Thermal veneer tie and anchoring system

Information

  • Patent Grant
  • 9273461
  • Patent Number
    9,273,461
  • Date Filed
    Monday, February 23, 2015
    9 years ago
  • Date Issued
    Tuesday, March 1, 2016
    8 years ago
  • CPC
  • Field of Search
    • US
    • 052 378-379
    • 052 383000
    • 052 508000
    • 052 513000
    • 052 712-714
    • 052 506100
    • 052 562000
    • 052 649100
    • 052 443-444
    • 052 506050
    • 052 506060
    • CPC
    • E04B1/4178
    • E04B1/4185
    • E04B1/2608
    • E04B1/41
    • E04B2/30
  • International Classifications
    • E04B1/16
    • E04B1/41
    • Disclaimer
      This patent is subject to a terminal disclaimer.
Abstract
A veneer tie for use in a cavity wall to connect to a wall anchor to join an inner wythe and an outer wythe of the cavity wall includes an insertion portion configured for disposition in a bed joint of the outer wythe. A cavity portion is contiguous with the insertion portion, and a pintle is contiguous with the cavity portion and configured for attachment to a receptor of the wall anchor. A thermal coating is disposed on the pintle, the thermal coating being configured and arranged to reduce thermal transfer in the cavity wall between the veneer tie and the wall anchor when attached to the pintle.
Description
FIELD OF THE INVENTION

The present invention generally relates to anchoring systems for insulated cavity walls, and more specifically, a thermal veneer tie that creates a thermal break in a cavity wall.


BACKGROUND

Anchoring systems for cavity walls are used to secure veneer facings to a building and overcome seismic and other forces (e.g., wind shear, etc.). Anchoring systems generally form a conductive bridge or thermal pathway between the cavity and the interior of the building through metal-to-metal contact. Optimizing the thermal characteristics of cavity wall construction is important to ensure minimized heat transfer through the walls, both for comfort and for energy efficiency of heating and air conditioning. When the exterior is cold relative to the interior of a heated structure, heat from the interior should be prevented from passing through to the outside. Similarly, when the exterior is hot relative to the interior of an air conditioned structure, heat from the exterior should be prevented from passing through to the interior. The main cause of thermal transfer is the use of anchoring systems made largely of metal components (e.g., steel, wire formatives, metal plate components, etc.) that are thermally conductive. While providing the required high-strength within the cavity wall system, the use of metal components results in heat transfer. Failure to isolate the metal components of the anchoring system and break the thermal transfer results in heating and cooling losses and in potentially damaging condensation buildup within the cavity wall structure. However, a completely thermally-nonconductive anchoring system is not ideal because of the relative structural weakness of nonconductive materials.


SUMMARY

In one aspect, a veneer tie for use in a cavity wall to connect to a wall anchor to join an inner wythe and an outer wythe of the cavity wall includes an insertion portion configured for disposition in a bed joint of the outer wythe. A cavity portion is contiguous with the insertion portion, and a pintle is contiguous with the cavity portion and configured for attachment to a receptor of the wall anchor. A thermal coating is disposed on the pintle, the thermal coating being configured and arranged to reduce thermal transfer in the cavity wall between the veneer tie and the wall anchor when attached to the pintle.


In another aspect, an anchoring system for use in a cavity wall to join an inner wythe and an outer wythe of the cavity wall includes a wall anchor configured for attachment to the inner wythe, the wall anchor having at least one receptor. A veneer tie includes an insertion portion configured for disposition in a bed joint of the outer wythe and a cavity portion contiguous with the insertion portion. A pintle is contiguous with the cavity portion and configured for reception in the receptor of the wall anchor. A thermal coating is disposed on the pintle, the thermal coating being configured and arranged to reduce thermal transfer in the cavity wall between the veneer tie and the wall anchor when attached to the pintle.


Other objects and features will be in part apparent and in part pointed out hereinafter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective of an anchoring system as applied to a cavity wall with an inner wythe of masonry construction and an outer wythe of brick;



FIG. 2 is a fragmentary perspective, illustrating the anchoring system in use and showing a thermal veneer tie according to an embodiment of the present invention including a thermal coating on pintles of the veneer tie;



FIG. 3 is a fragmentary perspective, illustrating the anchoring system in use and showing a thermal veneer tie according to an embodiment of the present invention including a thermal coating applied to the entire veneer tie;



FIG. 4 is a perspective of an anchoring system as applied to a cavity wall with an inner wythe of an insulated dry wall construction and an outer wythe of brick;



FIG. 5 is a fragmentary schematic top plan view, partially in section, illustrating the anchoring system in use;



FIG. 6 is a perspective of a surface-mounted anchoring system as applied to a cavity wall with an inner wythe of dry wall construction and an outer wythe of brick; and



FIG. 7 is a schematic perspective illustrating the surface-mounted anchoring system in use and showing a thermal veneer tie according to an embodiment of the present invention.





Corresponding reference characters indicate corresponding parts throughout the drawings.


DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to FIGS. 1 and 2, an anchoring system for cavity walls is shown generally at 10. A cavity wall structure generally indicated at 12 comprises an inner wythe or backup wall 14 of masonry block 16 and an outer wythe or facing wall 18 of brick 20 construction. Between the inner wythe 14 and the outer wythe 18, a cavity 22 is formed. An air/vapor barrier and/or insulation can be attached to an exterior surface of the inner wythe 14 (not shown). It is to be understood that the inner and outer wythes may have other constructions than described herein within the scope of the present invention.


Successive bed joints 26 and 28 are formed between courses of blocks 16 and are substantially planar and horizontally disposed. In addition, successive bed joints 30 and 32 are formed between courses of bricks 20 and are substantially planar and horizontally disposed. In accordance with building standards, the bed joints are approximately 0.375 inches (0.9525 cm) in height in a typical embodiment. Selective ones of bed joints 26, 28 receive a wall reinforcement 46. Selective ones of bed joints 30 and 32 receive the insertion portion of a veneer tie 44. A wall anchor 40 extends into the cavity 22 and is attached to the wall reinforcement 46 in a suitable manner, such as by welding. It is also contemplated that the wall anchor could be formed as one piece with the reinforcement. It is understood that the described and illustrated wall structure 12 is exemplary only. Other structures may be used without departing from the scope of the present invention. As described in greater detail below, the veneer tie 44 is configured to provide a thermal break in the cavity 22. The anchoring system 10 is constructed and configured to limit thermal transfer between the wall anchor 40 and the veneer tie 44.


For purposes of the description, an exterior cavity surface 24 of the inner wythe 14 contains a horizontal line or x-axis 34 and an intersecting vertical line or y-axis 36. A horizontal line or z-axis 38, normal to the xy-plane, passes through the coordinate origin formed by the intersecting x- and y-axes.


The wall reinforcement 46 includes parallel side wire members 48, 50 and intermediate wires 52 extending between the side wires. As illustrated in FIGS. 1 and 2, the intermediate wires 52 of the wall reinforcement 46 form a ladder formation, although other configurations (such as a truss formation) are within the scope of the present invention. At intervals along the wall reinforcement 46, wall anchors 40 extend from the wall reinforcement and into the cavity 22. Each wall anchor 40 includes a receptor portion for receiving the veneer tie 44. As seen in FIG. 2, the wall anchor 40 includes legs 54 attached to each other by a rear leg 56, which is attached to the side wire 48. Each of the legs 54 extends into the cavity 22 and includes a receptor portion 58 having an eye or aperture 60. The aperture 60 is configured to receive a pintle of the veneer tie 44 therethrough for attaching the veneer tie to the wall anchor 40. Other configurations of wall anchors are within the scope of the present invention.


Veneer tie 44 is shown in FIG. 1 as being placed on a course of bricks in preparation for being embedded in the mortar of bed joint 30. The veneer tie 44 is formed of wire and includes attachment portions or pintles 62, 64, cavity portions 66, 68, and insertion portion 70, which is received in the bed joint 30. The pintles 62, 64 are received in the apertures 60 of the wall anchor 40 to secure the veneer tie to the wall anchor. The pintles 62, 64 can be compressively reduced such that each pintle has a thickness extending along an x-vector, and a width extending along a z-vector, the width being greater than the thickness. Optionally, the insertion portion 70 can be compressively reduced in height (not shown). It is understood that neither the pintles nor the insertion portion need be compressively reduced within the scope of the present invention.


The veneer tie 44 includes a thermal coating that is configured to provide a thermal break in the cavity 22. The main components of the veneer tie are preferably made of metal (e.g., steel) to provide a high-strength anchoring system. Through the use of a thermal coating, the underlying metal components of the veneer tie obtain a lower thermal conductive value (K-value), thereby providing a high strength veneer tie with the benefits of thermal isolation. Likewise, the entire cavity wall 12 obtains a lower transmission value (U-value), thereby providing an anchoring system with the benefits of thermal isolation. The term K-value is used to describe the measure of heat conductivity of a particular material, i.e., the measure of the amount of heat, in BTUs per hour, that will be transmitted through one square foot of material that is one inch thick to cause a temperature change of one degree Fahrenheit from one side of the material to the other (BTU/(hr·ft·° F.); or W/(m·K) in SI units). The lower the K-value, the better the performance of the material as an insulator. The metal components of the anchoring systems generally have a K-value range of 16 to 116 W/(m·K) (about 9 to 67 BTU/(hr·ft·° F.)). The coated veneer tie as described below greatly reduces the K-values to a low thermal conductive K-value not to exceed 1 W/(m·K) (about 0.58 BTU/(hr·ft·° F.)), for example about 0.7 W/(m·K) (about 0.4 BTU/(hr·ft·° F.)). The term U-value is used to describe the transmission of heat through the entire cavity wall (including the veneer tie, the anchor, the insulation, and other components), i.e., the measure of the rate of transfer of heat through one square meter of a structure divided by the difference in temperature across the structure. Similar to the K-value, the lower the U-value, the better the thermal integrity of the cavity wall, and the higher the U-value, the worse the thermal performance of the building envelope. The U-value is calculated from the reciprocal of the combined thermal resistances of the materials in the cavity wall, taking into account the effect of thermal bridges, air gaps and fixings. Several factors affect the U-value, such as the size of the cavity, the thickness of the insulation, the materials used, etc. Desirably, the use of veneer ties as described herein may reduce the U-value of a wall by 5%-80%.


The pintles 62, 64 (i.e., the portion of the veneer tie 44 that contacts the wall anchor 40) are coated with a thermal coating to provide a thermal break in the cavity (FIG. 2). The coating is illustrated by stippling in FIGS. 2 and 3. Other portions of the veneer tie can also include a thermal coating. In one embodiment, the cavity portions 66, 68 include a thermal coating to reduce thermal transmission. In another embodiment, the insertion portion 70 includes a thermal coating. As illustrated in FIG. 3, the entire veneer tie 44 can be coated. Alternatively, portions of the tie 44 can be uncoated (e.g., the insertion portion 70 and/or the cavity portions 66, 68; FIG. 2). The thermal coating is selected from thermoplastics, thermosets, natural fibers, rubbers, resins, asphalts, ethylene propylene diene monomers, and admixtures thereof and can be applied in layers. The thermal coating optionally contains an isotropic polymer which includes, but is not limited to, acrylics, nylons, epoxies, silicones, polyesters, polyvinyl chlorides, polyethylenes, and chlorosulfonated polyethylenes. Alternatively, the thermal coating can be a ceramic or ceramic-based coating including materials selected from lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, indium, scandium, yttrium, zirconium, hathium, titanium, silica, zirconia, magnesium zirconate, yttria-stabilized zirconia, and derivatives and admixtures thereof. An initial layer of the thermal coating can be cured to provide a pre-coat and the layers of the thermal coating can be cross-linked to provide high-strength adhesion to the veneer tie to resist chipping or wearing of the thermal coating.


The thermal coating reduces the K-value of the underlying metal components which include, but are not limited to, mill galvanized, hot galvanized, and stainless steel. Such components have K-values that range from 16 to 116 W/(m·K). The thermal coating reduces the K-value of the veneer tie to not exceed 1.0 W/(m·K). Likewise, the thermal veneer tie reduces the U-value of the cavity wall structure. Preferably, the U-value of the cavity wall structure including the thermal veneer tie is reduced by 5-80% as compared to the U-value of the cavity wall structure including a veneer tie without the thermal coating described herein. The thermal coating is fire resistant and gives off no toxic smoke in the event of a fire. Furthermore, the coating is suited to the application in an anchoring system with characteristics such as shock resistance, non-frangibility, low thermal conductivity and transmissivity, and a non-porous resilient finish. Additionally, the thermal coating can provide corrosion protection which protects against deterioration of the anchoring system over time.


The thermal coating can be applied through any number of methods including fluidized bed production, thermal spraying, hot dip processing, heat-assisted fluid coating, or extrusion, and includes both powder and fluid coating to form a reasonably uniform coating. The coating preferably has a thickness selected to provide a thermal break in the cavity. In one embodiment, the thickness of the coating is at least about 3 microns, such as a thickness in the range of approximately 3 microns to approximately 300 microns, and in one embodiment is about 127 microns. The thermal coating is cured to achieve good cross-linking of the layers. Appropriate examples of the nature of the coating and application process are set forth in U.S. Pat. Nos. 6,284,311 and 6,612,343.


Optionally, the wall anchor 40 can also include a thermal coating as described above. All or a portion of the wall anchor 40 and the wall reinforcement 46 can be coated to provide a thermal break in the cavity wall structure. In one embodiment, the receptor portions 58 (i.e., the portion of the wall anchor 40 that contacts the veneer tie 44) include a thermal coating (shown by stippling on the wall anchor in FIG. 3). In another embodiment, the legs 54 of the wall anchor 40 include a thermal coating (not shown). In another embodiment, the wall reinforcement 46 includes a thermal coating (not shown).


Referring to FIGS. 4 and 5, a second embodiment of an anchoring system for cavity walls is shown generally at 110. A cavity wall structure generally indicated at 112 comprises an inner wythe or drywall backup 114 with sheetrock or wallboard 116 mounted on metal columns or studs 117 and an outer wythe or facing wall 118 constructed of bricks 120. Between the inner wythe 114 and the outer wythe 118, a cavity 122 is formed. An air/vapor barrier 125 and insulation 126 are attached to an exterior surface 124 of the inner wythe 114.


Successive bed joints 130 and 132 are formed between courses of bricks 120 and are substantially planar and horizontally disposed. In accordance with building standards, the bed joints are approximately 0.375 inches (0.9525 cm) in height in a typical embodiment. Selective ones of bed joints 130 and 132 receive the insertion portion of a veneer tie 144. A wall anchor 140 is threadedly mounted on the inner wythe 114 and is supported by the inner wythe. It is understood that the described and illustrated wall structure 112 is exemplary only. Other structures may be used without departing from the scope of the present invention. As described in greater detail below, the veneer tie 144 is configured to provide a thermal break in the cavity 122. The anchoring system 110 is constructed and configured to limit thermal transfer between the wall anchor 140 and the veneer tie 144.


For purposes of the description, an exterior cavity surface 124 of the inner wythe 114 contains a horizontal line or x-axis 134 and an intersecting vertical line or y-axis 136. A horizontal line or z-axis 138, normal to the xy-plane, passes through the coordinate origin formed by the intersecting x- and y-axes.


In the illustrated embodiment, the anchoring system 110 includes wall anchor 140, veneer tie 144, and an optional wire or outer wythe reinforcement 146. At intervals along the exterior surface 124 of the inner wythe 114, wall anchors 140 are driven into place in anchor-receiving channels 148 (see FIG. 5). Each wall anchor 140 includes a receptor portion for receiving the veneer tie 144. As seen in FIG. 5, the wall anchor 140 has an elongate body extending from a driven end portion 152 to a driving end portion 154. The driven end portion 152 includes a threaded portion 156 (e.g., a self-drilling screw portion) configured for attachment to the inner wythe 114. The wall anchor 140 includes a dual-diameter barrel with a smaller diameter barrel or first shaft portion 158 toward the driven end portion 152 and a larger diameter barrel or second shaft portion 160 toward the driving end portion 154. The wall anchor 140 includes a wing nut 153 having receptors or apertures 155, 157 configured to receive pintles of the veneer tie 144. The wall anchor 140 optionally includes an internal seal 171 at the juncture of the first shaft portion 158 and the second shaft portion 160 and an external seal 172 at the juncture of the second shaft portion and the wing nut 153 to prevent air and moisture penetration through the cavity wall structure.


Veneer tie 144 is shown in FIG. 4 as being placed on a course of bricks in preparation for being embedded in the mortar of bed joint 130. The veneer tie 144 is formed of wire and includes attachment portions or pintles 162, 164, cavity portions 166, 168, and insertion portion 170, which is received in the bed joint 130. The pintles 162, 164 are received in the apertures 155, 157 of the wall anchor 140 to secure the veneer tie to the wall anchor. The pintles 162, 164 can be compressively reduced such that each pintle has a thickness extending along an x-vector, and a width extending along a z-vector, the width being greater than the thickness (not shown). Optionally, the insertion portion 170 can be compressively reduced in height (not shown). It is understood that neither the pintles nor the insertion portion need be compressively reduced within the scope of the present invention. As illustrated, the veneer tie 144 is configured to receive wire reinforcement 146. The insertion portion 170 of veneer tie 144 includes a swaged area 174 for receiving the reinforcement 146.


The veneer tie 144 includes a thermal coating that is configured to provide a thermal break in the cavity 122. The main components of the veneer tie are preferably made of metal (e.g., steel) to provide a high-strength anchoring system. Through the use of a thermal coating, the underlying metal components of the veneer tie obtain a lower thermal conductive value (K-value), thereby providing a high strength veneer tie with the benefits of thermal isolation. Likewise, the entire cavity wall 112 obtains a lower transmission value (U-value), thereby providing an anchoring system with the benefits of thermal isolation. The pintles 162, 164 (i.e., the portion of the veneer tie 144 that contacts the wall anchor 140) are coated with a thermal coating to provide a thermal break in the cavity. The coating is illustrated by stippling in FIGS. 4 and 5. Other portions of the veneer tie can also include a thermal coating. In one embodiment, the cavity portions 166, 168 include a thermal coating to reduce thermal transmission. In another embodiment, the insertion portion 170 includes a thermal coating. The entire veneer tie 144 can be coated, as illustrated. Alternatively, portions of the tie 144 can be uncoated (e.g., the insertion portion 170 and/or the cavity portions 166, 168). The thermal coating is selected from thermoplastics, thermosets, natural fibers, rubbers, resins, asphalts, ethylene propylene diene monomers, and admixtures thereof and can be applied in layers. The thermal coating optionally contains an isotropic polymer which includes, but is not limited to, acrylics, nylons, epoxies, silicones, polyesters, polyvinyl chlorides, polyethylenes, and chlorosulfonated polyethylenes. Alternatively, the thermal coating can be a ceramic or ceramic-based coating including materials selected from lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, indium, scandium, yttrium, zirconium, hafnium, titanium, silica, zirconia, magnesium zirconate, yttria-stabilized zirconia, and derivatives and admixtures thereof. An initial layer of the thermal coating can be cured to provide a pre-coat and the layers of the thermal coating can be cross-linked to provide high-strength adhesion to the veneer tie to resist chipping or wearing of the thermal coating.


The thermal coating reduces the K-value of the underlying metal components which include, but are not limited to, mill galvanized, hot galvanized, and stainless steel. Such components have K-values that range from 16 to 116 W/(m·K). The thermal coating reduces the K-value of the veneer tie to not exceed 1.0 W/(m·K). Likewise, the thermal veneer tie reduces the U-value of the cavity wall structure. Preferably, the U-value of the cavity wall structure including the thermal veneer tie is reduced by 5-80% as compared to the U-value of the cavity wall structure including a veneer tie without the thermal coating described herein. The thermal coating is fire resistant and gives off no toxic smoke in the event of a fire. Furthermore, the coating is suited to the application in an anchoring system with characteristics such as shock resistance, non-frangibility, low thermal conductivity and transmissivity, and a non-porous resilient finish. Additionally, the thermal coating can provide corrosion protection which protects against deterioration of the anchoring system over time.


The thermal coating can be applied through any number of methods including fluidized bed production, thermal spraying, hot dip processing, heat-assisted fluid coating, or extrusion, and includes both powder and fluid coating to form a reasonably uniform coating. The coating preferably has a thickness selected to provide a thermal break in the cavity. In one embodiment, the thickness of the coating is at least about 3 microns, such as a thickness in the range of approximately 3 microns to approximately 300 microns, and in one embodiment is about 127 microns. The thermal coating is cured to achieve good cross-linking of the layers. Appropriate examples of the nature of the coating and application process are set forth in U.S. Pat. Nos. 6,284,311 and 6,612,343.


Optionally, the wall anchor 140 can also include a thermal coating as described above (not shown). All or a portion of the wall anchor 140 can be coated to provide a thermal break in the cavity wall structure. In one embodiment, walls of the apertures 155, 157 (i.e., the portion of the wall anchor 140 that contacts the veneer tie 144) include a thermal coating. In another embodiment, the entire wing nut 153 includes a thermal coating. In another embodiment, the entire wall anchor except for the threaded portion 156 includes a thermal coating.


Referring now to FIGS. 6 and 7, a third embodiment of an anchoring system for cavity walls is shown generally at 210. A cavity wall structure generally indicated at 212 comprises an inner wythe or backup wall 214 having sheetrock or wallboard 216 mounted on columns or studs 217 and an outer wythe or facing wall 218 of brick 220 construction. Between the inner wythe 214 and the outer wythe 218, a cavity 222 is formed. Insulation 226 is disposed between adjacent studs 217.


Successive bed joints are formed between courses of bricks 220 and are substantially planar and horizontally disposed. In accordance with building standards, the bed joints are approximately 0.375 inches (0.9525 cm) in height in a typical embodiment. Selective ones of bed joints are constructed to receive the insertion portion of a veneer tie 244. A wall anchor 240 is surface-mounted on the inner wythe 214 and is supported by the inner wythe. It is understood that the described and illustrated wall structure 212 is exemplary only. Other structures may be used without departing from the scope of the present invention. As described in greater detail below, the veneer tie 244 is configured to provide a thermal break in the cavity 222. The anchoring system 210 is constructed and configured to limit thermal transfer between the wall anchor 240 and the veneer tie 244.


For purposes of the description, an exterior cavity surface 224 of the inner wythe 214 contains a horizontal line or x-axis 234 and an intersecting vertical line or y-axis 236. A horizontal line or z-axis 238, normal to the xy-plane, passes through the coordinate origin formed by the intersecting x- and y-axes.


At intervals along the inner wythe 214, wall anchors 240 are mounted and extend into the cavity 222. Each wall anchor 240 includes a receptor portion for receiving the veneer tie 244. As seen in FIG. 7, the wall anchor 240 includes a base plate member 246 and a free end portion 248 extending into the cavity 222. The free end portion 248 includes receptor portions 250 configured to receive the pintles of the veneer tie 244 therethrough to attach the veneer tie to the wall anchor 240. The wall anchors 240 are mounted to the inner wythe 214 by fasteners extending through mounting holes 256 in the base plate member 246.


The veneer tie 244 is formed of wire and includes attachment portions or pintles 262, 264, cavity portions 266, 268, and insertion portion 270, which is received in a bed joint of the outer wythe 218. The pintles 262, 264 are received in the receptor portions 250 of the wall anchor 240 to secure the veneer tie to the wall anchor. The pintles 262, 264 can be compressively reduced such that each pintle has a thickness extending along an x-vector, and a width extending along a z-vector, the width being greater than the thickness. Optionally, the insertion portion 270 can be compressively reduced in height (not shown). It is understood that neither the pintles nor the insertion portion need be compressively reduced within the scope of the present invention. As illustrated, the veneer tie 244 is configured to receive a wire reinforcement 271. The insertion portion 270 of the veneer tie 244 includes swaged areas 274 for receiving the reinforcement 271.


The veneer tie 244 includes a thermal coating that is configured to provide a thermal break in the cavity 222. The main components of the veneer tie are preferably made of metal (e.g., steel) to provide a high-strength anchoring system. Through the use of a thermal coating, the underlying metal components of the veneer tie obtain a lower thermal conductive value (K-value), thereby providing a high strength veneer tie with the benefits of thermal isolation. Likewise, the entire cavity wall 212 obtains a lower transmission value (U-value), thereby providing an anchoring system with the benefits of thermal isolation. The pintles 262, 264 (i.e., the portion of the veneer tie 244 that contacts the wall anchor 240) are coated with a thermal coating to provide a thermal break in the cavity (FIG. 7). The coating is illustrated by stippling in FIG. 7. Other portions of the veneer tie can also include a thermal coating. In one embodiment, the cavity portions 266, 268 include a thermal coating (not shown) to reduce thermal transmission. In another embodiment, the insertion portion 270 includes a thermal coating (not shown). As illustrated, portions of the tie 244 can be uncoated (e.g., the insertion portion 270 and/or the cavity portions 266, 268; FIG. 7). Alternatively, the entire veneer tie 244 can be coated (not shown). The thermal coating is selected from thermoplastics, thermosets, natural fibers, rubbers, resins, asphalts, ethylene propylene diene monomers, and admixtures thereof and can be applied in layers. The thermal coating optionally contains an isotropic polymer which includes, but is not limited to, acrylics, nylons, epoxies, silicones, polyesters, polyvinyl chlorides, polyethylenes, and chlorosulfonated polyethylenes. Alternatively, the thermal coating can be a ceramic or ceramic-based coating including materials selected from lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, indium, scandium, yttrium, zirconium, hathium, titanium, silica, zirconia, magnesium zirconate, yttria-stabilized zirconia, and derivatives and admixtures thereof. An initial layer of the thermal coating can be cured to provide a pre-coat and the layers of the thermal coating can be cross-linked to provide high-strength adhesion to the veneer tie to resist chipping or wearing of the thermal coating.


The thermal coating reduces the K-value of the underlying metal components which include, but are not limited to, mill galvanized, hot galvanized, and stainless steel. Such components have K-values that range from 16 to 116 W/(m·K). The thermal coating reduces the K-value of the veneer tie to not exceed 1.0 W/(m·K). Likewise, the thermal veneer tie reduces the U-value of the cavity wall structure. Preferably, the U-value of the cavity wall structure including the thermal veneer tie is reduced by 5-80% as compared to the U-value of the cavity wall structure including a veneer tie without the thermal coating described herein. The thermal coating is fire resistant and gives off no toxic smoke in the event of a fire. Furthermore, the coating is suited to the application in an anchoring system with characteristics such as shock resistance, non-frangibility, low thermal conductivity and transmissivity, and a non-porous resilient finish. Additionally, the thermal coating can provide corrosion protection which protects against deterioration of the anchoring system over time.


The thermal coating can be applied through any number of methods including fluidized bed production, thermal spraying, hot dip processing, heat-assisted fluid coating, or extrusion, and includes both powder and fluid coating to form a reasonably uniform coating. The coating preferably has a thickness selected to provide a thermal break in the cavity. In one embodiment, the thickness of the coating is at least about 3 microns, such as a thickness in the range of approximately 3 microns to approximately 300 microns, and in one embodiment is about 127 microns. The thermal coating is cured to achieve good cross-linking of the layers. Appropriate examples of the nature of the coating and application process are set forth in U.S. Pat. Nos. 6,284,311 and 6,612,343.


Optionally, the wall anchor 240 can also include a thermal coating (not shown) as described above. All or a portion of the wall anchor 240 can be coated to provide a thermal break in the cavity wall structure. In one embodiment, the receptor portions 250 (i.e., the portion of the wall anchor 240 that contacts the veneer tie 244) include a thermal coating (not shown). In another embodiment, the free end portions 248 of the wall anchor 240 include a thermal coating (not shown). In another embodiment, the wall base plate member 246 includes a thermal coating (not shown).


The veneer ties as described above serve to thermally isolate the components of the anchoring system, thereby reducing the thermal transmission and conductivity values of the anchoring system as a whole. The veneer ties provide an insulating effect and an in-cavity thermal break, severing the thermal pathways created from metal-to-metal contact of anchoring system components. Through the use of the thermally-isolating veneer ties, the underlying metal components obtain a lower thermal conductive value (K-value), thereby reducing the thermal transmission value (U-value) of the entire cavity wall structure. The present invention maintains the strength of the metal and further provides the benefits of a thermal break in the cavity.


Having described the invention in detail, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.


When introducing elements of the present invention or the preferred embodiment(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.


As various changes could be made in the above products without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

Claims
  • 1. A veneer tie for use in a cavity wall to connect to a wall anchor to join an inner wythe and an outer wythe of the cavity wall, the veneer tie comprising: an insertion portion configured for disposition in a bed joint of the outer wythe;a cavity portion contiguous with the insertion portion;a pintle contiguous with the cavity portion and configured for attachment to a receptor of the wall anchor; anda thermal coating disposed on the pintle, the thermal coating being configured and arranged to reduce thermal transfer in the cavity wall between the veneer tie and the wall anchor when attached to the pintle.
  • 2. The veneer tie of claim 1, wherein the thermal coating is a material selected from the group consisting of thermoplastics, thermosets, natural fibers, rubber, resins, asphalts, ethylene propylene diene monomers, and admixtures thereof.
  • 3. The veneer tie of claim 2, wherein the thermal coating is an isotropic polymer selected from the group consisting of acrylics, nylons, epoxies, silicones, polyesters, polyvinyl chlorides, and polyethylenes.
  • 4. The veneer tie of claim 1, wherein the thermal coating is a material selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, indium, scandium, yttrium, zirconium, hafnium, titanium, silica, zirconia, magnesium zirconate, yttria-stabilized zirconia, and derivatives and admixtures thereof.
  • 5. The veneer tie of claim 1, wherein the thermal coating reduces the K-value of the wall anchor to a level not to exceed 1.0 W/(m·K).
  • 6. The veneer tie of claim 1, wherein the thermal coating has a thickness of at least about 3 microns.
  • 7. The veneer tie of claim 1, wherein the thermal coating comprises more than one layer to provide high-strength adhesion to the pintle.
  • 8. The veneer tie of claim 1, wherein the thermal coating is disposed on the cavity portion.
  • 9. The veneer tie of claim 1, wherein the thermal coating is disposed on the insertion portion.
  • 10. The veneer tie of claim 1, wherein the thermal coating is disposed on the cavity portion and the insertion portion.
  • 11. The veneer tie of claim 1, wherein the cavity portion is free from thermal coating.
  • 12. The veneer tie of claim 1, comprising a pair of cavity portions contiguous with the insertion portion and a pair of pintles each contiguous with a respective one of the cavity portions, wherein the thermal coating is disposed on each of the pintles.
  • 13. The veneer tie of claim 1, wherein the pintle is compressively reduced such that the pintle has a thickness and a width greater than the thickness.
  • 14. The veneer tie of claim 1, wherein the insertion portion is swaged to receive a reinforcement wire.
  • 15. An anchoring system for use in a cavity wall to join an inner wythe and an outer wythe of the cavity wall, the anchoring system comprising: a wall anchor configured for attachment to the inner wythe, the wall anchor having at least one receptor; anda veneer tie comprising: an insertion portion configured for disposition in a bed joint of the outer wythe;a cavity portion contiguous with the insertion portion;a pintle contiguous with the cavity portion and configured for reception in the receptor of the wall anchor; anda thermal coating disposed on the pintle, the thermal coating being configured and arranged to reduce thermal transfer in the cavity wall between the veneer tie and the wall anchor when attached to the pintle.
  • 16. The anchoring system of claim 15, wherein the wall anchor comprises a thermal coating disposed on the receptor for reducing thermal transfer between the veneer tie and the wall anchor.
  • 17. The anchoring system of claim 15, wherein the thermal coating is selected from the group consisting of thermoplastics, thermosets, natural fibers, rubber, resins, asphalts, ethylene propylene diene monomers, acrylics, nylons, epoxies, silicones, polyesters, polyvinyl chlorides, polyethylenes, chlorosulfonated polyethylenes, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, indium, scandium, yttrium, zirconium, hathium, titanium, silica, zirconia, magnesium zirconate, yttria-stabilized zirconia, and derivatives and admixtures thereof.
  • 18. The anchoring system of claim 15, wherein the thermal coating is disposed on the cavity portion and the insertion portion.
  • 19. The anchoring system of claim 15, wherein the cavity portion is free from thermal coating.
  • 20. The anchoring system of claim 15, wherein the veneer tie comprises a pair of cavity portions contiguous with the insertion portion and a pair of pintles each contiguous with a respective one of the cavity portions, wherein the thermal coating is disposed on each of the pintles.
US Referenced Citations (278)
Number Name Date Kind
819869 Dunlap May 1906 A
903000 Priest Nov 1908 A
1014157 Lewen Jan 1912 A
1170419 Coon et al. Feb 1916 A
RE15979 Schaefer et al. Jan 1925 E
1794684 Handel Mar 1931 A
1936223 Awbrey Nov 1933 A
1988124 Johnson Jan 1935 A
2058148 Hard Oct 1936 A
2097821 Mathers Nov 1937 A
2280647 Hawes Apr 1942 A
2300181 Spaight Oct 1942 A
2343764 Fuller Mar 1944 A
2403566 Thorp et al. Jul 1946 A
2413772 Morehouse Jan 1947 A
2605867 Goodwin Aug 1952 A
2780936 Hillberg Feb 1957 A
2898758 Henrickson Aug 1959 A
2909054 Phillips Oct 1959 A
2929238 Kaye Mar 1960 A
2966705 Massey Jan 1961 A
2999571 Huber Sep 1961 A
3030670 Bigelow Apr 1962 A
3088361 Hallock May 1963 A
3114220 Maddox et al. Dec 1963 A
3121978 Reiland Feb 1964 A
3183628 Smith May 1965 A
3254736 Gass Jun 1966 A
3277626 Brynjolfsson et al. Oct 1966 A
3300939 Brynjolfsson et al. Jan 1967 A
3309828 Tribble Mar 1967 A
3310926 Brandreth et al. Mar 1967 A
3341998 Lucas Sep 1967 A
3377764 Storch Apr 1968 A
3440922 Cohen Apr 1969 A
3478480 Swenson Nov 1969 A
3529508 Cooksey Sep 1970 A
3563131 Ridley, Sr. Feb 1971 A
3568389 Gulow Mar 1971 A
3640043 Querfeld et al. Feb 1972 A
3925996 Wiggill Dec 1975 A
3964226 Hala et al. Jun 1976 A
3964227 Hala Jun 1976 A
4021990 Schwalberg May 1977 A
4227359 Schlenker Oct 1980 A
4238987 Siebrecht-Reuter Dec 1980 A
4281494 Weinar Aug 1981 A
4305239 Geraghty Dec 1981 A
4373314 Allan Feb 1983 A
4382416 Kellogg-Smith May 1983 A
4410760 Cole Oct 1983 A
4424745 Magorian et al. Jan 1984 A
4438611 Bryant Mar 1984 A
4473984 Lopez Oct 1984 A
4482368 Roberts Nov 1984 A
4571909 Berghuis et al. Feb 1986 A
4596102 Catani et al. Jun 1986 A
4598518 Hohmann Jul 1986 A
4606163 Catani Aug 1986 A
4622796 Aziz et al. Nov 1986 A
4628657 Ermer et al. Dec 1986 A
4636125 Burgard Jan 1987 A
4640848 Cerdan-Diaz et al. Feb 1987 A
4660342 Salisbury Apr 1987 A
4688363 Sweeney et al. Aug 1987 A
4703604 Muller Nov 1987 A
4708551 Richter et al. Nov 1987 A
4714507 Ohgushi Dec 1987 A
4723866 McCauley Feb 1988 A
4738070 Abbott et al. Apr 1988 A
4757662 Gasser Jul 1988 A
4764069 Reinwall et al. Aug 1988 A
4819401 Whitney, Jr. Apr 1989 A
4827684 Allan May 1989 A
4843776 Guignard Jul 1989 A
4852320 Ballantyne Aug 1989 A
4869038 Catani Sep 1989 A
4869043 Hatzinikolas et al. Sep 1989 A
4875319 Hohmann Oct 1989 A
4911949 Iwase et al. Mar 1990 A
4922680 Kramer et al. May 1990 A
4923348 Carlozzo et al. May 1990 A
4946632 Pollina Aug 1990 A
4948319 Day et al. Aug 1990 A
4955172 Pierson Sep 1990 A
4993902 Hellon Feb 1991 A
5063722 Hohmann Nov 1991 A
5099628 Noland et al. Mar 1992 A
5207043 McGee et al. May 1993 A
5307602 Lebraut May 1994 A
5392581 Hatzinikolas et al. Feb 1995 A
5395196 Notaro Mar 1995 A
5408798 Hohmann Apr 1995 A
5440854 Hohmann Aug 1995 A
5454200 Hohmann Oct 1995 A
5456052 Anderson et al. Oct 1995 A
5490366 Burns et al. Feb 1996 A
5518351 Peil May 1996 A
5598673 Atkins Feb 1997 A
5634310 Hohmann Jun 1997 A
5669592 Kearful Sep 1997 A
5671578 Hohmann Sep 1997 A
5673527 Coston et al. Oct 1997 A
5755070 Hohmann May 1998 A
5816008 Hohmann Oct 1998 A
5819486 Goodings Oct 1998 A
5845455 Johnson, III Dec 1998 A
6000178 Goodings Dec 1999 A
6125608 Charlson Oct 2000 A
6176662 Champney et al. Jan 2001 B1
6209281 Rice Apr 2001 B1
6279283 Hohmann et al. Aug 2001 B1
6284311 Gregorovich et al. Sep 2001 B1
6293744 Hempfling et al. Sep 2001 B1
6332300 Wakai Dec 2001 B1
6351922 Burns et al. Mar 2002 B1
6367219 Quinlan Apr 2002 B1
6508447 Catani et al. Jan 2003 B1
6548190 Spitsberg et al. Apr 2003 B2
6612343 Camberlin et al. Sep 2003 B2
6627128 Boyer Sep 2003 B1
6668505 Hohmann et al. Dec 2003 B1
6686301 Li et al. Feb 2004 B2
6709213 Bailey Mar 2004 B2
6718774 Razzell Apr 2004 B2
6735915 Johnson, III May 2004 B1
6739105 Fleming May 2004 B2
6789365 Hohmann et al. Sep 2004 B1
6812276 Yeager Nov 2004 B2
6817147 MacDonald Nov 2004 B1
6827969 Skoog et al. Dec 2004 B1
6837013 Foderberg et al. Jan 2005 B2
6851239 Hohmann et al. Feb 2005 B1
6918218 Greenway Jul 2005 B2
6925768 Hohmann et al. Aug 2005 B2
6941717 Hohmann et al. Sep 2005 B2
6968659 Boyer Nov 2005 B2
7007433 Boyer Mar 2006 B2
7017318 Hohmann et al. Mar 2006 B1
7043884 Moreno May 2006 B2
7059577 Burgett Jun 2006 B1
D527834 Thimons et al. Sep 2006 S
7147419 Balbo Di Vinadio Dec 2006 B2
7152382 Johnson, III Dec 2006 B2
7171788 Bronner Feb 2007 B2
7178299 Hyde et al. Feb 2007 B2
D538948 Thimons et al. Mar 2007 S
7225590 diGirolamo et al. Jun 2007 B1
7325366 Hohmann et al. Feb 2008 B1
7334374 Schmid Feb 2008 B2
7374825 Hazel et al. May 2008 B2
7415803 Bronner Aug 2008 B2
7469511 Wobber Dec 2008 B2
7481032 Tarr Jan 2009 B2
7552566 Hyde et al. Jun 2009 B2
7562506 Hohmann, Jr. Jul 2009 B2
7587874 Hohmann, Jr. Sep 2009 B2
7654057 Zambelli et al. Feb 2010 B2
7735292 Massie Jun 2010 B2
7744321 Wells Jun 2010 B2
7748181 Guinn Jul 2010 B1
7788869 Voegele, Jr. Sep 2010 B2
D626817 Donowho et al. Nov 2010 S
7845137 Hohmann, Jr. Dec 2010 B2
7918634 Conrad et al. Apr 2011 B2
8037653 Hohmann, Jr. Oct 2011 B2
8051619 Hohmann, Jr. Nov 2011 B2
8092134 Oguri et al. Jan 2012 B2
8096090 Hohmann, Jr. et al. Jan 2012 B1
8109706 Richards Feb 2012 B2
8122663 Hohmann et al. Feb 2012 B1
8154859 Shahrokhi Apr 2012 B2
8201374 Hohmann, Jr. Jun 2012 B2
8209934 Pettingale Jul 2012 B2
8215083 Toas et al. Jul 2012 B2
8291672 Hohmann, Jr. et al. Oct 2012 B2
8347581 Doerr et al. Jan 2013 B2
8375667 Hohmann, Jr. Feb 2013 B2
8418422 Johnson, III Apr 2013 B2
8511041 Fransen Aug 2013 B2
8516763 Hohmann, Jr. Aug 2013 B2
8516768 Johnson, III Aug 2013 B2
8544228 Bronner Oct 2013 B2
8555587 Hohmann, Jr. Oct 2013 B2
8555596 Hohmann, Jr. Oct 2013 B2
8596010 Hohmann, Jr. Dec 2013 B2
8609224 Li et al. Dec 2013 B2
8613175 Hohmann, Jr. Dec 2013 B2
8635832 Heudorfer et al. Jan 2014 B2
8661766 Hohmann, Jr. Mar 2014 B2
8667757 Hohmann, Jr. Mar 2014 B1
8726596 Hohmann, Jr. May 2014 B2
8726597 Hohmann, Jr. May 2014 B2
8733049 Hohmann, Jr. May 2014 B2
8739485 Hohmann, Jr. Jun 2014 B2
8800241 Hohmann, Jr. Aug 2014 B2
8833003 Hohmann, Jr. Sep 2014 B1
8839581 Hohmann, Jr. Sep 2014 B2
8839587 Hohmann, Jr. Sep 2014 B2
8844229 Hohmann, Jr. Sep 2014 B1
8863460 Hohmann, Jr. Oct 2014 B2
8881488 Hohmann, Jr. et al. Nov 2014 B2
8898980 Hohmann, Jr. Dec 2014 B2
8904726 Hohmann, Jr. Dec 2014 B1
8904727 Hohmann, Jr. Dec 2014 B1
8904730 Hohmann, Jr. Dec 2014 B2
8904731 Hohmann, Jr. et al. Dec 2014 B2
8910445 Hohmann, Jr. Dec 2014 B2
8920092 D'Addario et al. Dec 2014 B2
8984837 Curtis et al. Mar 2015 B2
20010054270 Rice Dec 2001 A1
20020047488 Webb et al. Apr 2002 A1
20020100239 Lopez Aug 2002 A1
20030121226 Bolduc Jul 2003 A1
20030217521 Richardson et al. Nov 2003 A1
20040083667 Johnson, III May 2004 A1
20040187421 Johnson, III Sep 2004 A1
20040216408 Hohmann, Jr. Nov 2004 A1
20040216413 Hohmann et al. Nov 2004 A1
20040216416 Hohmann et al. Nov 2004 A1
20040231270 Collins et al. Nov 2004 A1
20050046187 Takeuchi et al. Mar 2005 A1
20050129485 Swim, Jr. Jun 2005 A1
20050279042 Bronner Dec 2005 A1
20050279043 Bronner Dec 2005 A1
20060005490 Hohmann, Jr. Jan 2006 A1
20060198717 Fuest Sep 2006 A1
20060242921 Massie Nov 2006 A1
20060251916 Arikawa et al. Nov 2006 A1
20070011964 Smith Jan 2007 A1
20070059121 Chien Mar 2007 A1
20080092472 Doerr et al. Apr 2008 A1
20080141605 Hohmann Jun 2008 A1
20080166203 Reynolds et al. Jul 2008 A1
20080222992 Hikai et al. Sep 2008 A1
20090133351 Wobber May 2009 A1
20090133357 Richards May 2009 A1
20090173828 Oguri et al. Jul 2009 A1
20100037552 Bronner Feb 2010 A1
20100071307 Hohmann, Jr. Mar 2010 A1
20100101175 Hohmann Apr 2010 A1
20100192495 Huff et al. Aug 2010 A1
20100257803 Hohmann, Jr. Oct 2010 A1
20110023748 Wagh et al. Feb 2011 A1
20110041442 Bui Feb 2011 A1
20110047919 Hohmann, Jr. Mar 2011 A1
20110061333 Bronner Mar 2011 A1
20110083389 Bui Apr 2011 A1
20110146195 Hohmann, Jr. Jun 2011 A1
20110173902 Hohmann, Jr. et al. Jul 2011 A1
20110189480 Hung Aug 2011 A1
20110277397 Hohmann, Jr. Nov 2011 A1
20120186183 Johnson, III Jul 2012 A1
20120285111 Johnson, III Nov 2012 A1
20120304576 Hohmann, Jr. Dec 2012 A1
20120308330 Hohmann, Jr. Dec 2012 A1
20130008121 Dalen Jan 2013 A1
20130074435 Hohmann, Jr. Mar 2013 A1
20130074442 Hohmann, Jr. Mar 2013 A1
20130232893 Hohmann, Jr. Sep 2013 A1
20130232909 Curtis et al. Sep 2013 A1
20130247482 Hohmann, Jr. Sep 2013 A1
20130247483 Hohmann, Jr. Sep 2013 A1
20130247484 Hohmann, Jr. Sep 2013 A1
20130247498 Hohmann, Jr. Sep 2013 A1
20130340378 Hohmann, Jr. Dec 2013 A1
20140000211 Hohmann, Jr. Jan 2014 A1
20140075855 Hohmann, Jr. Mar 2014 A1
20140075856 Hohmann, Jr. Mar 2014 A1
20140075879 Hohmann, Jr. Mar 2014 A1
20140096466 Hohmann, Jr. Apr 2014 A1
20140174013 Hohmann, Jr. et al. Jun 2014 A1
20140202098 De Smet et al. Jul 2014 A1
20140215958 Duyvejonck et al. Aug 2014 A1
20140250826 Hohmann, Jr. Sep 2014 A1
20150033651 Hohmann, Jr. Feb 2015 A1
20150096243 Hohmann, Jr. Apr 2015 A1
20150121792 Spoo et al. May 2015 A1
Foreign Referenced Citations (7)
Number Date Country
279209 Mar 1952 CH
0 199 595 Mar 1995 EP
1 575 501 Sep 1980 GB
2 069 024 Aug 1981 GB
2 246 149 Jan 1992 GB
2 265 164 Sep 1993 GB
2459936 Mar 2013 GB
Non-Patent Literature Citations (8)
Entry
ASTM Standard E754-80 (2006), Standard Test Method for Pullout Resistance of Ties and Anchors Embedded in Masonry Mortar Joints, ASTM International, 8 pages, West Conshohocken, Pennsylvania, United States.
ASTM Standard Specification A951/A951M—11, Table 1, Standard Specification for Steel Wire for Masonry Joint Reinforcement, Nov. 14, 2011, 6 pages, West Conshohocken, Pennsylvania, United States.
State Board of Building Regulations and Standards, Building Envelope Requirements, 780 CMR sec. 1304.0 et seq., 7th Edition, Aug. 22, 2008, 11 pages, Boston, MA, United States.
Building Code Requirements for Masonry Structures and Commentary, TMS 402-11/ACI 530-11/ASCE 5-11, 2011, Chapter 6, 12 pages.
Hohmann & Barnard, Inc., Product Catalog, 44 pgs (2003).
Hohmann & Barnard, Inc.; Product Catalog, 2009, 52 pages, Hauppauge, New York, United States.
Hohmann & Barnard, Inc., Product Catalog, 2013, 52 pages, Hauppauge, New York, United States.
Kossecka, Ph.D, et al., Effect of Insulation and Mass Distribution in Exterior Walls on Dynamic Thermal Performance of Whole Buildings, Thermal Envelopes VII/Building Systems—Principles p. 721-731, 1998, 11 pages.