The present invention relates generally to industrial presses. More particularly, this invention relates to press brakes.
Press brakes are commonly used to bend or otherwise deform sheet-like workpieces, such as sheet metal. A conventional press brake has an upper beam and a lower beam, at least one of which is movable toward and away from the other. Typically, the upper beam is movable vertically while the lower beam is fixed in a stationary position. It is common for a male forming punch and a female forming die to be mounted respectively on the upper and lower beams of a press brake.
Typically, the punch has a downwardly-oriented, workpiece-deforming surface (or “tip”). The configuration of this surface is dictated by the shape into which it is desired to deform a workpiece. The die typically has a recess, bounded by one or more workpiece-deforming surfaces, that is aligned with the tip of the punch. The configuration of this recess corresponds to the configuration of the punch's tip. Thus, when the beams are brought together, a workpiece between them is pressed by the punch into the die to give the workpiece a desired deformation (e.g., a desired bend).
From time to time, it is necessary to exchange punches and dies to accommodate different bending operations. The manner in which punches and dies are mounted on, and dismounted from, a press brake depends upon the particular style of tool holder/tooling being used. In some cases, the tool holder has a clamp that can be actuated to close securely upon (i.e., to clamp on) the tang of a press brake tool. In many cases, the clamp holds the tool's tang against a horizontally elongated wall (or “bed”) of the upper or lower beam. When the clamp is loosened, the tool can be removed. In certain instances, the tool can be removed by moving it vertically out of the clamp. In other instances, the tool must be removed by sliding it horizontally out of the clamp.
Many press brake tool holders have been devised. Some employ clamps that are actuated mechanically. Others employ clamps that are actuated hydraulically. Exemplary tool holders of both types will now be described.
U.S. Pat. No. 4,993,255 (issued to Treillet), the entire contents of which are incorporated herein by reference, discloses a tool holder that is attached by means of a C clamp to the bed of the upper table. Through use of a camming mechanism, the upwardly extending shank of a tool is captured between a pivotable clamp and a portion of the holder, the shank and clamp having cooperating surfaces enabling the tool to be readily inserted in the holder. In this patent, a locking cam is disclosed for locking the clamp against the tool.
U.S. Pat. Nos. 5,513,514, 5,511,407, and 5,572,902 (each issued to Kawano), and European patent publication 0 644 002 A2, the entire contents of each of which are incorporated herein by reference, all show tool holders in which a pivoting clamp is employed to secure the shank of a tool against the mounting plate of a tool holder. In each of these patents, the tool holder is equipped with a threaded mechanism operated by a lever that pivots from side to side to lock and unlock the clamp, force being transmitted from the lever to the clamp via a spring structure.
U.S. Pat. No. 6,003,360 (issued to Runk et al.), the entire contents of which are incorporated herein by reference, provides a particularly advantageous press brake tool holder. The tool holder includes a clamp that opens to a position allowing manual removal of the tool while preventing the tool from falling. The clamp in certain preferred embodiments is actuated with a manual lever.
U.S. Pat. No. 6,151,951 (issued to Kawano), the entire contents of which are incorporated herein by reference, discloses a tool holder having multiple hydraulically actuated pistons that transmit force generated by hydraulic fluid to a clamp. The pistons are displaced outwardly to force the clamp shut.
U.S. Pat. No. 6,564,611 (issued to Harrington et al.), the entire contents of which are incorporated herein by reference, discloses particularly advantageous hydraulic press brake tool holders. The press brake tool holders are configured for releasing and securing press brake tools in response to applied fluid pressure. One disclosed tool holder includes a horizontally-elongated body having a cam shaft bore disposed longitudinally therethrough, and receiving a slidably and sealingly mounted cam shaft therein. The cam shaft can have at least one axial camming surface, having a large outer diameter region axially tapered to a small outer diameter region, and in contact with a cam follower pin slidably disposed in a cam follower pin bore transversely disposed through the body. The cam follower pin can bear against a pivotally mounted clamp disposed about the body. In response to applied fluid pressure, the camming surface can slide axially, thereby increasing the effective outer diameter as seen by the cam follower pin, urging the cam follower pin outward and against the upper portion of the pivotally mounted clamp, and closing the lower clamp portion about a press brake tool.
Insofar as mechanically-actuated tool holders are concerned, a press brake operator generally moves a handle of the tool holder manually to actuate the clamp. While tool holders of this nature are entirely acceptable in most cases, it would be desirable to provide a tool holder in which clamping and unclamping can be performed without requiring an operator to manually move a handle.
Hydraulic tool holders also have limitations. For example, hydraulic tool holders may require cumbersome hydraulic hoses, expensive hydraulic power supplies, and control valves. Such bulky hydraulics tend to render hydraulic clamps difficult to use. Moreover, these clamps tend to have hydraulic fluid leaks, which can contaminate cutting fluids as well as the environment. Hydraulic clamps also tend to have relatively high maintenance costs and relatively high noise levels.
Pneumatic clamps would also have shortcomings. For example, pneumatic clamps would tend to have high noise levels. Pneumatic systems may also release oil mist into the air, creating a “shop air” smell. Further, pneumatic systems tend to require expensive compressors, filter/regulator packages, and maintenance. Moreover, pneumatic clamps may be limited in terms of clamping force.
Finally, in certain automated machining processes, it may be desirable to move a tool holder among one or more machining stations. This type of movement would tend to be cumbersome with hydraulic or pneumatic systems.
The present invention provides a new and improved press brake tool holder, which overcomes the above-noted problems and others.
In certain embodiments, the invention provides a press brake tool holder and a press brake tool, in combination. The tool has generally opposed first and second ends. The first end of the tool defines a workpiece-deforming surface configured for making a predetermined press-brake deformation (e.g., a predetermined bend) in a workpiece when the workpiece-deforming surface is forced against the workpiece. The second end of the press brake tool has a tang mounted in a tool-mount channel defined by the tool holder. The tool-mount channel is bounded by two confronting walls of the tool holder, at least one of which is adapted to move selectively toward or away from the other in response to delivery of heat selectively to or from a thermally-responsive actuator of the tool holder. In the present embodiments, the tool holder has a load-delivering surface engaged with a load-receiving surface of the press brake tool.
In certain embodiments, the invention provides a method of operating a press brake tool holder. In these embodiments, the method comprises providing, in combination, the press brake tool holder and a press brake tool. The press brake tool has generally opposed first and second ends. The first end of the press brake tool defines a workpiece-deforming surface configured for making a predetermined press-brake deformation in a workpiece when the workpiece-deforming surface is forced against the workpiece. The second end of the press brake tool has a tang mounted in a tool-mount channel defined by the tool holder. The tool-mount channel is bounded by two confronting walls of the tool holder, wherein at least one of the confronting walls is adapted to move selectively toward or away from the other confronting wall in response to delivery of heat selectively to or from a thermally-responsive actuator of the tool holder. In the present embodiments, the method comprises delivering heat selectively to or from the thermally-responsive actuator of the tool holder so as to cause at least one of the confronting walls to move selectively toward or away from the other confronting wall.
In certain embodiments, the invention provides a press brake tool holder and a press brake tool in combination. In the present embodiments, the tool holder has a tool-mount channel in which a tang of the press brake tool is mounted. In these embodiments, the tool holder has a generally horizontal load-bearing surface engaged with a generally horizontal load-bearing surface of the press brake tool. The tool holder is adapted for forcing a tip of the press brake tool against a workpiece by delivering force from the generally horizontal load-bearing surface of the tool holder to the generally horizontal load-bearing surface of the press brake tool. The tool-mount channel is bounded by two confronting walls of the tool holder, wherein at least one of the confronting walls is adapted to move selectively toward or away from the other confronting wall in response to delivery of heat selectively to or from a thermally-responsive component of the actuator. In the present embodiments, the thermally-responsive component of the actuator comprises a thermally-expandable polymer and/or a shape-memory alloy. In certain embodiments of this nature, the tool holder is adapted for moving the press brake tool in a generally vertical direction.
In certain embodiments, the invention provides a method of operating a press brake tool holder. The method comprises providing, in combination, the press brake tool holder and a press brake tool. In the present embodiments, the tool holder has a tool-mount channel in which a tang of the press brake tool is mounted. Here, the tool holder has a load-bearing surface engaged with a load-bearing surface of the press brake tool. The tool-mount channel is bounded by two confronting walls of the tool holder, wherein at least one of the confronting walls is adapted to move selectively toward or away from the other confronting wall in response to delivery of heat selectively to or from a thermally-responsive component of the actuator. In the present embodiments, the thermally-responsive component of the actuator comprises a thermally-expandable polymer and/or a shape-memory alloy. The present method comprises forcing a tip of the press brake tool against a workpiece by delivering force from the load-bearing surface of the tool holder to the load-bearing surface of the press brake tool. In some cases, the tip of the press brake tool is forced against the workpiece by operating the tool holder so as to move the press brake tool in a direction generally normal to the load-bearing surface of the tool holder, such that the tip of the press brake tool is brought to bear forcibly against the workpiece. In certain of these cases, the load-bearing surface of the tool holder is generally horizontal, such that the tool holder moves the press brake tool in a generally vertical direction.
In certain embodiments, the invention provides a press brake tool holder having a thermally-responsive actuator. The tool holder has a tool-mount channel bounded by two confronting walls of the tool holder, wherein at least one of the confronting walls moves selectively toward or away from the other confronting wall in response to delivery of heat selectively to or from a thermally-responsive component of the actuator. In the present embodiments, the press brake tool holder has an internal chamber in which the thermally-responsive component of the actuator is disposed. In these embodiments, the thermally-responsive component comprises a thermally-expandable polymer and/or a shape-memory alloy.
The present invention involves a thermally-actuated press brake tool holder. The tool holder is actuated (i.e., opens or closes) in response to a heating or cooling step. Generally, the tool holder TH defines a channel C configured for receiving the tang of a press brake tool. This channel C is referred to herein as the tool-mount channel. The channel C is bounded by two confronting walls CW, CW′ of the tool holder. As is perhaps best seen in FIGS. 1, 6-8, 11-14, and 17, the channel C in some embodiments is also bounded by a base wall BW. In the illustrated embodiments, the confronting walls CW, CW′ are generally or substantially vertical (and preferably define surfaces that are generally or substantially vertical and planar), and the base wall BW is generally or substantially horizontal (and preferably defines a surface that is generally or substantially horizontal and planar). These features, however, are not required in all embodiments. Rather, the configuration of the wall(s) bounding the tool-mount channel C will vary depending upon the tool holder style in which the invention is embodied.
The tool holder will commonly be of the American, Wila, or European styles. However, the tool holder can take the form of various other press brake tool holder styles known in the art but currently in less widespread use. In fact, it will be appreciated that the tool holder TH can reflect any desired tooling style, including styles not yet developed, that would benefit from features of this invention. The tool holder, of course, can be a press brake beam, an adaptor mounted to a press brake beam, or any other type of press brake tool holder.
Certain embodiments of the invention involve a press brake tool. The tool can be a male forming punch or a female forming die. Typically, the tool TL has generally opposed first and second ends (or sides). Preferably, the first end (or side) of the tool defines a workpiece-deforming surface (e.g., at a tip) configured for making a predetermined press-brake deformation (e.g., a predetermined bend) in a workpiece when this workpiece-deforming surface is forced against the workpiece (e.g., when a tip of the tool is forced against a piece of sheet metal or the like). The second end (or side) of the press brake tool has a tang T that is configured for being mounted in the channel C of the tool holder TH, as will now be described.
The tang T of the tool TL is sized and shaped to be received in the channel C of the tool holder TH (e.g., fitted snuggly in the channel so the tang is held rigidly in a stationary position relative to the tool holder). As noted above, the tang is typically at one end of the tool, while at least one workpiece-deforming surface is at another end of the tool. Referring to
In certain embodiments, the press brake tool TL has a safety key K. The safety key is not present in all embodiments of the invention. In some embodiments, though, the tool's tang T has a safety key K adapted for engaging a safety recess SR defined by the tool holder TH. The safety key can be retractable or non-retractable. Safety keys of both types are described in U.S. Pat. No. 6,467,327 (Runk et al.), and U.S. patent application Ser. No. 10/742,439, entitled “Press Brake Tooling Technology”, the entire contents of each of which are incorporated herein by reference.
In the case of a retractable safety key, the key is mounted on the tool so as to be moveable between an extended position and a retracted position. In more detail, the key preferably comprises a rigid engagement portion 580 that is moveable laterally relative to (e.g., generally toward and away from) the tool's tang. In some cases, the safety key is part of an assembly mounted inside and/or on the tool, and the assembly includes at least one spring resiliently biasing the safety key toward its extended position. Various assemblies of this nature can be used. One exemplary assembly is illustrated in
In the case of a non-retractable safety key, the key will typically comprise a rigid boy projecting laterally from the tool's tang. When provided, the non-retractable safety key will generally either be integral to the tool's tang or rigidly joined to the tool's tang.
Thus, in some embodiments, the tool holder defines a safety recess SR. When provided, the safety recess SR desirably is sized to receive an engagement portion 580 of the safety key K. The optional safety recess SR desirably is at a location on the tool holder TH that is aligned with (e.g., horizontally) the safety key K of a press brake tool when such tool is operatively mounted in the channel C. In certain embodiments involving a tool holder in combination with a press brake tool, the tool has a safety key projecting away from the tang and engaged with (i.e., engaging, e.g., extending into) a safety recess defined by the tool holder, such that an engagement portion 580 of the safety key is received in the tool holder's safety recess. This is perhaps best appreciated in
Thus, some embodiments of the invention provide a press brake tool holder and a press brake tool in combination. As noted above, the tool TL has opposed first and second ends. Preferably, the first end of the tool defines a workpiece-deforming surface configured for making a desired deformation (e.g., a desired bend) in a workpiece when this surface is forced against the workpiece. The second end of the tool desirably has a tang mounted in the channel C of the tool holder. As noted above, the channel C is typically bounded by two confronting walls CW, CW′ of the tool holder. Preferably, at least one of these confronting walls can be displaced (e.g., moved) selectively toward or away from the other by operating a thermally-responsive actuator of the tool holder.
In certain embodiments, the tool holder TH has a load-delivering surface LD configured for engaging a load-receiving surface LR of a press brake tool TL. Preferably, the tool holder TH has a generally or substantially horizontal load-delivering surface LD that is adapted to engage and deliver force to a corresponding generally or substantially horizontal load-receiving surface LR of the tool TL. In certain embodiments (e.g., involving a tool mounted operatively in a tool holder), the tool holder has a load-delivering surface LD engaged with (e.g., carried directly against) a load-receiving surface LR of the tool TL (the surfaces LD, LR preferably are generally or substantially horizontal) In some embodiments, the tool holder TH has two horizontal load-delivering surfaces LD. For example,
In
In some cases, the tool holder TH has only one horizontal load-delivering surface LD. This is the case, for example, in certain Wila-style embodiments wherein the top surface of the tool's tang is a horizontal load-receiving surface that is mounted directly against a horizontal base wall BW of the tool holder.
In some embodiments, when the tang T of a press brake tool is operatively mounted in the channel C of the tool holder TH, each load-delivering surface LD of the tool holder is generally or substantially horizontal and is carried directly against a corresponding generally or substantially horizontal load-receiving surface LR of the tool. This is perhaps best appreciated in
In certain embodiments, the tool holder TH is adapted for forcing the workpiece-deforming surface(s) of the press brake tool TL (when the tool is operatively mounted in the tool holder) against a workpiece by delivering force from the load-delivering surface(s) of the tool holder to the load-receiving surface(s) of the tool. Preferably, the tool holder is adapted for moving the operatively mounted press brake tool in a direction generally or substantially normal to the load-delivering surface(s) of the tool holder. In certain preferred embodiments, each load-delivering surface LD of the tool holder is generally or substantially horizontal, such that the tool holder is adapted for moving the press brake tool in a generally or substantially vertical direction (e.g., along axis V, as seen in
The tool holder can be operably coupled to a press brake ram that is adapted for moving the tool holder and the mounted tool together so as to force the workpiece-deforming surface (e.g., a tip) of the tool against the workpiece. Here, the ram is preferably adapted for moving the tool holder TH in a direction generally or substantially normal to the load-delivering surface(s) LD of the tool holder.
In preferred embodiments, the tool holder TH has a closed configuration and an open configuration. When the tool holder is in its open configuration (shown in
Thus, the confronting walls CW, CW′ of the tool holder are separated by a greater distance when the tool holder is in its open configuration than when it is in its closed configuration. In certain embodiments of this nature, the confronting walls CW, CW′ are spaced further apart when in the open configuration, as compared to their separation when in the closed position, by at least about 0.005 inch, more preferably by at least about 0.010 inch, and perhaps optimally by at least about 0.015 inch. In some cases, the confronting walls are spaced further apart by between about 0.005 inch and about 0.5 inch, perhaps more preferably between about 0.010 and about 0.25 inch, and perhaps optimally between about 0.15 and about 0.10 inch.
The tool holder is provided with a thermally-responsive actuator A. Preferably, the tool holder opens or closes, selectively, in response to operation of the actuator. That is, operating the actuator A preferably causes the tool holder to open or close, selectively. The actuator is operated by heating or cooling (i.e., by delivering heat to or from) a thermally-responsive component of the actuator. Thus, in some cases, heating the thermally-responsive component of the actuator causes the tool holder to either open or close. In some such cases, heating causes the tool holder to move from its closed position to its open position, and cooling (which could include simply stopping or reducing heat delivery) causes the tool holder to move from its open position to its closed position. In other cases, heating causes the tool holder to move from its open position to its closed position, and cooling causes the tool holder to move from its closed position to its open position.
Thus, the tool holder can be moved selectively between its closed and open configurations by selectively performing a heating or cooling step on a thermally-responsive component of the actuator. In certain embodiments, the thermally-responsive component of the actuator comprises a thermally-expandable material. In many embodiments of this nature, the thermally-expandable material is a material that expands when it melts or is otherwise heated. In other embodiments, though, the thermally-expandable material is a material that expands when it freezes (e.g., water) or is otherwise cooled.
In certain preferred embodiments, the thermally-responsive component of the actuator A comprises a thermally-expandable material that undergoes a solid-liquid phase change in response to a very small temperature change. In some cases, the actuator A is adapted to move the tool holder from its closed configuration to its open configuration in response to a heat delivery step that causes the thermally-expandable material to undergo a solid-liquid phase change (i.e., a solid to liquid phase change or a liquid to solid phase change). Additionally or alternatively, the actuator A may be adapted to move the tool holder from its open configuration to its closed configuration in response to a heat delivery step that causes the thermally-expandable material to undergo a solid-liquid phase change.
In certain particularly preferred embodiments, the actuator A comprises a thermally-expandable polymer, as described below in further detail.
In certain embodiments, the thermally-responsive component of the actuator comprises a shape-memory material (e.g., a shape-memory alloy). Shape-memory materials are a special class of materials that have shape-memory characteristics when heated or cooled. These materials, after being deformed, recover their original shape when subjected to a heat-transfer step (i.e., a heating or cooling step). In some cases, the shape-memory material recovers its original shape when it is heated. In other cases, the shape-memory material recovers its original shape when it is cooled (which could include simply stopping or reducing heat delivery). Embodiments of both types can be provided by selecting an appropriate shape-memory material. In certain embodiments, there is provided a shape-memory alloy comprising Ti—Ni, Ti—Ni—Fe, Cu—Zn—Al, or Cu—Al—Ni. These alloys can include small amounts of other metals, preferably non-ferrous, if so desired (e.g., to improve shape-memory characteristics). In some embodiments, the alloy consists essentially of the noted metals. One type of shape-memory alloy that is particularly useful is a nickel-titanium alloy, such as that known commercially as Nitinol, which comprises about 55% nickel and about 45% titanium. Such an alloy exhibits hardness and strength comparable to steel, has excellent corrosion resistance, and has a high reversible deformation property. Nickel-titanium alloy has a transformation temperature that can be adjusted between the marstenstitic and austhentic microstructure in a range from −100 to 100 degrees C. by using an appropriate alloy composition.
Thus, in certain embodiments, the tool holder comprises a shape-memory alloy component CO disposed between two confronting surfaces 277A, 277B of the tool holder. The shape-memory alloy component when subjected to a desired heat-transfer step (e.g., when heated or cooled) expands in at least one dimension (e.g., upon assuming a particular microstructure) so as to apply force to the confronting surfaces 277A, 277B of the tool holder. In these embodiments, the force so delivered causes the tool holder to move either from its open position to its closed position or from its closed position to its open position. In the embodiment shown in
In certain embodiments, the thermally-responsive component of the actuator A comprises a thermally-expandable material that expands or contracts upon being heated or cooled (e.g., respectively). In some cases, paraffin or wax is used (e.g., a sharp melting point wax). Preferably, the thermally-expandable material undergoes a solid-liquid phase change when subjected to a desired heat-transfer step. In certain embodiments, the thermally-expandable material is a thermally-expandable polymer. A medium chain polyethylene is used in some cases.
In some embodiments, the actuator A comprises thermally-expandable material disposed in a reservoir (or “chamber”) of the tool holder.
It can thus be appreciated that certain embodiments involve a reservoir from which there extends at least one channel (e.g., in which a moveable body may be slidably disposed). In some embodiments of this nature, thermally-expandable material flows through or is otherwise in this channel (e.g., or at least part of the channel), at least at certain times. In one embodiment of this nature, the channel is provided with a heat-transfer element (e.g., at least part of a heating element extend into the channel and/or a wall bounding at least part of the channel may comprise a heating element). This may be useful to keep liquid phase material in the channel in a flowable form. In
With continued reference to
The thermally-responsive actuator A preferably comprises at least one heat-transfer element (e.g., at least one heating element). The heat-transfer element desirably is adapted to deliver heat to and/or from a thermally-responsive component of the actuator. The heat-transfer element can be provided in various forms. For example, it can comprise conduits (e.g., tubes) for circulating hot and/or cold water or other fluids adjacent (e.g., in thermal contact with) the thermally-responsive component of the actuator. In some cases, disposed in the reservoir is a helical tubing (e.g., of brass or copper alloy) adapted for circulating hot and/or cold fluid. Useful heat-transfer conduits are described in U.S. Pat. No. 6,481,202, the entire contents of which are incorporated herein by reference. Thus, in certain embodiments, the tool holder has a reservoir or “chamber” in which there is disposed both a thermally-expandable material (e.g., polymer) and a heat-transfer element (e.g., a heating element disposed at least in part within the reservoir).
In certain embodiments, the tool holder is provided with an electric heating element positioned adjacent (e.g., in thermal contact with) the thermally-responsive component of the actuator. Upon applying current to the electrodes of such a heating element, the heating element increases in temperature and delivers heat to the thermally-responsive component of the actuator, thereby causing the thermally-responsive component of the actuator to expand and/or assume a desired shape. Once the current through the electrodes is terminated, the heat in the heating element dissipates and the thermally-responsive component returns to its original size and/or its original shape. Generally, the heating of the actuator's thermally-responsive component can be accomplished by one or more of electrical resistance heating, fluid exchange heating, chemical reaction heating, convection heating, and radiation heating.
Referring to
In certain embodiments, at least one of the confronting walls CW, CW′ of the tool holder TH is defined by a clamp CL. The optional clamp is adapted to move (e.g., is mounted on the tool holder for movement) between an open position and a closed position.
In embodiments wherein the tool holder has a clamp CL, the clamp can optionally be mounted on a wall of the tool holder such that the clamp is moveable pivotally (about a desired pivot point) between its open and closed positions. Thus, when the clamp is made to pivot in one direction (either clockwise or counterclockwise), one end PE of the clamp (the tool-engagement end) moves toward the tool holder's channel, whereas when the clamp is made to pivot in the opposite direction, the tool-engagement end PE of the clamp moves away from the channel C (e.g., away from a tool tang mounted in the channel).
In certain embodiments, the tool holder includes a clamp CL mounted to a wall or block B of the tool holder such that the clamp has a limited range of freedom to move pivotally about a pivot point at the distal end DE of the clamp. Here, the distal end DE (or distal end region) of the clamp CL defines the pivot point. In some embodiments of this nature, the clamp is under (i.e., receives) a constant force biasing the clamp toward its closed position (i.e., a clamp-closing force). This is perhaps best appreciated with reference to
In certain preferred embodiments, the tool holder provides a positive lock. That is, the tool holder is locked in a closed configuration at all times, unless heat is affirmatively delivered to or from the thermally-responsive actuator (i.e., enough heat to cause actuation). In these embodiments, the default configuration of the tool holder is its closed configuration. Thus, if there is a power failure or other event that interrupts operation, the tool holder will remain locked. This would prevent a tool mounted in a tool holder on the upper beam of a press brake from inadvertently falling in the event of a power failure or the like.
One positive locking embodiment involves a thermally-responsive actuator comprising a thermally-expandable material that assumes a liquid phase at room temperature (or “ambient temperature”). Here, the tool holder can be configured such that it is closed when the thermally-expandable material is in a liquid phase. In such a design, the thermally-expandable material would be cooled to cause a release (opening) of the clamp. In certain embodiments, the material has a melting/freezing point of about 10 degrees Celsius.
It can thus be appreciated that in certain embodiments a clamp CL is mounted on a wall or block B of the tool holder such that the clamp is moveable pivotally about a desired pivot point. The clamp in some such embodiments is adapted to receive (e.g., is linked to one or more thermally-responsive actuators adapted for delivering to the clamp) a clamp-opening force. The clamp-opening force is received at a first location (a first force-delivery point) on the clamp. In some cases, the clamp is under a constant clamp-closing force, which is received at a second location (a second force-delivery point) on the clamp. In some cases, the first and second force-delivery points are at different locations (e.g., different vertical locations) on the clamp. For example, the first location in certain embodiments is further from the clamp's pivot point than is the second location, such that the clamp-opening force has mechanical advantage over the clamp-closing force. In some embodiments of this nature, a spring delivers the clamp-closing force to a location on the clamp (i.e., the “second location”) that is closer to the pivot point than is the location on the clamp where a clamp-opening force is delivered to the clamp (i.e., the “first location”) when a thermally-responsive actuator of the tool holder is actuated. This mechanical advantage situation can be desirable in that the opening force from the actuator has a greater lever arm than does the closing force from the spring. This is perhaps best appreciated with reference to
With reference to
Several embodiments provide a clamp that is operably coupled to a thermally-responsive actuator so that when heat is delivered to thermally-expandable material in a reservoir of the actuator, this material expands and generates a force that causes the clamp to move into its open position. In these embodiments, the clamp stays open as long as heat delivery is maintained. When it is desired to close the clamp, heat delivery is stopped and/or the material in the reservoir is otherwise cooled. This causes the thermally-expandable material to cool and contract, removing the clamp-opening force. Generally, the clamp in such embodiments is under a constant closing force (i.e., a force biasing the clamp toward its closed position). Thus, when the clamp-opening force is removed, the constant closing force on the clamp moves the clamp into its closed position. Various clamp-closing mechanisms can be used.
One suitable clamp-closing mechanism involves one or more springs acting on the clamp so as to urge the clamp toward its closed position. Each such spring can be mounted on the tool holder in a compressed state such that the spring bears forcibly against a surface of the clamp, thus biasing the clamp toward its closed position. Several embodiments of this nature are described and illustrated in the present disclosure.
Tool holder embodiments like those shown in
Thus, in several embodiments of the invention, at least one of the confronting walls of the tool holder is defined by a clamp, and the clamp is operably coupled to a movable body that is in communication (e.g., fluid communication) with thermally-expandable material in a reservoir of the tool holder. In these embodiments, when the thermally-expandable material is heated or cooled so as to expand or contract, resulting movement of the movable body causes the clamp to move to an open position or a closed position. This is perhaps best understood with reference to
Thus, it can be appreciated that the invention provides a class of embodiments wherein the tool holder comprises thermally-expandable material contained in a reservoir defined by rigid stationary walls of the tool holder together with at least one wall of a moveable body, such that the only moveable wall portion bounding the reservoir is defined by the moveable body. Embodiments of this nature are particularly useful.
In
The tool holder shown in
The embodiments of
Thus, the design shown in
With reference to
Referring now to
With continued reference to
In the embodiments of
In certain embodiments, the tool holder includes a plurality of thermally-responsive actuators operably coupled to a clamp of the tool holder such that simultaneous operation of the actuators moves the clamp selectively into either an open position or a closed position. In some embodiments of this nature, each actuator is operated (i.e., actuated) by resistance heating of the actuator, and the multiple actuators are wired electrically in parallel, rather than in series. This is a desirable arrangement in that all of the actuators of the clamp are heated by the substantially the same resistance R, each actuator thus being adapted to deliver substantially the same force to the clamp.
Reference is made to
The tool holder TH in various embodiments includes a clamp CL, as has been described. In some of these embodiments, the clamp itself carries (e.g., houses) one or more springs adapted for biasing the clamp toward its closed position. Exemplary embodiments of this nature are described and illustrated in the present disclosure.
Finally, a number of clamp embodiments involving a thermally-expandable material have been described. It is to be appreciated that any of the described clamp embodiments can employ one of, or both, a thermally-expandable polymer and a shape-memory alloy.
In certain preferred embodiments, the actuator A is a fast-acting mechanism. That is, it A is adapted to move the tool holder TH between its closed and open configurations relatively quickly, e.g., in about 10 seconds or less, more preferably about 5 seconds or less, and perhaps optimally about 3 seconds or less.
In certain embodiments, the tool holder includes an indicator that generates externally ascertainable information (e.g., ascertainable, preferably visibly, by a human tool holder operator) indicating whether the tool holder is in its open or closed position. Alternatively or additionally, the information generated may indicate the temperature and/or phase of the actuator's thermally-responsive component. For example, the tool holder may comprise a thermometer or another gauge adapted for measuring the temperature of thermally-expandable material in an internal reservoir of the tool holder. The indicator can be operatively couple to such a temperature gauge and adapted for generating the desired information using temperature data from the gauge as input. Alternatively or additionally, the indicator can include one or more position sensors adapted for determining whether the tool holder is in its closed configuration or its open configuration. In some cases, the optional indicator comprises an externally visible display (i.e., a display visible to an operator), such as an LED, one or more lights that turn on and off selectively, a plurality of lights of different colors that turn on and off selectively, etc. In one embodiment, the tool holder includes at least one light that is adapted to flash when the tool holder is in, or is at least moving toward, its open position. In certain embodiments, the thermally-responsive component of the actuator comprises a material that undergoes a phase change (e.g., a solid-liquid phase change) upon actuation, and the indicator is adapted to display a visual message, sound, or the like indicating which phase the material and/or whether the tool holder is in its open or closed configuration.
The clamping force of the tool holder TH can be controlled in various ways. This can be accomplished in part by selecting from different materials for use in (or as) the thermally-responsive component of the actuator A. In some cases, this can also be accomplished in part by selecting the amount of heat that is delivered to or from the thermally-responsive component during actuation. Another option for controlling the clamping force of the tool holder involves selecting from various different mechanical advantage situations, such as those described above. Further, in cases where the tool holder comprises a moveable body in fluid communication with thermally-expandable material in a reservoir of the tool holder, it may be possible to control the tool holder's clamping force by adjusting the surface area against of the moveable body against which the thermally-expandable material bears forcibly during actuation. This may be accomplished by adjusting the size of the reservoir and/or by adjusting the size of the moveable body relative to the size of the reservoir. For purposes of controlling the tool holder's clamping force, embodiments involving a platen or plate-like moveable body may be particularly advantageous, particularly where a major surface of the platen communicates with the thermally-expandable material.
While preferred embodiments of the present invention have been described, it should be understood that a variety of changes, adaptations, and modifications can be made therein without departing from the spirit of the invention and the scope of the appended claims.