments, refrigerant from second load 215 and thermal storage tank 250 may be directed to first compressor 225 and/or second compressor 230. First compressor 225 and second compressor 230 may increase the pressure of the refrigerant. As a result, the heat in the refrigerant may become concentrated and the refrigerant may become high pressure gas. First compressor 225 may compress refrigerant from thermal storage tank 250 and send the compressed refrigerant to second compressor 230. Second compressor 230 may compress refrigerant from first compressor 225 and second load 215. Second compressor 230 may then send the compressed refrigerant to high side heat exchanger 105.
As illustrated in
This disclosure contemplates system 300 including any number of components. For example, system 300 may include any number of first load 220 and/or second load 225. As another example, system 300 may include any number of compressors 225 and/or 230. As a further example, system 300 may include any number of thermal storage tanks 250. As yet another example, system 300 may include any number of high side heat exchangers 105 and flash tanks 110. This disclosure also contemplates cooling system 300 using any appropriate refrigerant. For example, cooling system 300 may use carbon dioxide refrigerant.
As illustrated in
As illustrated in
As in system 100, flash tank 110 may store refrigerant received from high side heat exchanger 105. In certain embodiments, when a power outage is determined to be occurring, flash tank 110 also stores condensed liquid from thermal storage tank 250. This disclosure contemplates flash tank 110 storing refrigerant in any state such as, for example, a liquid state and/or a gaseous state. In system 400, refrigerant leaving flash tank 110 may be directed to first load 220 and/or second load 215. In some embodiments, flash gas from flash tank 110 is directed to thermal storage tank 250 when system 400 is without power. As in system 100, flash tank 110 may store the refrigerant from high side heat exchanger 105 and discharge a flash gas.
Refrigerant may flow from first load 220 and/or second load 215 to compressors of system 400. This disclosure contemplates system 400 including any number of compressors. In some embodiments, refrigerant from first load 220 travels to thermal storage tank 250 and/or first compressor 225. First compressor 225 and second compressor 230 may increase the pressure of the refrigerant. As a result, the heat in the refrigerant may become concentrated and the refrigerant may become high pressure gas. First compressor 225 may compress refrigerant from first load 220 and/or thermal storage tank 250 and send the compressed refrigerant to second compressor 230. Second compressor 230 may compress refrigerant from first compressor 225 and second load 215. Second compressor 230 may then send the compressed refrigerant to high side heat exchanger 105.
As illustrated in
In some embodiments, system 400 includes valve 260. When a power outage is determined not to be occurring, valve 260 may direct the refrigerant from first load 220 to first compressor 225. When a power outage is determined to be occurring, valve 260 may direct at least a portion of the refrigerant from first load 220 to thermal storage tank 250.
This disclosure contemplates system 400 including any number of components. For example, system 400 may include any number of loads 215 and/or 220. As another example, system 400 may include any number of compressors 225 and/or 230. As a further example, system 400 may include any number of thermal storage tanks 250. As yet another example, system 400 may include any number of high side heat exchangers 105 and flash tanks 110. This disclosure also contemplates cooling system 400 using any appropriate refrigerant. For example, cooling system 400 may use a carbon dioxide refrigerant.
As illustrated in
As illustrated in
As in system 100, flash tank 110 may store a refrigerant received from high side heat exchanger 105. In certain embodiments, when a power outage is determined to be occurring, flash tank 110 also stores condensed liquid from thermal storage tank 250. This disclosure contemplates flash tank 110 storing refrigerant in any state such as, for example, a liquid state and/or a gaseous state. Refrigerant leaving flash tank 110 may be fed to first load 220, second load 215 and/or thermal storage tank 250. As illustrated in
Refrigerant may flow from first load 220 and second load 215 to compressors of system 500. This disclosure contemplates system 500 including any number of compressors. In some embodiments, refrigerant from first load 220, second load 215, thermal storage tank 250, and/or flash tank 110 is directed to first compressor 225 and/or second compressor 230. First compressor 225 and second compressor 230 may increase the pressure of the refrigerant. As a result, the heat in the refrigerant may become concentrated and the refrigerant may become high pressure gas. Refrigerant from first load 220 may flow to first compressor 225. First compressor 225 may compress the refrigerant from first load 220. As illustrated in
As illustrated in
Thermal storage tank 250 may be of any size, shape, or material suitable to remove heat from the flash gas when a power outage is determined to be occurring and/or release heat to the refrigerant of systems 200, 300, 400, and/or 500 when a power outage is determined not to be occurring. In certain embodiments, when systems 200, 300, 400, and/or 500 are without power, thermal storage tank 250 may be of any size, shape, or material suitable to remove heat from the flash gas for a period of six hours without loss of refrigerant from systems 200, 300, 400, and/or 500. For example, in certain embodiments, thermal storage tank 250 may have dimensions of two cubic feet. As another example, thermal storage tank 250 may have a thermal storage capacity of 3.3 percent of the total capacity of the cooling system. As yet another example, thermal storage tank 250 may have the capacity to store 300 kbtu/h.
This disclosure contemplates system 500 including any number of components. For example, system 500 may include any number of loads 215 and/or 220. As another example, system 500 may include any number of compressors 225 and/or 230. As a further example, system 500 may include any number of thermal storage tanks 250. As yet another example, system 500 may include any number of high side heat exchangers 105 and flash tanks 110. This disclosure also contemplates cooling system 500 using any appropriate refrigerant. For example, cooling system 500 may use carbon dioxide refrigerant.
First load 220 may begin by removing heat from a first space proximate to first load 220 using a refrigerant from flash tank 110, in step 605. In step 610, second load 215 may remove heat from a second space proximate to second load 215 using the refrigerant from flash tank 110. In step 615, high side heat exchanger 105 may remove heat from the refrigerant. In step 625, flash tank 110 may store the refrigerant from high side heat exchanger 105. In step 630, flash tank 110 may discharge a flash gas. In step 635, thermal storage tank 250 may remove heat from the flash gas discharged from flash tank 110 when a power outage is determined to be occurring. In certain embodiments of method 600, the first space is at a lower temperature than the second space.
Modifications, additions, or omissions may be made to method 600 depicted in
Although the present disclosure includes several embodiments, a myriad of changes, variations, alterations, transformations, and modifications may be suggested to one skilled in the art, and it is intended that the present disclosure encompass such changes, variations, alterations, transformations, and modifications as fall within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
20130298593 | Christensen | Nov 2013 | A1 |
20160178244 | DelVentura | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
2257749 | Dec 2010 | EP |
Entry |
---|
Patenaude, A., “CO2 Booster Systems From a Service Mechanic's Perspective,” Raleigh, North Carolina, Mar. 1, 2017, pp. 1-48. |
European Patent Office, Extended European Search Report, Application No. 18185616.2, dated Nov. 9, 2018, 7 pages. |
European Patent Office, Communication pursuant to Article 94(3) EPC, Application No. 18185616.2, dated Aug. 28, 2019, 5 pages. |
European Patent Office, Communication pursuant to Article 94(3) EPC, Application No. 18185616.2, dated Feb. 27, 2020, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20190041102 A1 | Feb 2019 | US |