The present invention relates to a thermal trip stop valve and, more particularly, to a thermal trip stop valve used with an intermediate bulk container.
Bulk packaging containers have found widespread use for storage and shipment of bulk goods. The bulk packaging containers assume many different forms. Among these forms are portable tanks and intermediate bulk containers (IBC). Requirements for these types of containers are outlined in various D. O. T. and F. D. A. regulations and are particularly defined in 49CFR Section 171.8.
Among IBCs, there include numerous types of designs. These include metal IBCs, which are constructed of metal, rigid plastic IBCs which are constructed of all-plastic material, and composite IBCs which include a rigid outer package enclosing a plastic inner receptacle.
An IBC typically has a capacity in the range of 250-550 gallons. Some are as large as 793 gallons. As such, they are an efficient alternative to 55-gallon drums. Nevertheless, each IBC must be handled and transported individually when used, for example, in the export of materials. The IBC is typically loaded into a shipping vessel. Each IBC must be individually slung by a crane or carried by a forklift during the loading and unloading.
Recently, regulations have been implemented for authorizing the offloading of hazardous materials from IBCs that remain aboard a motor vehicle. DOT-E 12412 section 178.275(d)(3) generally requires that every bottom discharge outlet must be equipped with three serially fitted and mutually independent shut-off devices. The design of the equipment must include: (i) A self-closing internal stop-valve, which is a stop-valve within the shell or within a welded flange or its companion flange, such that: (A) The control devices for the operation of the valve are designed to prevent any unintended opening through impact or other inadvertent act; (B) The valve is operable from above or below; (C) If possible, the setting of the valve (open or closed) must be capable of being verified from the ground; (D) Except for portable tanks having a capacity less than 1,000 liters (264.2 gallons), it must be possible to close the valve from an accessible position on the portable tank that is remote from the valve itself within 30 seconds of actuation; and (E) The valve must continue to be effective in the event of damage to the external device for controlling the operation of the valve; (ii) An external stop-valve fitted as close to the shell as reasonably practicable; (iii) A liquid tight closure at the end of the discharge pipe, which may be a bolted blank flange or a screw cap; and (iv) For UN portable tanks, with bottom outlets, used for the transportation of liquid hazardous materials that are Class 3, PG I or II, or PG III with a flash point of less than 100° F. (38° C.); Division 5.1, PG I or II; or Division 6.1, PG I or II, the remote means of closure must be capable of thermal activation. The thermal means of activation must activate at a temperature of not more than 250° F. (121° C.).
The present invention is directed to satisfying the above requirements.
In one aspect, the present invention is directed to a thermal trip stop valve. The thermal trip stop valve may comprise a spring loaded emergency valve biased to a closed position and including a lever arm actuable to operate the valve to an open position. A fusible link operatively connects a pull handle to the lever arm so the pull handle manually operates the emergency valve. A latch mechanism latches the pull handle with the emergency valve in the open position, whereby the fusible link opens under high temperature conditions to disconnect the pull handle from the lever arm to close the emergency valve.
In another aspect, the invention is directed to an apparatus comprising a bottom wall with a discharge outlet closed by a thermal trip stop valve. The thermal trip stop valve mounted at the discharge outlet including a spring loaded emergency valve, the emergency valve biased to a closed position and including a lever arm actuable to operate the valve to an open position, a pull handle, a fusible link operatively connecting the pull handle to the lever arm so the pull handle manually operates the emergency valve; and a latch mechanism for latching the pull handle with the emergency valve in the open position, whereby the fusible link opens under high temperature conditions to disconnect the pull handle from the lever arm to close the emergency valve.
In accordance with another aspect, the present invention comprises an intermediate bulk container (IBC) for offloading materials comprising a portable tank including a bottom wall having a bottom discharge outlet. A thermal trip stop valve is mounted to the portable tank discharge outlet.
Further features and advantages of the invention will be apparent from the specification and the drawings.
The present invention relates generally to a thermal trip stop valve used, for example, on the bottom wall of a portable tank, such as an intermediate bulk container (IBC) for transporting and storing materials, such as liquid materials. Particularly, the thermal trip stop valve used on an IBC, with other appurtenances, satisfies requirements for offloading hazardous materials from IBCs that remain aboard a motor vehicle.
Referring to
The IBC 10 comprises a bottom wall 20, surrounded by a peripheral side wall 22 closed by a top wall 24. The top wall 24 includes a fill opening (not shown) closed by a cover 26. The bottom wall 20 includes creases, shown by dashed lines 28, so that the bottom wall 20 slopes toward the discharge outlet 12. Four formed legs 30 are provided at each corner of the bottom wall 20 to support the IBC 10 on a support surface or for stacking on another IBC. Lifting lugs 32 are provided at each corner of the top wall 24. Formed, two-way fork channels 34 extend longitudinally under the bottom wall 20 for transporting using a fork lift device.
In the illustrated embodiment of the invention, the thermal trip stop valve 14 is shown on an IBC 10 manufactured and sold by the assignee of the present invention under the trademark LIQUITOTE®. The LIQUITOTE® IBC is a steel container typically providing capacity in the range of 255 to 550 gallons, although some are as large as 793 gallons, and has a nominal width of 42 inches and nominal length of either 42 or 48 inches. The capacity is otherwise determined by height of the container, which is variable. Although the thermal trip valve 14 is illustrated on the LIQUITOTE® IBC, the thermal trip valve could be used with other types of IBCs, portable tanks, or the like, as will be apparent skilled in the art. Such containers may provide capacity in the range of 120 to 793 gallons. Also, the IBC could be manufactured of rigid plastic or be of composite construction, as is known. As used herein, the term intermediate bulk container is intended to also refer more generally to portable tanks, as is known in the art.
The thermal trip valve, see
The thermal trip valve 14 includes an operator 62 comprising a pull handle 64 linked to the lever arm 52 with a fusible link 66. The handle 62 includes a rod 67 having a diameter less than the size of the keyhole slot opening narrowed bottom 60. An annular ring 68 is welded to the rod 67 spaced from the fusible link 66. The ring 68 has a diameter greater than the keyhole slot opening narrowed bottom 60 but less than the enlarged top 58. The rod 67 is turned at 70 to define a gripping portion 72. A sleeve 74 is telescopically received on the rod 67 between the ring 68 and the turned portion 70. The gripping portion 72 enables a user to open or close the thermal trip stop valve 14 without directly actuating the lever arm 52.
The pull handle 62 extends through the keyhole slot opening 58. The fusible link 66 connects the handle to the lever arm 52, as shown, but in case of a fire will burn off at a select temperature and disconnect the handle 62 from the valve arm 52 to automatically close the valve 40. The fusible link 66 may be, for example, of the type provided by Betts Industries and provides thermal activation at not more than 250° F.
The thermal trip stop valve 14 is opened by pulling the handle 64, as shown by the arrow A in
Under extreme high temperature conditions, such as with a fire, the fusible link 66 will melt and separate the pull handle 64 from the valve arm 52, see
Thus, in accordance with the invention, there is provided an intermediate bulk container comprising a bottom wall having a bottom outlet and a spring loaded emergency valve with a pull handle which is attached to the emergency valve via a fusible link, the valve being mounted to the bottom wall at the outlet. The position of the valve is visible from the ground, as is apparent in the views of
This application claims priority of Provisional application No. 60/751,370 filed Dec. 16, 2005.
Number | Date | Country | |
---|---|---|---|
60751370 | Dec 2005 | US |