Aircraft lighting has traditionally been accomplished through the use of filament based light sources such as incandescent or halogen lamps. These light sources offered relatively short life with a catastrophic failure of the filament long before the light output decayed below acceptable levels. Over the past few years the aircraft lighting industry has been migrating to the use of light emitting diodes (LEDs) as the preferred light source. Unlike filament based sources, LED light output tends to degrade slowly over time with the output falling below minimum acceptable standards before the LED fails catastrophically. The LED optical degradation factor is directly related and highly sensitive to the junction temperature of the LEDs (i.e. faster degradation at higher temperatures). LEDs of different colors/materials degrade at different rates.
Some have placed End-of-Life (EoL) Timers in their LED based aircraft lights. The EoL Timers shut down the light after a predetermined number of hours. This helps guarantee to the customer that if the light is ON it still meets the minimum performance standards. This predictive method uses many worst case factors, the most restrictive being a worst case ambient operating temperature. Using these assumptions results in a conservative (i.e. short) life estimate as the majority of lights will shut off before they are truly performing below minimum standards. Thus, there is a need for estimating and measuring degradation over time with consideration for the affects of temperature and LED selection.
The present invention provides a thermally compensated End-of-Life (EoL) timer. An example method determines if a light emitting diode (LED) is in an ON state. If the LED is determined to be in the ON state, LED junction temperature is sensed or temperature proximate to the LED is sensed and then is correlated to LED junction temperature, a fixed frequency clock signal is gated based on the sensed temperature and an accumulative counter value is recorded based on the gated clock signal. An end of life signal is generated if the accumulative counter value is at least one of equal to or greater than a predefined threshold value.
In one aspect of the invention, the LED is shut off when the end of life signal has been generated.
In one aspect of the invention, an indication that the LED is at its end of life is provided when the end of life signal has been generated.
Co-owned U.S. Pat. No. 7,391,335 is another LED monitor. It is hereby incorporated by reference.
Preferred and alternative embodiments of the present invention are described in detail below with reference to the following drawings:
The temperature sensor component 32 senses LED junction temperature directly or a temperature in proximity to a corresponding LED or group of LEDs located in the LED circuit 42. If a proximate temperature is used, the sensed temperature is correlated back to LED junction temperature. Based on the sensed temperature, the temperature sensor component 32 outputs a Pulse-Width Modulated (PWM) signal to the AND gate 34. The PWM signal is based on a predefined control curve similar to the curve shown in
For example, if the sensed temperature is above normal, the adder/accumulator component 62 retrieves the value 2 from the look-up table. This value is then applied to the clock signal. So, if under normal temperature conditions 1 hour of clock is recorded and added to the lifetime count, 2 hours is added to the lifetime counter under this high temperature condition.
Then at a block 92, the generated gate clock signal is applied to the AND gate 34, thus enabling the clock signal generated by the fixed frequency clock 30 to be applied to the lifetime counter 38. At a block 94, the lifetime counter 38 saves a cumulative counter value based on the clock signal that is received from the AND gate 34. Next at a decision block 96, the comparator 40 compares the cumulative counter value to a predefined threshold value. The predefined threshold value is typically based on a degradation curve, such as that shown in
Other predefined threshold values may be selected from the degradation curve. For example, one may select 40,000 operational hours that correlates to 25° C. if the LED(s) is going to be used in an environment that typically would not see temperatures greater than 25° C. Thus, by selecting a higher threshold value, the determination of end of life based on this process can be extended to an even greater extent.
While preferred and alternate embodiments of the invention have been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. For example, the present invention could be performed by discrete components (hardware), software algorithms executed by a microprocessor, a microcontroller or programmable logic, or a combination of hardware and software. Accordingly, the scope of the invention is not limited by the disclosure of the embodiments. Instead, the invention should be determined entirely by reference to the claims that follow.