Thermal stress resistant resonator, and a method for fabricating same

Information

  • Patent Grant
  • 8912711
  • Patent Number
    8,912,711
  • Date Filed
    Tuesday, June 22, 2010
    13 years ago
  • Date Issued
    Tuesday, December 16, 2014
    9 years ago
Abstract
In an embodiment, a thermal stress resistant resonator is disclosed. The thermal stress resistant resonator may include or comprise a piezoelectric member having one or more non-linear piezoelectric support members extending there from.
Description
TECHNICAL FIELD

The present technology relates to the field of resonator devices.


BACKGROUND

Electronic systems have become ubiquitous in many modern societies, wherein these systems may be used to perform various tasks electronically, such as to increase the ease and efficiency with which certain tasks may be carried out. Oftentimes, it is useful in such electronic systems that an electrical signal be created with a particular frequency, such as to provide a stable clock signal for digital integrated circuits.


SUMMARY

This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.


In an embodiment, a thermal stress resistant resonator is disclosed. The thermal stress resistant resonator may include or comprise a piezoelectric member having one or more non-linear piezoelectric support members extending there from.


Additionally, in one embodiment, a thermal stress resistant resonator is disclosed, wherein the thermal stress resistant resonator may include or comprise a first electrode, a second electrode separated from the first electrode, and a piezoelectric member disposed between the first and second electrodes. The thermal stress resistant resonator may also include or comprise a first spring support member including or comprising: a first non-linear signal line extending from the first electrode, and a first non-linear piezoelectric support member extending from the piezoelectric member, the first non-linear signal line being disposed on or adjacent to the first non-linear piezoelectric support member.


Moreover, in accordance with an embodiment, a thermal stress resistant resonator is disclosed, wherein the thermal stress resistant resonator may include or comprise a first electrode, a second electrode separated from the first electrode, and a quartz member disposed between the first and second electrodes. The thermal stress resistant resonator may also include or comprise a first spring support member including or comprising: a first non-linear signal line extending from the first electrode, and a first non-linear quartz support member extending from the quartz member, the first non-linear signal line being disposed on or adjacent to the first non-linear quartz support member.


Furthermore, in an embodiment, a method of fabricating a thermal stress resistant resonator is disclosed. The method may include or comprise providing first and second electrodes, and disposing a quartz member between the first and second electrodes. The method may also include or comprise providing a first spring support member including or comprising: a first non-linear signal line extending from the first electrode, and a first non-linear quartz support member extending from the quartz member, the first non-linear signal line being disposed on or adjacent to the first non-linear quartz support member.





DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the present technology, and, together with the Detailed Description, serve to explain principles discussed below.



FIG. 1A is a top view of a quartz resonator in accordance with an embodiment.



FIG. 1B is a side view of a quartz resonator in accordance with an embodiment.



FIG. 2A is a top view of a thermal stress resistant resonator in accordance with an embodiment.



FIG. 2B is a side view of a thermal stress resistant resonator in accordance with an embodiment.



FIG. 2C is a perspective view of a thermal stress resistant resonator in accordance with an embodiment.



FIG. 3 is a first stress model of a quartz resonator in accordance with an embodiment.



FIG. 4 is a second stress model of a quartz resonator in accordance with an embodiment.



FIG. 5 is a first stress model of a thermal stress resistant resonator in accordance with an embodiment.



FIG. 6 is a second stress model of a thermal stress resistant resonator in accordance with an embodiment.



FIG. 7A is a diagram of a first spring shape in accordance with an embodiment.



FIG. 7B is a diagram of a second spring shape in accordance with an embodiment.



FIG. 7C is a diagram of a third spring shape in accordance with an embodiment.



FIG. 7D is a diagram of a fourth spring shape in accordance with an embodiment.



FIG. 7E is a diagram of a fifth spring shape in accordance with an embodiment.



FIG. 7F is a diagram of a sixth spring shape in accordance with an embodiment.



FIG. 7G is a diagram of a seventh spring shape in accordance with an embodiment.



FIG. 8 is a flowchart of a method of fabricating a thermal stress resistant resonator in accordance with an embodiment.





The drawings referred to in this description are not to be understood as being drawn to scale except if specifically noted, and such drawings are only exemplary in nature.


DETAILED DESCRIPTION

Reference will now be made in detail to embodiments of the present technology, examples of which are illustrated in the accompanying drawings. While the present technology will be described in conjunction with various embodiments, these embodiments are not intended to limit the present technology. Rather, the present technology is to be understood as encompassing alternatives, modifications and equivalents, which may be included within the spirit and scope of the various embodiments as defined by the appended claims.


Furthermore, in the following Detailed Description numerous specific details are set forth in order to provide a thorough understanding of the present technology. However, the present technology may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as to not unnecessarily obscure aspects of the exemplary embodiments presented herein.


Overview


Pursuant to an exemplary scenario, the performance of a temperature compensated quartz resonator such as an AT-cut or SC-cut crystal can be adversely affected by large mechanical stresses which can cause frequency shifts and create an effective rotation in the crystal cut angle to nullify the zero temperature coefficient of quartz. Such mechanical stresses are primarily caused by thermal expansion mismatch between the quartz crystal and its substrate and/or package.


An embodiment of the present technology provides a new quartz resonator design that allows extremely low mounting thermal stress even when the resonator is bonded to a substrate with significantly different coefficient of thermal expansion (CTE) from that of quartz. To illustrate, an example provides a resonator device that includes a number of spring shaped feet carved from the same quartz crystal as the active region of the resonator such that the device is fabricated from a single crystal. The device is configured to be attached to a substrate at the tops of the spring shaped feet, which leaves a portion of the device, including the resonator, cantilevered out into space.


It is noted that principles of the present technology may be implemented to fabricate a miniaturized quartz resonator design with the following novel features: ultra low thermal mounting stress for quartz resonators on thermally mismatched substrates; folded spring supports for the active quartz element to create thermal stress isolation; mounting used for quartz resonator packaging or direct integration with an electronic substrate; and a design applicable to resonator mounting/bonding processes using adhesive, metal and solder bonds. It is further noted that principles of the present technology may be applied to various high-performance quartz oscillator and filter programs and applications.


Various exemplary embodiments of the present technology will now be discussed. It is noted, however, that the present technology is not limited to these exemplary embodiments, and that the present technology also includes obvious variations of the exemplary embodiments and implementations described herein.


Exemplary Structures


Pursuant to an exemplary scenario, quartz is a material of choice for high-stability timing and filter applications because zero temperature coefficient resonators can be made when the plates are cut along the proper directions with respect to the crystallographic axes of quartz. Moreover, in an embodiment, a quartz resonator is a two-terminal device such that two electrical contacts are utilized for operation of the resonator. In this manner, a rectangular-shaped quartz resonator may be mounted to its package by clamping two points on the same end of the device. An example of such a rectangular-shaped quartz resonator will now be explored.


With reference now to FIGS. 1A and 1B, a quartz resonator 100 in accordance with an embodiment is shown. Quartz resonator 100 includes a first electrode 110, a second electrode 111 separated from first electrode 110, and a quartz unit 120 disposed between first and second electrodes 110, 111, wherein quartz unit 120 is configured to be coupled with or affixed to a support substrate 150 such that a portion of quartz resonator 100 is separated from support substrate 150 by a distance 151 such that a portion of quartz unit 120 may resonate relative to support substrate 150.


In an embodiment, quartz resonator 100 also includes signal lines 130 extending from first and second electrodes 110, 111, respectively, wherein signal lines 130 are disposed on or adjacent to quartz unit 120, and wherein signal lines 130 are sized and positioned to be coupled or soldered to bond pads 140. Moreover, the signal line extending from the second electrode 111 is configured to electronically couple the second electrode with one of bond pads 140 by means of one or more vertical channels 160, which may be metal-filled vias. Furthermore, pursuant to one embodiment, a number of auxiliary pads 170 and interconnection pads 180 (for connecting to electronic interconnects) are also included.


The foregoing notwithstanding, in accordance with an exemplary implementation, after a quartz resonator, such as quartz resonator 100, is fabricated on a temperature-compensated crystal, great care is to be taken in mounting the resonator to a package or a support substrate so that relatively little or no stress is induced to cause strain in the quartz resonator. In particular, mounting strain on a quartz crystal can cause frequency shifts and slight rotation in the crystal to nullify the temperature compensation cut. Moreover, the performance of a temperature compensated quartz resonator, such as an AT-cut or SC-cut crystal, can be adversely affected by large mechanical stresses which can cause frequency shifts and create an effective rotation in the crystal cut angle to nullify the zero temperature coefficient of quartz. Such mechanical stresses are primarily caused by thermal expansion mismatch between the quartz crystal and its substrate and/or package. In particular, when the quartz resonator and its substrate experience a temperature change, stress is created in the quartz, owing to the higher CTE of quartz than that of the silicon substrate (a=2.35×10−6/° C. for silicon and 13.2×10−6/° C. for quartz).


An embodiment of the present technology provides a thermal stress resistant resonator that includes a piezoelectric member positioned to resonate at a resonation frequency, wherein the piezoelectric member has one or more non-linear piezoelectric support members extending there from, the one or more piezoelectric support members being sized and shaped to absorb an amount of mechanical stress, such as stress caused by a thermal expansion mismatch as discussed above. In one example, the piezoelectric member and the one or more piezoelectric support members are all carved from a single piezoelectric component or crystal such that the fabricated resonator includes a piezoelectric member having mounting “feet” of relatively small cross section such that a reduced degree of thermal conductivity is achievable through these feet.


To further illustrate, and with reference now to FIGS. 2A-2C, a thermal stress resistant resonator 200 in accordance with an embodiment is shown. Thermal stress resistant resonator 200, which may be a quartz resonator, is shown as having folded spring supports to reduce mounting stress. Additionally, thermal stress resistant resonator 200 enables a relatively low mounting thermal stress to be realized even when the resonator is bonded to a substrate with a significantly different CTE from that of quartz.


To further illustrate, thermal stress resistant resonator 200, as shown in FIGS. 2A-2C, includes a first electrode 110, a second electrode 111 separated from first electrode 110, and a piezoelectric member 210 disposed between first and second electrodes 110, 111, wherein piezoelectric member 210 is configured to be coupled with or affixed to support substrate 150 such that a portion of thermal stress resistant resonator 200 is separated from support substrate 150 by a distance 151, and such that a portion of piezoelectric member 210 may resonate relative to support substrate 150.


In an embodiment, thermal stress resistant resonator 200 also includes a first spring support member 220 including a first non-linear signal line 221 extending from first electrode 110, and a first non-linear piezoelectric support member 222 extending from piezoelectric member 210, wherein first non-linear signal line 221 is disposed on first non-linear piezoelectric support member 222. Moreover, in the illustrated embodiment, thermal stress resistant resonator 200 further includes a second spring support member 230 including a second non-linear signal line 231 extending from the second electrode 111, and a second non-linear piezoelectric support member 232 extending from piezoelectric member 210, wherein second non-linear signal line 231 is disposed on second non-linear piezoelectric support member 232. Indeed, and with reference to FIGS. 2A and 2C, an embodiment provides that thermal stress resistant resonator 200 is attached to support substrate 150 only at the tops of first and second spring support members 220, 230. This leaves a portion of the device, including the resonator, cantilevered out into space.


Pursuant to one embodiment, first and second non-linear signal lines 221, 231 are coupled with or adhered to first and second non-linear piezoelectric support members 222, 232, and first and second non-linear piezoelectric support members 222, 232 are sized and positioned to provide mechanical support for first and second non-linear signal lines 221, 231. It is noted that this additional mechanical support may be useful, for example, when metal signal lines are implemented that are at least two orders of magnitude thinner than the material within first and second non-linear piezoelectric support members 222, 232.


With reference still to FIGS. 2A-2C, in an embodiment, first and second non-linear signal lines 221, 231 are sized and positioned to be coupled or soldered to bond pads 140 at respective ends of first and second non-linear piezoelectric support members 222, 232. Moreover, the signal line extending from the second electrode 111 is configured to electronically couple second electrode 111 with one of bond pads 140 by means of one or more vertical channels 160, which may be plated or metal-filled vias. Furthermore, in accordance with one embodiment, a number of auxiliary pads 170 and interconnection pads 180 (for connecting to electronic interconnects) are also included.


Thus, an embodiment provides a number of spring support members, such as those illustrated in FIGS. 2A-2C. It is noted that these spring support members are shaped to flex so as to absorb an amount of mechanical stress applied to these support members at bond pads 140. Indeed, in one embodiment, each of first and second spring support members 220, 230 are sized and positioned to absorb an amount of mechanical stress (e.g., mounting and/or thermal stress) and isolate piezoelectric member 210 from this mechanical stress. In this manner, the stress applied to the active region of the oscillator having spring support members is lower than would be achieved using the configuration shown in FIGS. 1A and 1B.


Moreover, in one embodiment, these spring support members also have a relatively small cross section such that they are shaped to dissipate heat conducted through pond ponds 140 so as to reduce the thermal conductivity from support substrate 150 to piezoelectric member 210. In this manner, the heat absorbed by the active region of the oscillator having spring support members is less than that which would be absorbed by the active region of the configuration shown in FIGS. 1A and 1B.


In an embodiment, piezoelectric member 210 and first and second non-linear piezoelectric support members 222, 232 are included within a same piezoelectric component, such that these members are not fabricated from different components and then subsequently coupled together. In this manner, the joints between piezoelectric member 210 and first and second non-linear piezoelectric support members 222, 232 will be relatively strong and durable because these components are fabricated from the same piece of material rather than being fabricated separately and then joined with a linking member or compound, which could impart a structural weakness.


Moreover, it is noted that various types of piezoelectric materials may be utilized in accordance with the present technology, and that the present technology is not limited to any specific type of piezoelectric material. For example, in one embodiment, piezoelectric member 210 and first and second non-linear piezoelectric support members 222, 232 are made of quartz. However, piezoelectric member 210 and first and second non-linear piezoelectric support members 222, 232 may be made of a piezoelectric material other than quartz.


With reference still to FIGS. 2A and 2C, it is shown that first and second spring support members 220, 230 are generally “J” shaped. It is noted, however, that the present technology is not limited to a generally “J” shaped geometry. For example, in one embodiment, one or more of first and second spring support members 220, 230 are generally “G”, spiral or zigzag shaped. Thus, different geometric configurations may be implemented in accordance with the present technology for realizing a spring support member including both a non-linear signal line and a non-linear piezoelectric support member.


It is noted that a good resonator mounting design is one that shows minimal stress in the active region (e.g., the area of piezoelectric member 210 disposed between first and second electrodes 110, 111) where piezoelectric vibration occurs. Various stress models associated with the two resonators shown in FIGS. 1 and 2 will now be explored with respect to FIGS. 3 and 4, and FIGS. 5 and 6, respectively. Using Coventor's finite element thermo-mechanical model, the two designs were created and thermal stress distribution for the quartz resonator was calculated and rendered on the three-dimensional (3-D) models of each design for both 100° C. and 200° C., assuming that the mounting occurs at 20° C. and the substrate is silicon. The results are presented in FIGS. 3-6.


With reference now to FIG. 3, a first stress model 300 of a quartz resonator 100 in accordance with an embodiment is shown. In particular, first stress model 300 illustrates a 3-D stress model of quartz resonator 100 with a horizontal mounting design as shown in FIGS. 1A and 1B, wherein quartz resonator 100 is mounted to a silicon substrate 310 and heated to 100° C. Additionally, a vertical direction vector 301 and horizontal direction vectors 302 are illustrated to provide a frame of reference for the vertical and horizontal directions referenced herein.


For this horizontal mounting design, the resonator electrode area or active region 320 of quartz resonator 100 experiences discernible thermal stress due to thermal mismatch between the quartz of quartz resonator 100 and the silicon of silicon substrate 310. In particular, a mounting region 330, which includes quartz bond pads, of quartz resonator 100 experiences a relatively significant degree of thermal stress at inner regions 331 as compared to outer regions 340 of quartz resonator. Much of the stress experienced by mounting region 330 is translated into active region 320, which adversely affects the operation of quartz resonator 100.


More specifically, and in accordance with an exemplary implementation, when quartz resonator 100 and silicon substrate 310 are subjected to a temperature of 100° C., the thermal stress experienced by inner regions is greater than 25 megapascals (MPa), while the negligible stress experienced by outer regions 340 is less than 0.1 MPa. As a consequence, the discernible thermal stress experienced by active region 320 is greater than 10 MPa.


With reference now to FIG. 4, a second stress model 400 of quartz resonator 100 in accordance with an embodiment is shown. In particular, second stress model 400 illustrates a 3-D stress model of quartz resonator 100 with a horizontal mounting design as shown in FIGS. 1A and 1B, wherein quartz resonator 100 is mounted to silicon substrate 310 and heated to 200° C.


In an exemplary implementation, at 200° C., mounting region 330 experiences an even larger amount of stress at inner regions 331 as compared to the example shown in FIG. 3. Moreover, the entire active region 320 is affected by the stress caused by the thermal mismatch between the quartz and silicon. Indeed, a stress level as high as 25 MPa may be experienced by active region 320, wherein this stress is concentrated in central regions 321. It is noted that such a relatively high level of thermal stress may significantly hinder effective operation of quartz resonator 100.


With reference now to FIG. 5, a first stress model 500 of thermal stress resistant resonator 200 in accordance with an embodiment is shown. In particular, first stress model 500 illustrates a 3-D stress model of thermal stress resistant resonator 200 with a folded spring mounting design as shown in FIGS. 2A-2C, wherein thermal stress resistant resonator 200 is mounted to silicon substrate 310 and heated to 100° C.


In an exemplary implementation, for the folded spring mounting design, active region 320 of thermal stress resistant resonator 200 does not experience any discernible thermal stress when the resonator and the silicon substrate are subjected to a temperature of 100° C. Rather, a slight stress is developed in mounting region 330, which does not affect the piezoelectric vibration. In particular, it is noted that first and second spring support members 220, 230 are configured to absorb an amount of stress to prevent this stress from being transferred to active region 320. In this manner, effective operation of thermal stress resistant resonator 200 may be maintained.


To further illustrate, thermal stress resistant resonator 200 is rigid in the vertical direction because of its thickness so that it doesn't significantly bend in this direction or have much out of plane motion. The “soft” or more compliant part of the thermal stress resistant resonator 200 is introduced in the horizontal plane, for example, with the machining of the springs. The thermally-induced mechanical stress is applied horizontally because the piezoelectric material of thermal stress resistant resonator 200 and the material of silicon substrate 310, which may be quartz and silicon respectively, expand and contract at different rates, causing a thermal expansion mismatch between silicon substrate 310 and thermal stress resistant resonator 200 which is mounted thereto. However, the aforementioned horizontal compliance mitigates this mechanical stress such that active region 320 does not experience any discernible degree of stress that would adversely affect the operation of thermal stress resistant resonator 200.


With reference now to FIG. 6, a second stress model 600 of thermal stress resistant resonator 200 in accordance with an embodiment is shown. In particular, second stress model 600 illustrates a 3-D stress model of thermal stress resistant resonator 200 with a folded spring mounting design as shown in FIGS. 2A-2C, wherein thermal stress resistant resonator 200 is mounted to silicon substrate 310 and heated to 200° C.


In an exemplary implementation, even at 200° C., the entire active region 320 is still unaffected by the stress caused by the thermal mismatch between the quartz and silicon. As one can see from the 3-D model, the stress level at the bond pads is extremely high (e.g., greater than 25 MPa). However, the stress is unable to easily propagate to active region 320 because it is isolated by the folded spring structures, which are illustrated as first and second spring support members 220, 230. Since stress reduction results from the folded spring structures, this design can be applied to various forms of quartz resonator mounting using, for example, adhesive, metal and solder bonds.


Thus, various embodiments of the present technology include folded spring structures including non-linear piezoelectric (e.g., quartz) support structures disposed adjacent to non-linear metal signal lines. Such an architecture addresses, for example, the thermal expansion mismatch introduced by the direct integration of piezoelectric resonators with silicon, silicon/germanium or a group III-V compound semiconductor substrate. Indeed, in an exemplary implementation, the quartz is bonded directly on top of a substrate with a different CTE, and a novel mounting design with the folded springs is implemented to mitigate the CTE mismatch between quartz and the substrate. It is noted, however, that the resonating portion of the piezoelectric resonator may include silicon, and that the present technology is not limited to a quartz structure.


It is noted that such an architecture would not be obvious in view of conventional designs for at least the following rationale. In an exemplary scenario, quartz resonators are relatively large (e.g., greater than several millimeters in dimension), and are made one at a time and mounted individually in a package. Indeed, pursuant to one example, a discrete quartz resonator may be packaged in a metal can that is more than 1.1 centimeter (cm) wide. Thermal expansion mismatch is dealt with by using relatively soft materials such as conductive epoxies to affix the quartz device. It is understood that this type of mounting is utilized in relatively large quartz resonators, and is often achieved manually on an individual basis.


Moreover, in accordance with one example, conductive epoxy is affixed at different positions on the quartz crystal to attach two relatively thick metal wires (e.g., approximately 0.43 millimeters (mm) in diameter) to the quartz so as to support the structure. With respect to this architecture, the use of folded quartz springs would not be obvious because such discrete quartz resonators are formed in either circular or rectangular shapes, and the metal wire attachment with the aforementioned epoxy constitutes a sufficient mounting architecture because the resonator does not reside on top of a substrate. Thus, there's no thermal expansion mismatch between the quartz and substrate that would hinder the active region of the quartz resonator. Therefore, for such discrete quartz resonators, the non-linear quartz supports would not be necessary, and therefore would not be desired.


Furthermore, forming the non-linear quartz supports would require an additional number of extra processing steps, such as the use of a handle wafer fabrication technique. Thus, not only would a person skilled in the art not be motivated to modify the conventional designs to implement a folded spring structure, such a person would in fact be motivated to not implement the features at issue because of the additional cost and complexity associated with the fabrication process that would be implemented to achieve such an architecture. Thus, a quartz spring support structure would not be obvious for traditional quartz manufacturers at least because they have conductive epoxies at their disposal and etching a spring structure would not be an easy feat for them.


The foregoing notwithstanding, it is noted that the present technology may be applied to both large (e.g., dimensions of cm's) and small (e.g., dimensions of 10's of micrometers (μm)) quartz resonators, whereas the aforementioned discrete mounting is associated with resonators larger than a few mm's. Indeed, the present technology may be implemented, for example, at wafer level for hundreds of small (e.g., less than 1 mm) quartz devices simultaneously. However, although the present technology is not limited to any specific physical dimensions, an embodiment provides that a thermal stress resistant resonator as disclosed herein may have a top horizontal dimension (such as horizontal length 250 shown in FIG. 2A) of approximately 1.8 to 2 mm and a side vertical dimension (such as vertical length 251 shown in FIG. 2A) of approximately 2.2 mm. Additionally, a width of the piezoelectric spring (such as piezoelectric spring width 252 shown in FIG. 2A) may be approximately 100 μm, with a distance between the end of the piezoelectric spring and the piezoelectric member (such as separation distance 253 shown in FIG. 2A) being approximately 70 μm.


Thus, an embodiment provides that a number of non-linear “feet” are carved from the same piece of material as the resonator, the feet being monolithic with the resonator, such that the folded spring structures and the resonator are each part of a single crystal. As previously noted, different geometries may be implemented for the folded spring structures in accordance with the present technology. For purposes of illustration and example, various exemplary geometries will now be explored. However, the present technology is not limited to these exemplary geometries.


With reference now to FIG. 7A, a first spring shape 700 in accordance with an embodiment is shown. First spring shape 700 is illustrated as being generally “J” shaped, with a number of corner edges 710 formed therein. Thus, in an embodiment, one or more of first and second spring support members 220, 230 of thermal stress resistant resonator 200 are generally “J” shaped with corner edges 710.


With reference now to FIG. 7B, a second spring shape 701 in accordance with an embodiment is shown. Second spring shape 701 is illustrated as being generally “J” shaped, but without corner edges 710 shown in FIG. 7A. Thus, in an embodiment, one or more of first and second spring support members 220, 230 of thermal stress resistant resonator 200 are generally “J” shaped without corner edges 710.


With reference now to FIG. 7C, a third spring shape 702 in accordance with an embodiment is shown. Third spring shape 702 is illustrated as being generally “G” shaped, with a number of corner edges 710 formed therein. Thus, in an embodiment, one or more of first and second spring support members 220, 230 of thermal stress resistant resonator 200 are generally “G” shaped with corner edges 710.


With reference now to FIG. 7D, a fourth spring shape 703 in accordance with an embodiment is shown. Fourth spring shape 703 is illustrated as being generally “G” shaped, but without corner edges 710 shown in FIG. 7C. Thus, in an embodiment, one or more of first and second spring support members 220, 230 of thermal stress resistant resonator 200 are generally “G” shaped without corner edges 710.


Similarly, and with reference now to FIG. 7E, a fifth spring shape 704 in accordance with an embodiment is shown. Fifth spring shape 704 is illustrated as being generally spiral shaped. Thus, in an embodiment, one or more of first and second spring support members 220, 230 of thermal stress resistant resonator 200 are generally spiral shaped.


With reference now to FIG. 7F, a sixth spring shape 705 in accordance with an embodiment is shown. Sixth spring shape 705 is illustrated as being generally zigzag shaped, with a number of corner edges 710 formed therein. Thus, in an embodiment, one or more of first and second spring support members 220, 230 of thermal stress resistant resonator 200 are generally zigzag shaped with corner edges 710.


With reference now to FIG. 7G, a seventh spring shape 706 in accordance with an embodiment is shown. Seventh spring shape 706 is illustrated as being generally zigzag shaped, but without corner edges 710 shown in FIG. 7F. Thus, in an embodiment, one or more of first and second spring support members 220, 230 of thermal stress resistant resonator 200 are generally zigzag shaped without corner edges 710.


Exemplary Methodologies


Various exemplary methods of fabrication will now be discussed. It is noted, however, that the present technology is not limited to these exemplary embodiments.


With reference now to FIG. 8, a method 800 of fabricating a thermal stress resistant resonator in accordance with an embodiment is shown. Method 800 includes providing first and second electrodes 810, disposing a quartz member between the first and second electrodes 820, and providing a first spring support member including: a first non-linear signal line extending from the first electrode, and a first non-linear quartz support member extending from the quartz member, the first non-linear signal line being disposed on the first non-linear quartz support member 830.


Thus, method 800 includes the provision of a first spring support member. In one embodiment, this first spring support member is a folded spring structure that may be fabricated using a handle wafer process, such as that detailed in U.S. Pat. No. 7,237,315, which is incorporated herein by reference in its entirety. However, other fabrication techniques may also be implemented in accordance with the present technology.


Moreover, it is noted that the thermal stress resistant resonator may be fabricated to include more than one spring support member. For example, an embodiment provides that method 800 further includes providing a second spring support member including: a second non-linear signal line extending from the second electrode, and a second non-linear quartz support member extending from the quartz member, the second non-linear signal line being disposed on the second non-linear quartz support member.


In an embodiment, the quartz member and the first and second non-linear support members are formed from the same piece of piezoelectric material. To illustrate, in an embodiment, method 800 includes selecting a piezoelectric member, and shaping the piezoelectric member, such as by plasma or chemical etching, to fabricate the quartz member and the first and second non-linear quartz support members. In this manner, the joints between the quartz member and the first and second non-linear quartz support members will be relatively strong and durable because these components are fabricated from the same piece of material rather than being fabricated separately and then joined with a linking member or compound. Furthermore, for relatively small-scale devices, this method of fabrication is more efficient and economical.


In one embodiment, method 800 includes selecting respective shapes for the first and second spring support members to configure the first and second spring support members to absorb an amount of mechanical stress and isolate the quartz member from the mechanical stress. It is noted that various geometric shapes for achieving such a configuration may be implemented in accordance with the present technology. For example, in an embodiment, method 800 includes shaping the first and second spring support members to be generally “J”, “G”, spiral or zigzag shaped, such as previously discussed. However, these spring support members may also be formed in accordance with other geometries. Thus, it is noted that the spring support members may be formed to adopt specific geometries, such as those disclosed herein or obvious variations thereof.


The foregoing notwithstanding, in an embodiment, method 800 includes selecting respective shapes for the first and second non-linear signal lines to configure the first and second non-linear signal lines to be coupled or soldered to bond pads of a support substrate at respective ends of the first and second non-linear quartz support members. In this manner, an embodiment provides that the first non-linear quartz support member is shaped substantially similar to the first non-linear signal line disposed thereon such that the first non-linear signal line may be coupled or soldered to a bond pad of a support substrate at an end of the first non-linear quartz support member positioned adjacent to the bond pad. Similarly, pursuant to one embodiment, the second non-linear quartz support member is shaped substantially similar to the second non-linear signal line disposed thereon such that the second non-linear signal line may be coupled or soldered to a bond pad of a support substrate at an end of the second non-linear quartz support member positioned adjacent to the bond pad.


Summary Concepts


It is noted that the foregoing discussion has presented at least the following concepts:


1. A thermal stress resistant resonator including or comprising:


a piezoelectric member having one or more non-linear piezoelectric support members extending there from.


2. The thermal stress resistant resonator of claim 1, wherein the piezoelectric member and the first non-linear piezoelectric support member are included or comprised within a same piezoelectric component.


3. The thermal stress resistant resonator of claim 1, wherein at least one of the one or more non-linear piezoelectric support members are generally “J”, “G”, spiral or zigzag shaped.


4. A thermal stress resistant resonator including or comprising:


a first electrode;


a second electrode separated from the first electrode;


a piezoelectric member disposed between the first and second electrodes; and


a first spring support member including:


a first non-linear signal line extending from the first electrode; and


a first non-linear piezoelectric support member extending from the piezoelectric member, the first non-linear signal line being disposed on or adjacent to the first non-linear piezoelectric support member.


5. The thermal stress resistant resonator of claim 4, wherein the piezoelectric member and the first non-linear piezoelectric support member are included or comprised within a same piezoelectric component.


6. A thermal stress resistant resonator including or comprising:


a first electrode;


a second electrode separated from the first electrode;


a quartz member disposed between the first and second electrodes; and


a first spring support member including:


a first non-linear signal line extending from the first electrode; and


a first non-linear quartz support member extending from the quartz member, the first non-linear signal line being disposed on or adjacent to the first non-linear quartz support member.


7. The thermal stress resistant resonator of claim 6, further including or comprising:


a second spring support member including:


a second non-linear signal line extending from the second electrode; and


a second non-linear quartz support member extending from the quartz member, the second non-linear signal line being disposed on or adjacent to the second non-linear quartz support member.


8. The thermal stress resistant resonator of claim 7, wherein one or more of the first and second spring support members are generally “J”, “G”, spiral or zigzag shaped.


9. The thermal stress resistant resonator of claim 7, wherein each of the first and second spring support members are sized and positioned to absorb an amount of mechanical stress and isolate the quartz member from the mechanical stress.


10. The thermal stress resistant resonator of claim 7, wherein the first and second non-linear signal lines are sized and positioned to be coupled or soldered to bond pads of a support substrate at respective ends of the first and second non-linear quartz support members.


11. A method of fabricating a thermal stress resistant resonator, the method including or comprising:


providing first and second electrodes;


disposing a quartz member between the first and second electrodes; and


providing a first spring support member including:


a first non-linear signal line extending from the first electrode; and


a first non-linear quartz support member extending from the quartz member, the first non-linear signal line being disposed on or adjacent to the first non-linear quartz support member.


12. The method of claim 11, further including or comprising:


providing a second spring support member including:


a second non-linear signal line extending from the second electrode; and


a second non-linear quartz support member extending from the quartz member, the second non-linear signal line being disposed on or adjacent to the second non-linear quartz support member.


13. The method of claim 12, further including or comprising:


shaping the first and second spring support members to be generally “J”, “G”, spiral or zigzag shaped.


14. The method of claim 12, further including or comprising:


selecting a piezoelectric member; and


shaping the piezoelectric member to fabricate the quartz member and the first and second non-linear quartz support members.


15. The method of claim 12, further including or comprising:


selecting respective shapes for the first and second spring support members to configure the first and second spring support members to absorb an amount of mechanical stress and isolate the quartz member from the mechanical stress.


16. The method of claim 12, further including or comprising:


selecting respective shapes for the first and second non-linear signal lines to configure the first and second non-linear signal lines to be coupled or soldered to bond pads of a support substrate at respective ends of the first and second non-linear quartz support members.


Although various exemplary embodiments of the present technology are described herein in a language specific to structural features and/or methodological acts, the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as exemplary forms of implementing the claims.

Claims
  • 1. A thermal stress resistant resonator comprising: a monolithic piezoelectric member having at least two separate folded spring piezoelectric support members integrally extending therefrom, wherein the monolithic piezoelectric member and the folded spring piezoelectric support members are part of a single piece of shear mode resonating AT- or SC-cut quartz; and whereineach of the at least two folded spring piezoelectric support members comprises at least two arms extending generally along a first direction, connected by a third arm extending generally along a second direction perpendicular to the first direction.
  • 2. The thermal stress resistant resonator of claim 1, wherein at least one of said one or more folded spring piezoelectric support members are generally “J”, “G”, spiral or zigzag shaped.
  • 3. A thermal stress resistant resonator comprising: a monolithic piezoelectric member disposed between first and second electrodes; anda first folded spring support member including:a first non-linear signal line extending from said first electrode; anda first piezoelectric support member integrally extending from said monolithic piezoelectric member, said first non-linear signal line being disposed on or adjacent to said first piezoelectric support member; anda second folded spring support member including:a second non-linear signal line extending from said second electrode; anda second piezoelectric support member integrally extending from said monolithic piezoelectric member separately from said first piezoelectric support member, said second non-linear signal line being disposed on or adjacent to said second piezoelectric support member;wherein the monolithic piezoelectric member and the first and second support members comprise a single piece of shear mode resonating AT- or SC-cut quartz and wherein each of the first and second support members comprises at least two arms extending generally along a first direction, connected by a third arm extending generally along a second direction perpendicular to the first direction.
  • 4. A thermal stress resistant resonator comprising: a monolithic quartz member disposed between first and second electrodes; and a first folded spring support member including:a first non-linear signal line extending from said first electrode; anda first quartz support member integrally extending from said monolithic quartz member, said first non-linear signal line being disposed on or adjacent to said first non-linear quartz support member;a second non-linear signal line extending from said second electrode; anda second quartz support member integrally extending from said monolithic quartz member separately from the first quartz support member, said second non-linear signal line being disposed on or adjacent to said second non-linear quartz support member;wherein the monolithic quartz member and the first and second quartz support member comprise each a single piece of shear mode resonating AT- or SC-cut quartz; andwherein each of the first and second support members comprises at least two arms extending generally along a first direction, connected by a third arm extending generally along a second direction perpendicular to the first direction.
  • 5. The thermal stress resistant resonator of claim 4, wherein one or more of said first and second spring support members are generally “J”, “G”, spiral or zigzag shaped.
  • 6. The thermal stress resistant resonator of claim 4, wherein each of said first and second spring support members are sized and positioned to absorb an amount of mechanical stress and isolate said quartz member from said mechanical stress.
  • 7. The thermal stress resistant resonator of claim 4, wherein said first and second nonlinear signal lines are sized and positioned to be coupled or soldered to bond pads of a support substrate at respective ends of said first and second non-linear quartz support members.
  • 8. A method of fabricating a thermal stress resistant resonator, said method comprising: providing first and second electrodes;disposing a quartz member between said first and second electrodes; and providing a first spring support member including:a first non-linear signal line extending from said first electrode; anda first non-linear quartz support member extending from said quartz member, said first non-linear signal line being disposed on or adjacent to said first non-linear quartz support member; the method further comprising:providing a second spring support member including:a second non-linear signal line extending from said second electrode; anda second non-linear quartz support member extending separately from said first non-linear quartz support member from said quartz member, said second non-linear signal line being disposed on or adjacent to said second nonlinear quartz support member;wherein the quartz member and the first and second quartz support member form part of a single piece of shear mode resonating AT- or SC-cut quartz; and wherein each of the first and second support members comprises at least two arms extending generally along a first direction, connected by a third arm extending generally along a second direction perpendicular to the first direction.
  • 9. The method of claim 8, further comprising: shaping said first and second spring support members to be generally “J”, “G”, spiral or zigzag shaped.
  • 10. The method of claim 8, further comprising: selecting a piezoelectric member; and shaping said piezoelectric member to fabricate said quartz member and said first and second non-linear quartz support members.
  • 11. The method of claim 8, further comprising: selecting respective shapes for said first and second spring support members to configure said first and second spring support members to absorb an amount of mechanical stress and isolate said quartz member from said mechanical stress.
  • 12. The method of claim 8, further comprising: selecting respective shapes for said first and second non-linear signal lines to configure said first and second non-linear signal lines to be coupled or soldered to bond pads of a support substrate at respective ends of said first and second non-linear quartz support members.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

The invention was developed with support from the United States Government under Contract No. 2007-1095726-000. The United States Government has certain rights in the invention.

US Referenced Citations (188)
Number Name Date Kind
392650 Watrous Nov 1888 A
2487165 Miller Nov 1949 A
3390287 Sonderegger Jun 1968 A
3766616 Staudte Oct 1973 A
4364016 Tanski Dec 1982 A
4426769 Grabbe Jan 1984 A
4442574 Wanuga et al. Apr 1984 A
4447753 Ochiai May 1984 A
4618262 Maydan et al. Oct 1986 A
4870313 Hirama et al. Sep 1989 A
4898031 Oikawa et al. Feb 1990 A
4944836 Beyer et al. Jul 1990 A
5203208 Bernstein Apr 1993 A
5226321 Varnham et al. Jul 1993 A
5260596 Dunn et al. Nov 1993 A
5421312 Dawson Jun 1995 A
5480747 Vasudev Jan 1996 A
5530408 Vig et al. Jun 1996 A
5552016 Ghanayem Sep 1996 A
5578976 Yao et al. Nov 1996 A
5589724 Satoh et al. Dec 1996 A
5604312 Lutz Feb 1997 A
5605490 Laffey et al. Feb 1997 A
5644139 Allen Jul 1997 A
5646346 Okada Jul 1997 A
5648849 Canteloup et al. Jul 1997 A
5658418 Coronel et al. Aug 1997 A
5665915 Kobayashi et al. Sep 1997 A
5666706 Tomita et al. Sep 1997 A
5668057 Eda et al. Sep 1997 A
5728936 Lutz Mar 1998 A
5783749 Lee et al. Jul 1998 A
5894090 Tang et al. Apr 1999 A
5905202 Kubena et al. May 1999 A
5920012 Pinson Jul 1999 A
5928532 Koshimizu et al. Jul 1999 A
5942445 Kato et al. Aug 1999 A
5959206 Ryrko Sep 1999 A
5981392 Oishi Nov 1999 A
5987985 Okada Nov 1999 A
6009751 Ljung Jan 2000 A
6044705 Neukermans et al. Apr 2000 A
6049702 Tham et al. Apr 2000 A
6081334 Grimbergen et al. Jun 2000 A
6089088 Charvet Jul 2000 A
6094985 Kapels et al. Aug 2000 A
6114801 Tanaka Sep 2000 A
6145380 MacGugan et al. Nov 2000 A
6151964 Nakajima Nov 2000 A
6155115 Ljung Dec 2000 A
6164134 Cargille Dec 2000 A
6182352 Deschenes et al. Feb 2001 B1
6196059 Kosslinger Mar 2001 B1
6204737 Ella Mar 2001 B1
6207008 Kijima Mar 2001 B1
6236145 Biernacki May 2001 B1
6250157 Touge Jun 2001 B1
6263552 Takeuchi et al. Jul 2001 B1
6282958 Fell et al. Sep 2001 B1
6289733 Challoner et al. Sep 2001 B1
6297064 Koshimizu Oct 2001 B1
6349597 Folkmer et al. Feb 2002 B1
6367326 Okada Apr 2002 B1
6367786 Gutierrez et al. Apr 2002 B1
6413682 Shibano et al. Jul 2002 B1
6417925 Naya Jul 2002 B1
6424418 Kawabata et al. Jul 2002 B2
6426296 Okojie Jul 2002 B1
6432824 Yanagisawa Aug 2002 B2
6481284 Geen et al. Nov 2002 B2
6481285 Shkel et al. Nov 2002 B1
6492195 Nakanishi Dec 2002 B2
6513380 Reeds et al. Feb 2003 B2
6514767 Natan Feb 2003 B1
6515278 Wine et al. Feb 2003 B2
6571629 Kipp Jun 2003 B1
6584845 Gutierrez et al. Jul 2003 B1
6614529 Tang Sep 2003 B1
6621158 Martin et al. Sep 2003 B2
6627067 Branton et al. Sep 2003 B1
6628177 Clark et al. Sep 2003 B2
6629460 Challoner Oct 2003 B2
6651027 McCall Nov 2003 B2
6686807 Giousouf et al. Feb 2004 B1
6710681 Figueredo et al. Mar 2004 B2
6715352 Tracy Apr 2004 B2
6744335 Ryhanen Jun 2004 B2
6750728 Takahashi Jun 2004 B2
6756304 Robert Jun 2004 B1
6768396 Klee Jul 2004 B2
6796179 Bae et al. Sep 2004 B2
6806557 Ding Oct 2004 B2
6815228 Usui et al. Nov 2004 B2
6856217 Clark et al. Feb 2005 B1
6862398 Elkind et al. Mar 2005 B2
6883374 Fell et al. Apr 2005 B2
6915215 M'Closkey et al. Jul 2005 B2
6933164 Kubena Aug 2005 B2
6943484 Clark et al. Sep 2005 B2
6985051 Nguyen et al. Jan 2006 B2
7057331 Shimodaira et al. Jun 2006 B2
7118657 Golovchenko et al. Oct 2006 B2
7152290 Junhua et al. Dec 2006 B2
7168318 Challoner et al. Jan 2007 B2
7211933 Kawakubo May 2007 B2
7224245 Song et al. May 2007 B2
7232700 Kubena Jun 2007 B1
7234214 Xu Jun 2007 B2
7237315 Kubena Jul 2007 B2
7295088 Nguyen et al. Nov 2007 B2
7317354 Lee Jan 2008 B2
7446628 Morris, III Nov 2008 B2
7459099 Kubena et al. Dec 2008 B2
7459992 Matsuda et al. Dec 2008 B2
7479846 Inoue et al. Jan 2009 B2
7490390 Kawakubo et al. Feb 2009 B2
7543496 Ayazi Jun 2009 B2
7551054 Mizuno et al. Jun 2009 B2
7555824 Chang Jul 2009 B2
7557493 Fujimoto Jul 2009 B2
7559130 Kubena et al. Jul 2009 B2
7564177 Yoshimatsu Jul 2009 B2
7579748 Kuroda Aug 2009 B2
7579926 Jhung Aug 2009 B2
7581443 Kubena Sep 2009 B2
7663196 Liu et al. Feb 2010 B2
7671427 Kim et al. Mar 2010 B2
7675224 Tanaya Mar 2010 B2
7690095 Takahashi Apr 2010 B2
7750535 Kubena Jul 2010 B2
7757393 Ayazi et al. Jul 2010 B2
7791432 Piazza et al. Sep 2010 B2
7802356 Chang Sep 2010 B1
7830074 Kubena Nov 2010 B2
7872548 Nishihara et al. Jan 2011 B2
7884930 Kirby Feb 2011 B2
7895892 Aigner Mar 2011 B2
7994877 Kubena Aug 2011 B1
8138016 Chang Mar 2012 B2
8151640 Kubena Apr 2012 B1
8176607 Kubena May 2012 B1
8522612 Kubena Sep 2013 B1
8593037 Kubena Nov 2013 B1
20020066317 Lin Jun 2002 A1
20020072246 Goo et al. Jun 2002 A1
20020074947 Tsukamoto Jun 2002 A1
20020107658 McCall Aug 2002 A1
20020185611 Menapace et al. Dec 2002 A1
20030003608 Arikado et al. Jan 2003 A1
20030010123 Malvern et al. Jan 2003 A1
20030029238 Challoner Feb 2003 A1
20030196490 Cardarelli Oct 2003 A1
20030205948 Lin et al. Nov 2003 A1
20040055380 Shcheglov et al. Mar 2004 A1
20040065864 Vogt et al. Apr 2004 A1
20040189311 Glezer Sep 2004 A1
20040211052 Kubena et al. Oct 2004 A1
20050034822 Kim et al. Feb 2005 A1
20050062368 Hirasawa et al. Mar 2005 A1
20050093659 Larson et al. May 2005 A1
20050156309 Fujii Jul 2005 A1
20050260792 Patel Nov 2005 A1
20060016065 Nagaura Jan 2006 A1
20060022556 Bail et al. Feb 2006 A1
20060055479 Okazaki et al. Mar 2006 A1
20060066419 Iwaki Mar 2006 A1
20060139121 Jhung Jun 2006 A1
20060197619 Oishi et al. Sep 2006 A1
20060213266 French Sep 2006 A1
20060252906 Godschalx et al. Nov 2006 A1
20060255691 Kuroda et al. Nov 2006 A1
20070017287 Kubena Jan 2007 A1
20070034005 Acar et al. Feb 2007 A1
20070205839 Kubena et al. Sep 2007 A1
20070220971 Ayazi Sep 2007 A1
20070240508 Watson Oct 2007 A1
20080034575 Chang et al. Feb 2008 A1
20080074661 Zhang Mar 2008 A1
20080096313 Patel Apr 2008 A1
20080148846 Whelan Jun 2008 A1
20090146527 Lee et al. Jun 2009 A1
20090189294 Chang Jul 2009 A1
20100020311 Kirby Jan 2010 A1
20100148803 Ohnishi Jun 2010 A1
20110107838 Suijlen May 2011 A1
20120000288 Matsuura Jan 2012 A1
20120212109 Yamazaki et al. Aug 2012 A1
20120266682 Torashima Oct 2012 A1
Foreign Referenced Citations (28)
Number Date Country
4442033 May 1996 DE
19719601 Nov 1998 DE
0 461 761 Dec 1991 EP
0 531 985 Mar 1993 EP
1 055 908 Nov 2000 EP
0 971 208 Dec 2000 EP
57-091017 Jun 1982 JP
01129517 May 1989 JP
04-322507 Nov 1992 JP
5286142 Nov 1993 JP
06232678 Aug 1994 JP
06-318533 Nov 1994 JP
08330878 Dec 1996 JP
09-247025 Sep 1997 JP
2003-318685 Nov 2003 JP
2005-180921 Jul 2005 JP
2006-352487 Dec 2006 JP
10-2001-0110428 Dec 2001 KR
84-00082 Jan 1984 WO
9638710 Dec 1996 WO
9815799 Apr 1998 WO
0068640 Nov 2000 WO
0144823 Jun 2001 WO
0174708 Oct 2001 WO
0212873 Feb 2002 WO
2005121769 Dec 2005 WO
2006010206 Feb 2006 WO
2006103439 Oct 2006 WO
Non-Patent Literature Citations (34)
Entry
U.S. Appl. No. 11/502,336, filed Aug. 9, 2006, Chang.
U.S. Appl. No. 12/026,486, filed Feb. 5, 2008, Kubena.
U.S. Appl. No. 12/027,247, filed Feb. 6, 2008, Kubena.
U.S. Appl. No. 12/399,680, filed Mar. 6, 2009, Chang.
U.S. Appl. No. 12/575,634, filed Oct. 8, 2009, Kubena.
U.S. Appl. No. 12/488,784, filed Jun. 22, 2009, Kubena.
U.S. Appl. No. 13/410,998, filed Mar. 2, 2012, Kubena.
U.S. Appl. No. 13/434,144, filed Mar. 29, 2012, Kubena.
J.-M. Friedt and E. Carry, “Introduction to the Quartz tuning Fork”, American Journal of Physics 75, 415 (Feb. 2, 2007); DOI: 10.1119/1.2711826.
From U.S. Appl. No. 13/434,144 (unpublished, non-publication requested)—Issue Notification dated Nov. 6, 2013—Notice of Allowance dated Jul. 11, 2013.
Greer J.A. et al.., Properties of SAW resonators fabricated on quartz substrates of various qualities; Ultrasonics Symposium, 1994 IEEE, vol. 1, Nov. 1-4, 1994; pp. 31-36.
Abe, Takashi, et al., “One-chip multichannel quartz crystal microbalance (QCM) fabricated by Deep RIE,” Sensors and Actuators, vol. 82, pp. 139-143 (2000).
Cleland, A.N., et al., “Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals,” Applied Physics Letters, vol. 69, No. 18, pp. 2653-2655 (Oct. 28, 1996).
Evoy, S., et al., “Temperature-dependent internal friction in silicon nanoelectromechanical systems,” Applied Physics Letters, vol. 77, No. 15, pp. 2397-2399 (Oct. 9, 2000).
Wright et al., “The HRG Applied to a Satellite Attitude Reference System,” Guidance and Control, AASAAS, 1994, 86:1-13.
Putty et al., “A Micromachined Vibrating Ring Gyroscope,”, Solid State Sensor and Actuator Workshop, Transducer Research Foundation, Hilton Head, 1994, pp. 213-220.
Tang et al., “A Packaged Silicon MEMS Vibratory Gyroscope for Microspacecraft,” Proceedings IEEE, 10th Annual Int. Workshop on MEMS, Japan, 1997, pp. 500-505.
Tang et al., “Silicon Bulk Micromachined Vibratory Gyroscope,” Jet Propulsion Lab.
Barbour et al., “Micromechanical Silicon Instrument and Systems Development at Draper Laboratory,” AIAA Guidance Navigation and Control Conference, 1996, Paper No. 96-3709.
Johnson et al., “Surface Micromachined Angular Rate Sensor,” A1995 SAE Conference, Paper No. 950538, pp. 77-83.
Fujita et al., “Disk-shaped bulk micromachined gyroscope with vacuum sealing,” Sensors and Actuators A:Physical, vol. 82, May 2000, pp. 198-204.
Skulski et al., “Planar resonator sensor for moisture measurements”, Microwaves and Radar, 1998, MIKON '98, 12th International Conf., vol. 3, May 20-22, 1998, pp. 692-695.
Sirbuly, Donald J. et al., Multifunctional Nanowire Evanescent Wave Optical Sensors, Advanced Materials, 2007 (published online. Dec. 5, 2006), 19, pp. 61.
White, Lan M., et al., Increasing the Enhancement of SERS with Dielectric Microsphere Resonators, Spectroscopy-Eugene, Apr. 2006.
Yan, Fei, et al., “Surface-enhanced Raman scattering (SERS) detection for chemical and biological agents,” IEEE Sensors Journal, vol. 5, No. 4, Aug. 2005.
Aaltonen, T., et al. “ALD of Rhodium thin films from Rh(acac)3 and Oxygen,” Electrochemical and Solid-State Lett. 8, C99 (2005).
Burdess et al., “The Theory of a Piezoelectric Disc Gyroscope”, Jul. 1986, IEEE vol. AES 22, No. 4; p. 410-418.
Lin, J.W., et al., “A Robust High-Q Micromachined RF Inductor for RFIC Applications,” IEEE Transactions on Electronic Devices, vol. 52, No. 7, pp. 1489-1496 (Jul. 2005).
Park, K.J., et al., “Selective area atomic layer deposition of rhodium and effective work function characterization in capacitor structures,” Applied Physics Letters 89, 043111 (2006).
From U.S. Appl. No. 12/034,852—All Restriction Requirements, including that dated Oct. 2, 2009—Notice of Allowance of May 19, 2010—Issue Notification of Sep. 8, 2010.
From U.S. Appl. No. 12/145,678—All Office Actions, including those dated Mar. 26, 2010, Jul. 22, 2009—Notice of Allowance of Jul. 13, 2010—Issue Notification of Jan. 19, 2011.
From U.S. Appl. No. 12/268,309—All Restriction Requirements, including that dated Aug. 20, 2010—All Office Actions, including those dated Nov. 22, 2010,—Notice of Allowance of Apr. 4, 2011—Issue Notification of Jul. 20, 2011.
Notice of Allowance for U.S. Appl. No. 12/831,028 dated Feb. 27, 2014.
Notice of Allowance for U.S. Appl. No. 12/488,784 dated Feb. 20, 2014.