The present technology relates to the field of resonator devices.
Electronic systems have become ubiquitous in many modern societies, wherein these systems may be used to perform various tasks electronically, such as to increase the ease and efficiency with which certain tasks may be carried out. Oftentimes, it is useful in such electronic systems that an electrical signal be created with a particular frequency, such as to provide a stable clock signal for digital integrated circuits.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
In an embodiment, a thermal stress resistant resonator is disclosed. The thermal stress resistant resonator may include or comprise a piezoelectric member having one or more non-linear piezoelectric support members extending there from.
Additionally, in one embodiment, a thermal stress resistant resonator is disclosed, wherein the thermal stress resistant resonator may include or comprise a first electrode, a second electrode separated from the first electrode, and a piezoelectric member disposed between the first and second electrodes. The thermal stress resistant resonator may also include or comprise a first spring support member including or comprising: a first non-linear signal line extending from the first electrode, and a first non-linear piezoelectric support member extending from the piezoelectric member, the first non-linear signal line being disposed on or adjacent to the first non-linear piezoelectric support member.
Moreover, in accordance with an embodiment, a thermal stress resistant resonator is disclosed, wherein the thermal stress resistant resonator may include or comprise a first electrode, a second electrode separated from the first electrode, and a quartz member disposed between the first and second electrodes. The thermal stress resistant resonator may also include or comprise a first spring support member including or comprising: a first non-linear signal line extending from the first electrode, and a first non-linear quartz support member extending from the quartz member, the first non-linear signal line being disposed on or adjacent to the first non-linear quartz support member.
Furthermore, in an embodiment, a method of fabricating a thermal stress resistant resonator is disclosed. The method may include or comprise providing first and second electrodes, and disposing a quartz member between the first and second electrodes. The method may also include or comprise providing a first spring support member including or comprising: a first non-linear signal line extending from the first electrode, and a first non-linear quartz support member extending from the quartz member, the first non-linear signal line being disposed on or adjacent to the first non-linear quartz support member.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the present technology, and, together with the Detailed Description, serve to explain principles discussed below.
The drawings referred to in this description are not to be understood as being drawn to scale except if specifically noted, and such drawings are only exemplary in nature.
Reference will now be made in detail to embodiments of the present technology, examples of which are illustrated in the accompanying drawings. While the present technology will be described in conjunction with various embodiments, these embodiments are not intended to limit the present technology. Rather, the present technology is to be understood as encompassing alternatives, modifications and equivalents, which may be included within the spirit and scope of the various embodiments as defined by the appended claims.
Furthermore, in the following Detailed Description numerous specific details are set forth in order to provide a thorough understanding of the present technology. However, the present technology may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as to not unnecessarily obscure aspects of the exemplary embodiments presented herein.
Overview
Pursuant to an exemplary scenario, the performance of a temperature compensated quartz resonator such as an AT-cut or SC-cut crystal can be adversely affected by large mechanical stresses which can cause frequency shifts and create an effective rotation in the crystal cut angle to nullify the zero temperature coefficient of quartz. Such mechanical stresses are primarily caused by thermal expansion mismatch between the quartz crystal and its substrate and/or package.
An embodiment of the present technology provides a new quartz resonator design that allows extremely low mounting thermal stress even when the resonator is bonded to a substrate with significantly different coefficient of thermal expansion (CTE) from that of quartz. To illustrate, an example provides a resonator device that includes a number of spring shaped feet carved from the same quartz crystal as the active region of the resonator such that the device is fabricated from a single crystal. The device is configured to be attached to a substrate at the tops of the spring shaped feet, which leaves a portion of the device, including the resonator, cantilevered out into space.
It is noted that principles of the present technology may be implemented to fabricate a miniaturized quartz resonator design with the following novel features: ultra low thermal mounting stress for quartz resonators on thermally mismatched substrates; folded spring supports for the active quartz element to create thermal stress isolation; mounting used for quartz resonator packaging or direct integration with an electronic substrate; and a design applicable to resonator mounting/bonding processes using adhesive, metal and solder bonds. It is further noted that principles of the present technology may be applied to various high-performance quartz oscillator and filter programs and applications.
Various exemplary embodiments of the present technology will now be discussed. It is noted, however, that the present technology is not limited to these exemplary embodiments, and that the present technology also includes obvious variations of the exemplary embodiments and implementations described herein.
Exemplary Structures
Pursuant to an exemplary scenario, quartz is a material of choice for high-stability timing and filter applications because zero temperature coefficient resonators can be made when the plates are cut along the proper directions with respect to the crystallographic axes of quartz. Moreover, in an embodiment, a quartz resonator is a two-terminal device such that two electrical contacts are utilized for operation of the resonator. In this manner, a rectangular-shaped quartz resonator may be mounted to its package by clamping two points on the same end of the device. An example of such a rectangular-shaped quartz resonator will now be explored.
With reference now to
In an embodiment, quartz resonator 100 also includes signal lines 130 extending from first and second electrodes 110, 111, respectively, wherein signal lines 130 are disposed on or adjacent to quartz unit 120, and wherein signal lines 130 are sized and positioned to be coupled or soldered to bond pads 140. Moreover, the signal line extending from the second electrode 111 is configured to electronically couple the second electrode with one of bond pads 140 by means of one or more vertical channels 160, which may be metal-filled vias. Furthermore, pursuant to one embodiment, a number of auxiliary pads 170 and interconnection pads 180 (for connecting to electronic interconnects) are also included.
The foregoing notwithstanding, in accordance with an exemplary implementation, after a quartz resonator, such as quartz resonator 100, is fabricated on a temperature-compensated crystal, great care is to be taken in mounting the resonator to a package or a support substrate so that relatively little or no stress is induced to cause strain in the quartz resonator. In particular, mounting strain on a quartz crystal can cause frequency shifts and slight rotation in the crystal to nullify the temperature compensation cut. Moreover, the performance of a temperature compensated quartz resonator, such as an AT-cut or SC-cut crystal, can be adversely affected by large mechanical stresses which can cause frequency shifts and create an effective rotation in the crystal cut angle to nullify the zero temperature coefficient of quartz. Such mechanical stresses are primarily caused by thermal expansion mismatch between the quartz crystal and its substrate and/or package. In particular, when the quartz resonator and its substrate experience a temperature change, stress is created in the quartz, owing to the higher CTE of quartz than that of the silicon substrate (a=2.35×10−6/° C. for silicon and 13.2×10−6/° C. for quartz).
An embodiment of the present technology provides a thermal stress resistant resonator that includes a piezoelectric member positioned to resonate at a resonation frequency, wherein the piezoelectric member has one or more non-linear piezoelectric support members extending there from, the one or more piezoelectric support members being sized and shaped to absorb an amount of mechanical stress, such as stress caused by a thermal expansion mismatch as discussed above. In one example, the piezoelectric member and the one or more piezoelectric support members are all carved from a single piezoelectric component or crystal such that the fabricated resonator includes a piezoelectric member having mounting “feet” of relatively small cross section such that a reduced degree of thermal conductivity is achievable through these feet.
To further illustrate, and with reference now to
To further illustrate, thermal stress resistant resonator 200, as shown in
In an embodiment, thermal stress resistant resonator 200 also includes a first spring support member 220 including a first non-linear signal line 221 extending from first electrode 110, and a first non-linear piezoelectric support member 222 extending from piezoelectric member 210, wherein first non-linear signal line 221 is disposed on first non-linear piezoelectric support member 222. Moreover, in the illustrated embodiment, thermal stress resistant resonator 200 further includes a second spring support member 230 including a second non-linear signal line 231 extending from the second electrode 111, and a second non-linear piezoelectric support member 232 extending from piezoelectric member 210, wherein second non-linear signal line 231 is disposed on second non-linear piezoelectric support member 232. Indeed, and with reference to
Pursuant to one embodiment, first and second non-linear signal lines 221, 231 are coupled with or adhered to first and second non-linear piezoelectric support members 222, 232, and first and second non-linear piezoelectric support members 222, 232 are sized and positioned to provide mechanical support for first and second non-linear signal lines 221, 231. It is noted that this additional mechanical support may be useful, for example, when metal signal lines are implemented that are at least two orders of magnitude thinner than the material within first and second non-linear piezoelectric support members 222, 232.
With reference still to
Thus, an embodiment provides a number of spring support members, such as those illustrated in
Moreover, in one embodiment, these spring support members also have a relatively small cross section such that they are shaped to dissipate heat conducted through pond ponds 140 so as to reduce the thermal conductivity from support substrate 150 to piezoelectric member 210. In this manner, the heat absorbed by the active region of the oscillator having spring support members is less than that which would be absorbed by the active region of the configuration shown in
In an embodiment, piezoelectric member 210 and first and second non-linear piezoelectric support members 222, 232 are included within a same piezoelectric component, such that these members are not fabricated from different components and then subsequently coupled together. In this manner, the joints between piezoelectric member 210 and first and second non-linear piezoelectric support members 222, 232 will be relatively strong and durable because these components are fabricated from the same piece of material rather than being fabricated separately and then joined with a linking member or compound, which could impart a structural weakness.
Moreover, it is noted that various types of piezoelectric materials may be utilized in accordance with the present technology, and that the present technology is not limited to any specific type of piezoelectric material. For example, in one embodiment, piezoelectric member 210 and first and second non-linear piezoelectric support members 222, 232 are made of quartz. However, piezoelectric member 210 and first and second non-linear piezoelectric support members 222, 232 may be made of a piezoelectric material other than quartz.
With reference still to
It is noted that a good resonator mounting design is one that shows minimal stress in the active region (e.g., the area of piezoelectric member 210 disposed between first and second electrodes 110, 111) where piezoelectric vibration occurs. Various stress models associated with the two resonators shown in
With reference now to
For this horizontal mounting design, the resonator electrode area or active region 320 of quartz resonator 100 experiences discernible thermal stress due to thermal mismatch between the quartz of quartz resonator 100 and the silicon of silicon substrate 310. In particular, a mounting region 330, which includes quartz bond pads, of quartz resonator 100 experiences a relatively significant degree of thermal stress at inner regions 331 as compared to outer regions 340 of quartz resonator. Much of the stress experienced by mounting region 330 is translated into active region 320, which adversely affects the operation of quartz resonator 100.
More specifically, and in accordance with an exemplary implementation, when quartz resonator 100 and silicon substrate 310 are subjected to a temperature of 100° C., the thermal stress experienced by inner regions is greater than 25 megapascals (MPa), while the negligible stress experienced by outer regions 340 is less than 0.1 MPa. As a consequence, the discernible thermal stress experienced by active region 320 is greater than 10 MPa.
With reference now to
In an exemplary implementation, at 200° C., mounting region 330 experiences an even larger amount of stress at inner regions 331 as compared to the example shown in
With reference now to
In an exemplary implementation, for the folded spring mounting design, active region 320 of thermal stress resistant resonator 200 does not experience any discernible thermal stress when the resonator and the silicon substrate are subjected to a temperature of 100° C. Rather, a slight stress is developed in mounting region 330, which does not affect the piezoelectric vibration. In particular, it is noted that first and second spring support members 220, 230 are configured to absorb an amount of stress to prevent this stress from being transferred to active region 320. In this manner, effective operation of thermal stress resistant resonator 200 may be maintained.
To further illustrate, thermal stress resistant resonator 200 is rigid in the vertical direction because of its thickness so that it doesn't significantly bend in this direction or have much out of plane motion. The “soft” or more compliant part of the thermal stress resistant resonator 200 is introduced in the horizontal plane, for example, with the machining of the springs. The thermally-induced mechanical stress is applied horizontally because the piezoelectric material of thermal stress resistant resonator 200 and the material of silicon substrate 310, which may be quartz and silicon respectively, expand and contract at different rates, causing a thermal expansion mismatch between silicon substrate 310 and thermal stress resistant resonator 200 which is mounted thereto. However, the aforementioned horizontal compliance mitigates this mechanical stress such that active region 320 does not experience any discernible degree of stress that would adversely affect the operation of thermal stress resistant resonator 200.
With reference now to
In an exemplary implementation, even at 200° C., the entire active region 320 is still unaffected by the stress caused by the thermal mismatch between the quartz and silicon. As one can see from the 3-D model, the stress level at the bond pads is extremely high (e.g., greater than 25 MPa). However, the stress is unable to easily propagate to active region 320 because it is isolated by the folded spring structures, which are illustrated as first and second spring support members 220, 230. Since stress reduction results from the folded spring structures, this design can be applied to various forms of quartz resonator mounting using, for example, adhesive, metal and solder bonds.
Thus, various embodiments of the present technology include folded spring structures including non-linear piezoelectric (e.g., quartz) support structures disposed adjacent to non-linear metal signal lines. Such an architecture addresses, for example, the thermal expansion mismatch introduced by the direct integration of piezoelectric resonators with silicon, silicon/germanium or a group III-V compound semiconductor substrate. Indeed, in an exemplary implementation, the quartz is bonded directly on top of a substrate with a different CTE, and a novel mounting design with the folded springs is implemented to mitigate the CTE mismatch between quartz and the substrate. It is noted, however, that the resonating portion of the piezoelectric resonator may include silicon, and that the present technology is not limited to a quartz structure.
It is noted that such an architecture would not be obvious in view of conventional designs for at least the following rationale. In an exemplary scenario, quartz resonators are relatively large (e.g., greater than several millimeters in dimension), and are made one at a time and mounted individually in a package. Indeed, pursuant to one example, a discrete quartz resonator may be packaged in a metal can that is more than 1.1 centimeter (cm) wide. Thermal expansion mismatch is dealt with by using relatively soft materials such as conductive epoxies to affix the quartz device. It is understood that this type of mounting is utilized in relatively large quartz resonators, and is often achieved manually on an individual basis.
Moreover, in accordance with one example, conductive epoxy is affixed at different positions on the quartz crystal to attach two relatively thick metal wires (e.g., approximately 0.43 millimeters (mm) in diameter) to the quartz so as to support the structure. With respect to this architecture, the use of folded quartz springs would not be obvious because such discrete quartz resonators are formed in either circular or rectangular shapes, and the metal wire attachment with the aforementioned epoxy constitutes a sufficient mounting architecture because the resonator does not reside on top of a substrate. Thus, there's no thermal expansion mismatch between the quartz and substrate that would hinder the active region of the quartz resonator. Therefore, for such discrete quartz resonators, the non-linear quartz supports would not be necessary, and therefore would not be desired.
Furthermore, forming the non-linear quartz supports would require an additional number of extra processing steps, such as the use of a handle wafer fabrication technique. Thus, not only would a person skilled in the art not be motivated to modify the conventional designs to implement a folded spring structure, such a person would in fact be motivated to not implement the features at issue because of the additional cost and complexity associated with the fabrication process that would be implemented to achieve such an architecture. Thus, a quartz spring support structure would not be obvious for traditional quartz manufacturers at least because they have conductive epoxies at their disposal and etching a spring structure would not be an easy feat for them.
The foregoing notwithstanding, it is noted that the present technology may be applied to both large (e.g., dimensions of cm's) and small (e.g., dimensions of 10's of micrometers (μm)) quartz resonators, whereas the aforementioned discrete mounting is associated with resonators larger than a few mm's. Indeed, the present technology may be implemented, for example, at wafer level for hundreds of small (e.g., less than 1 mm) quartz devices simultaneously. However, although the present technology is not limited to any specific physical dimensions, an embodiment provides that a thermal stress resistant resonator as disclosed herein may have a top horizontal dimension (such as horizontal length 250 shown in
Thus, an embodiment provides that a number of non-linear “feet” are carved from the same piece of material as the resonator, the feet being monolithic with the resonator, such that the folded spring structures and the resonator are each part of a single crystal. As previously noted, different geometries may be implemented for the folded spring structures in accordance with the present technology. For purposes of illustration and example, various exemplary geometries will now be explored. However, the present technology is not limited to these exemplary geometries.
With reference now to
With reference now to
With reference now to
With reference now to
Similarly, and with reference now to
With reference now to
With reference now to
Exemplary Methodologies
Various exemplary methods of fabrication will now be discussed. It is noted, however, that the present technology is not limited to these exemplary embodiments.
With reference now to
Thus, method 800 includes the provision of a first spring support member. In one embodiment, this first spring support member is a folded spring structure that may be fabricated using a handle wafer process, such as that detailed in U.S. Pat. No. 7,237,315, which is incorporated herein by reference in its entirety. However, other fabrication techniques may also be implemented in accordance with the present technology.
Moreover, it is noted that the thermal stress resistant resonator may be fabricated to include more than one spring support member. For example, an embodiment provides that method 800 further includes providing a second spring support member including: a second non-linear signal line extending from the second electrode, and a second non-linear quartz support member extending from the quartz member, the second non-linear signal line being disposed on the second non-linear quartz support member.
In an embodiment, the quartz member and the first and second non-linear support members are formed from the same piece of piezoelectric material. To illustrate, in an embodiment, method 800 includes selecting a piezoelectric member, and shaping the piezoelectric member, such as by plasma or chemical etching, to fabricate the quartz member and the first and second non-linear quartz support members. In this manner, the joints between the quartz member and the first and second non-linear quartz support members will be relatively strong and durable because these components are fabricated from the same piece of material rather than being fabricated separately and then joined with a linking member or compound. Furthermore, for relatively small-scale devices, this method of fabrication is more efficient and economical.
In one embodiment, method 800 includes selecting respective shapes for the first and second spring support members to configure the first and second spring support members to absorb an amount of mechanical stress and isolate the quartz member from the mechanical stress. It is noted that various geometric shapes for achieving such a configuration may be implemented in accordance with the present technology. For example, in an embodiment, method 800 includes shaping the first and second spring support members to be generally “J”, “G”, spiral or zigzag shaped, such as previously discussed. However, these spring support members may also be formed in accordance with other geometries. Thus, it is noted that the spring support members may be formed to adopt specific geometries, such as those disclosed herein or obvious variations thereof.
The foregoing notwithstanding, in an embodiment, method 800 includes selecting respective shapes for the first and second non-linear signal lines to configure the first and second non-linear signal lines to be coupled or soldered to bond pads of a support substrate at respective ends of the first and second non-linear quartz support members. In this manner, an embodiment provides that the first non-linear quartz support member is shaped substantially similar to the first non-linear signal line disposed thereon such that the first non-linear signal line may be coupled or soldered to a bond pad of a support substrate at an end of the first non-linear quartz support member positioned adjacent to the bond pad. Similarly, pursuant to one embodiment, the second non-linear quartz support member is shaped substantially similar to the second non-linear signal line disposed thereon such that the second non-linear signal line may be coupled or soldered to a bond pad of a support substrate at an end of the second non-linear quartz support member positioned adjacent to the bond pad.
Summary Concepts
It is noted that the foregoing discussion has presented at least the following concepts:
1. A thermal stress resistant resonator including or comprising:
a piezoelectric member having one or more non-linear piezoelectric support members extending there from.
2. The thermal stress resistant resonator of claim 1, wherein the piezoelectric member and the first non-linear piezoelectric support member are included or comprised within a same piezoelectric component.
3. The thermal stress resistant resonator of claim 1, wherein at least one of the one or more non-linear piezoelectric support members are generally “J”, “G”, spiral or zigzag shaped.
4. A thermal stress resistant resonator including or comprising:
a first electrode;
a second electrode separated from the first electrode;
a piezoelectric member disposed between the first and second electrodes; and
a first spring support member including:
a first non-linear signal line extending from the first electrode; and
a first non-linear piezoelectric support member extending from the piezoelectric member, the first non-linear signal line being disposed on or adjacent to the first non-linear piezoelectric support member.
5. The thermal stress resistant resonator of claim 4, wherein the piezoelectric member and the first non-linear piezoelectric support member are included or comprised within a same piezoelectric component.
6. A thermal stress resistant resonator including or comprising:
a first electrode;
a second electrode separated from the first electrode;
a quartz member disposed between the first and second electrodes; and
a first spring support member including:
a first non-linear signal line extending from the first electrode; and
a first non-linear quartz support member extending from the quartz member, the first non-linear signal line being disposed on or adjacent to the first non-linear quartz support member.
7. The thermal stress resistant resonator of claim 6, further including or comprising:
a second spring support member including:
a second non-linear signal line extending from the second electrode; and
a second non-linear quartz support member extending from the quartz member, the second non-linear signal line being disposed on or adjacent to the second non-linear quartz support member.
8. The thermal stress resistant resonator of claim 7, wherein one or more of the first and second spring support members are generally “J”, “G”, spiral or zigzag shaped.
9. The thermal stress resistant resonator of claim 7, wherein each of the first and second spring support members are sized and positioned to absorb an amount of mechanical stress and isolate the quartz member from the mechanical stress.
10. The thermal stress resistant resonator of claim 7, wherein the first and second non-linear signal lines are sized and positioned to be coupled or soldered to bond pads of a support substrate at respective ends of the first and second non-linear quartz support members.
11. A method of fabricating a thermal stress resistant resonator, the method including or comprising:
providing first and second electrodes;
disposing a quartz member between the first and second electrodes; and
providing a first spring support member including:
a first non-linear signal line extending from the first electrode; and
a first non-linear quartz support member extending from the quartz member, the first non-linear signal line being disposed on or adjacent to the first non-linear quartz support member.
12. The method of claim 11, further including or comprising:
providing a second spring support member including:
a second non-linear signal line extending from the second electrode; and
a second non-linear quartz support member extending from the quartz member, the second non-linear signal line being disposed on or adjacent to the second non-linear quartz support member.
13. The method of claim 12, further including or comprising:
shaping the first and second spring support members to be generally “J”, “G”, spiral or zigzag shaped.
14. The method of claim 12, further including or comprising:
selecting a piezoelectric member; and
shaping the piezoelectric member to fabricate the quartz member and the first and second non-linear quartz support members.
15. The method of claim 12, further including or comprising:
selecting respective shapes for the first and second spring support members to configure the first and second spring support members to absorb an amount of mechanical stress and isolate the quartz member from the mechanical stress.
16. The method of claim 12, further including or comprising:
selecting respective shapes for the first and second non-linear signal lines to configure the first and second non-linear signal lines to be coupled or soldered to bond pads of a support substrate at respective ends of the first and second non-linear quartz support members.
Although various exemplary embodiments of the present technology are described herein in a language specific to structural features and/or methodological acts, the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as exemplary forms of implementing the claims.
The invention was developed with support from the United States Government under Contract No. 2007-1095726-000. The United States Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
392650 | Watrous | Nov 1888 | A |
2487165 | Miller | Nov 1949 | A |
3390287 | Sonderegger | Jun 1968 | A |
3766616 | Staudte | Oct 1973 | A |
4364016 | Tanski | Dec 1982 | A |
4426769 | Grabbe | Jan 1984 | A |
4442574 | Wanuga et al. | Apr 1984 | A |
4447753 | Ochiai | May 1984 | A |
4618262 | Maydan et al. | Oct 1986 | A |
4870313 | Hirama et al. | Sep 1989 | A |
4898031 | Oikawa et al. | Feb 1990 | A |
4944836 | Beyer et al. | Jul 1990 | A |
5203208 | Bernstein | Apr 1993 | A |
5226321 | Varnham et al. | Jul 1993 | A |
5260596 | Dunn et al. | Nov 1993 | A |
5421312 | Dawson | Jun 1995 | A |
5480747 | Vasudev | Jan 1996 | A |
5530408 | Vig et al. | Jun 1996 | A |
5552016 | Ghanayem | Sep 1996 | A |
5578976 | Yao et al. | Nov 1996 | A |
5589724 | Satoh et al. | Dec 1996 | A |
5604312 | Lutz | Feb 1997 | A |
5605490 | Laffey et al. | Feb 1997 | A |
5644139 | Allen | Jul 1997 | A |
5646346 | Okada | Jul 1997 | A |
5648849 | Canteloup et al. | Jul 1997 | A |
5658418 | Coronel et al. | Aug 1997 | A |
5665915 | Kobayashi et al. | Sep 1997 | A |
5666706 | Tomita et al. | Sep 1997 | A |
5668057 | Eda et al. | Sep 1997 | A |
5728936 | Lutz | Mar 1998 | A |
5783749 | Lee et al. | Jul 1998 | A |
5894090 | Tang et al. | Apr 1999 | A |
5905202 | Kubena et al. | May 1999 | A |
5920012 | Pinson | Jul 1999 | A |
5928532 | Koshimizu et al. | Jul 1999 | A |
5942445 | Kato et al. | Aug 1999 | A |
5959206 | Ryrko | Sep 1999 | A |
5981392 | Oishi | Nov 1999 | A |
5987985 | Okada | Nov 1999 | A |
6009751 | Ljung | Jan 2000 | A |
6044705 | Neukermans et al. | Apr 2000 | A |
6049702 | Tham et al. | Apr 2000 | A |
6081334 | Grimbergen et al. | Jun 2000 | A |
6089088 | Charvet | Jul 2000 | A |
6094985 | Kapels et al. | Aug 2000 | A |
6114801 | Tanaka | Sep 2000 | A |
6145380 | MacGugan et al. | Nov 2000 | A |
6151964 | Nakajima | Nov 2000 | A |
6155115 | Ljung | Dec 2000 | A |
6164134 | Cargille | Dec 2000 | A |
6182352 | Deschenes et al. | Feb 2001 | B1 |
6196059 | Kosslinger | Mar 2001 | B1 |
6204737 | Ella | Mar 2001 | B1 |
6207008 | Kijima | Mar 2001 | B1 |
6236145 | Biernacki | May 2001 | B1 |
6250157 | Touge | Jun 2001 | B1 |
6263552 | Takeuchi et al. | Jul 2001 | B1 |
6282958 | Fell et al. | Sep 2001 | B1 |
6289733 | Challoner et al. | Sep 2001 | B1 |
6297064 | Koshimizu | Oct 2001 | B1 |
6349597 | Folkmer et al. | Feb 2002 | B1 |
6367326 | Okada | Apr 2002 | B1 |
6367786 | Gutierrez et al. | Apr 2002 | B1 |
6413682 | Shibano et al. | Jul 2002 | B1 |
6417925 | Naya | Jul 2002 | B1 |
6424418 | Kawabata et al. | Jul 2002 | B2 |
6426296 | Okojie | Jul 2002 | B1 |
6432824 | Yanagisawa | Aug 2002 | B2 |
6481284 | Geen et al. | Nov 2002 | B2 |
6481285 | Shkel et al. | Nov 2002 | B1 |
6492195 | Nakanishi | Dec 2002 | B2 |
6513380 | Reeds et al. | Feb 2003 | B2 |
6514767 | Natan | Feb 2003 | B1 |
6515278 | Wine et al. | Feb 2003 | B2 |
6571629 | Kipp | Jun 2003 | B1 |
6584845 | Gutierrez et al. | Jul 2003 | B1 |
6614529 | Tang | Sep 2003 | B1 |
6621158 | Martin et al. | Sep 2003 | B2 |
6627067 | Branton et al. | Sep 2003 | B1 |
6628177 | Clark et al. | Sep 2003 | B2 |
6629460 | Challoner | Oct 2003 | B2 |
6651027 | McCall | Nov 2003 | B2 |
6686807 | Giousouf et al. | Feb 2004 | B1 |
6710681 | Figueredo et al. | Mar 2004 | B2 |
6715352 | Tracy | Apr 2004 | B2 |
6744335 | Ryhanen | Jun 2004 | B2 |
6750728 | Takahashi | Jun 2004 | B2 |
6756304 | Robert | Jun 2004 | B1 |
6768396 | Klee | Jul 2004 | B2 |
6796179 | Bae et al. | Sep 2004 | B2 |
6806557 | Ding | Oct 2004 | B2 |
6815228 | Usui et al. | Nov 2004 | B2 |
6856217 | Clark et al. | Feb 2005 | B1 |
6862398 | Elkind et al. | Mar 2005 | B2 |
6883374 | Fell et al. | Apr 2005 | B2 |
6915215 | M'Closkey et al. | Jul 2005 | B2 |
6933164 | Kubena | Aug 2005 | B2 |
6943484 | Clark et al. | Sep 2005 | B2 |
6985051 | Nguyen et al. | Jan 2006 | B2 |
7057331 | Shimodaira et al. | Jun 2006 | B2 |
7118657 | Golovchenko et al. | Oct 2006 | B2 |
7152290 | Junhua et al. | Dec 2006 | B2 |
7168318 | Challoner et al. | Jan 2007 | B2 |
7211933 | Kawakubo | May 2007 | B2 |
7224245 | Song et al. | May 2007 | B2 |
7232700 | Kubena | Jun 2007 | B1 |
7234214 | Xu | Jun 2007 | B2 |
7237315 | Kubena | Jul 2007 | B2 |
7295088 | Nguyen et al. | Nov 2007 | B2 |
7317354 | Lee | Jan 2008 | B2 |
7446628 | Morris, III | Nov 2008 | B2 |
7459099 | Kubena et al. | Dec 2008 | B2 |
7459992 | Matsuda et al. | Dec 2008 | B2 |
7479846 | Inoue et al. | Jan 2009 | B2 |
7490390 | Kawakubo et al. | Feb 2009 | B2 |
7543496 | Ayazi | Jun 2009 | B2 |
7551054 | Mizuno et al. | Jun 2009 | B2 |
7555824 | Chang | Jul 2009 | B2 |
7557493 | Fujimoto | Jul 2009 | B2 |
7559130 | Kubena et al. | Jul 2009 | B2 |
7564177 | Yoshimatsu | Jul 2009 | B2 |
7579748 | Kuroda | Aug 2009 | B2 |
7579926 | Jhung | Aug 2009 | B2 |
7581443 | Kubena | Sep 2009 | B2 |
7663196 | Liu et al. | Feb 2010 | B2 |
7671427 | Kim et al. | Mar 2010 | B2 |
7675224 | Tanaya | Mar 2010 | B2 |
7690095 | Takahashi | Apr 2010 | B2 |
7750535 | Kubena | Jul 2010 | B2 |
7757393 | Ayazi et al. | Jul 2010 | B2 |
7791432 | Piazza et al. | Sep 2010 | B2 |
7802356 | Chang | Sep 2010 | B1 |
7830074 | Kubena | Nov 2010 | B2 |
7872548 | Nishihara et al. | Jan 2011 | B2 |
7884930 | Kirby | Feb 2011 | B2 |
7895892 | Aigner | Mar 2011 | B2 |
7994877 | Kubena | Aug 2011 | B1 |
8138016 | Chang | Mar 2012 | B2 |
8151640 | Kubena | Apr 2012 | B1 |
8176607 | Kubena | May 2012 | B1 |
8522612 | Kubena | Sep 2013 | B1 |
8593037 | Kubena | Nov 2013 | B1 |
20020066317 | Lin | Jun 2002 | A1 |
20020072246 | Goo et al. | Jun 2002 | A1 |
20020074947 | Tsukamoto | Jun 2002 | A1 |
20020107658 | McCall | Aug 2002 | A1 |
20020185611 | Menapace et al. | Dec 2002 | A1 |
20030003608 | Arikado et al. | Jan 2003 | A1 |
20030010123 | Malvern et al. | Jan 2003 | A1 |
20030029238 | Challoner | Feb 2003 | A1 |
20030196490 | Cardarelli | Oct 2003 | A1 |
20030205948 | Lin et al. | Nov 2003 | A1 |
20040055380 | Shcheglov et al. | Mar 2004 | A1 |
20040065864 | Vogt et al. | Apr 2004 | A1 |
20040189311 | Glezer | Sep 2004 | A1 |
20040211052 | Kubena et al. | Oct 2004 | A1 |
20050034822 | Kim et al. | Feb 2005 | A1 |
20050062368 | Hirasawa et al. | Mar 2005 | A1 |
20050093659 | Larson et al. | May 2005 | A1 |
20050156309 | Fujii | Jul 2005 | A1 |
20050260792 | Patel | Nov 2005 | A1 |
20060016065 | Nagaura | Jan 2006 | A1 |
20060022556 | Bail et al. | Feb 2006 | A1 |
20060055479 | Okazaki et al. | Mar 2006 | A1 |
20060066419 | Iwaki | Mar 2006 | A1 |
20060139121 | Jhung | Jun 2006 | A1 |
20060197619 | Oishi et al. | Sep 2006 | A1 |
20060213266 | French | Sep 2006 | A1 |
20060252906 | Godschalx et al. | Nov 2006 | A1 |
20060255691 | Kuroda et al. | Nov 2006 | A1 |
20070017287 | Kubena | Jan 2007 | A1 |
20070034005 | Acar et al. | Feb 2007 | A1 |
20070205839 | Kubena et al. | Sep 2007 | A1 |
20070220971 | Ayazi | Sep 2007 | A1 |
20070240508 | Watson | Oct 2007 | A1 |
20080034575 | Chang et al. | Feb 2008 | A1 |
20080074661 | Zhang | Mar 2008 | A1 |
20080096313 | Patel | Apr 2008 | A1 |
20080148846 | Whelan | Jun 2008 | A1 |
20090146527 | Lee et al. | Jun 2009 | A1 |
20090189294 | Chang | Jul 2009 | A1 |
20100020311 | Kirby | Jan 2010 | A1 |
20100148803 | Ohnishi | Jun 2010 | A1 |
20110107838 | Suijlen | May 2011 | A1 |
20120000288 | Matsuura | Jan 2012 | A1 |
20120212109 | Yamazaki et al. | Aug 2012 | A1 |
20120266682 | Torashima | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
4442033 | May 1996 | DE |
19719601 | Nov 1998 | DE |
0 461 761 | Dec 1991 | EP |
0 531 985 | Mar 1993 | EP |
1 055 908 | Nov 2000 | EP |
0 971 208 | Dec 2000 | EP |
57-091017 | Jun 1982 | JP |
01129517 | May 1989 | JP |
04-322507 | Nov 1992 | JP |
5286142 | Nov 1993 | JP |
06232678 | Aug 1994 | JP |
06-318533 | Nov 1994 | JP |
08330878 | Dec 1996 | JP |
09-247025 | Sep 1997 | JP |
2003-318685 | Nov 2003 | JP |
2005-180921 | Jul 2005 | JP |
2006-352487 | Dec 2006 | JP |
10-2001-0110428 | Dec 2001 | KR |
84-00082 | Jan 1984 | WO |
9638710 | Dec 1996 | WO |
9815799 | Apr 1998 | WO |
0068640 | Nov 2000 | WO |
0144823 | Jun 2001 | WO |
0174708 | Oct 2001 | WO |
0212873 | Feb 2002 | WO |
2005121769 | Dec 2005 | WO |
2006010206 | Feb 2006 | WO |
2006103439 | Oct 2006 | WO |
Entry |
---|
U.S. Appl. No. 11/502,336, filed Aug. 9, 2006, Chang. |
U.S. Appl. No. 12/026,486, filed Feb. 5, 2008, Kubena. |
U.S. Appl. No. 12/027,247, filed Feb. 6, 2008, Kubena. |
U.S. Appl. No. 12/399,680, filed Mar. 6, 2009, Chang. |
U.S. Appl. No. 12/575,634, filed Oct. 8, 2009, Kubena. |
U.S. Appl. No. 12/488,784, filed Jun. 22, 2009, Kubena. |
U.S. Appl. No. 13/410,998, filed Mar. 2, 2012, Kubena. |
U.S. Appl. No. 13/434,144, filed Mar. 29, 2012, Kubena. |
J.-M. Friedt and E. Carry, “Introduction to the Quartz tuning Fork”, American Journal of Physics 75, 415 (Feb. 2, 2007); DOI: 10.1119/1.2711826. |
From U.S. Appl. No. 13/434,144 (unpublished, non-publication requested)—Issue Notification dated Nov. 6, 2013—Notice of Allowance dated Jul. 11, 2013. |
Greer J.A. et al.., Properties of SAW resonators fabricated on quartz substrates of various qualities; Ultrasonics Symposium, 1994 IEEE, vol. 1, Nov. 1-4, 1994; pp. 31-36. |
Abe, Takashi, et al., “One-chip multichannel quartz crystal microbalance (QCM) fabricated by Deep RIE,” Sensors and Actuators, vol. 82, pp. 139-143 (2000). |
Cleland, A.N., et al., “Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals,” Applied Physics Letters, vol. 69, No. 18, pp. 2653-2655 (Oct. 28, 1996). |
Evoy, S., et al., “Temperature-dependent internal friction in silicon nanoelectromechanical systems,” Applied Physics Letters, vol. 77, No. 15, pp. 2397-2399 (Oct. 9, 2000). |
Wright et al., “The HRG Applied to a Satellite Attitude Reference System,” Guidance and Control, AASAAS, 1994, 86:1-13. |
Putty et al., “A Micromachined Vibrating Ring Gyroscope,”, Solid State Sensor and Actuator Workshop, Transducer Research Foundation, Hilton Head, 1994, pp. 213-220. |
Tang et al., “A Packaged Silicon MEMS Vibratory Gyroscope for Microspacecraft,” Proceedings IEEE, 10th Annual Int. Workshop on MEMS, Japan, 1997, pp. 500-505. |
Tang et al., “Silicon Bulk Micromachined Vibratory Gyroscope,” Jet Propulsion Lab. |
Barbour et al., “Micromechanical Silicon Instrument and Systems Development at Draper Laboratory,” AIAA Guidance Navigation and Control Conference, 1996, Paper No. 96-3709. |
Johnson et al., “Surface Micromachined Angular Rate Sensor,” A1995 SAE Conference, Paper No. 950538, pp. 77-83. |
Fujita et al., “Disk-shaped bulk micromachined gyroscope with vacuum sealing,” Sensors and Actuators A:Physical, vol. 82, May 2000, pp. 198-204. |
Skulski et al., “Planar resonator sensor for moisture measurements”, Microwaves and Radar, 1998, MIKON '98, 12th International Conf., vol. 3, May 20-22, 1998, pp. 692-695. |
Sirbuly, Donald J. et al., Multifunctional Nanowire Evanescent Wave Optical Sensors, Advanced Materials, 2007 (published online. Dec. 5, 2006), 19, pp. 61. |
White, Lan M., et al., Increasing the Enhancement of SERS with Dielectric Microsphere Resonators, Spectroscopy-Eugene, Apr. 2006. |
Yan, Fei, et al., “Surface-enhanced Raman scattering (SERS) detection for chemical and biological agents,” IEEE Sensors Journal, vol. 5, No. 4, Aug. 2005. |
Aaltonen, T., et al. “ALD of Rhodium thin films from Rh(acac)3 and Oxygen,” Electrochemical and Solid-State Lett. 8, C99 (2005). |
Burdess et al., “The Theory of a Piezoelectric Disc Gyroscope”, Jul. 1986, IEEE vol. AES 22, No. 4; p. 410-418. |
Lin, J.W., et al., “A Robust High-Q Micromachined RF Inductor for RFIC Applications,” IEEE Transactions on Electronic Devices, vol. 52, No. 7, pp. 1489-1496 (Jul. 2005). |
Park, K.J., et al., “Selective area atomic layer deposition of rhodium and effective work function characterization in capacitor structures,” Applied Physics Letters 89, 043111 (2006). |
From U.S. Appl. No. 12/034,852—All Restriction Requirements, including that dated Oct. 2, 2009—Notice of Allowance of May 19, 2010—Issue Notification of Sep. 8, 2010. |
From U.S. Appl. No. 12/145,678—All Office Actions, including those dated Mar. 26, 2010, Jul. 22, 2009—Notice of Allowance of Jul. 13, 2010—Issue Notification of Jan. 19, 2011. |
From U.S. Appl. No. 12/268,309—All Restriction Requirements, including that dated Aug. 20, 2010—All Office Actions, including those dated Nov. 22, 2010,—Notice of Allowance of Apr. 4, 2011—Issue Notification of Jul. 20, 2011. |
Notice of Allowance for U.S. Appl. No. 12/831,028 dated Feb. 27, 2014. |
Notice of Allowance for U.S. Appl. No. 12/488,784 dated Feb. 20, 2014. |