This invention relates to ink transfer arrangements and more particularly to print pad machines for transferring images in ink from an ink source to an ink receiving surface, and is based upon Provisional Patent Application No. 62/391,518, filed 2 May 2016, incorporated herein by reference in its entirety.
This invention more particularly relates to an arrangement to generate transferrable coatings (ink deposits) for application on absorbent, non-absorbent and porous surfaces requiring decoration via the pad transfer printing process whereas more highly opaque images are required than are achievable using conventional pad transfer printing technology.
Pad transfer printing technology has been in use for many years and is a common form of printing utilized in the decoration and branding of flat and more importantly, three dimensional products. A basic patent which represents the state-of-the-art may be seen in U.S. Pat. No. 7,498,277 B2. The pad transfer printing process uses a combination of components that allow the transfer of an image from an engraved print plate (cliché) to the surface requiring decoration. These components: print plate, print pad and inks, work together in an evaporative process which allows the ink to transfer from the plate, to the print pad and finally from the print pad to the surface requiring decoration.
One prior art concept for print pad treatment includes blowing warm air on the print pad between the ink pattern pickup at the inkwell and the deposition of that ink pattern from the print pad onto the item to be printed. This blown air warmed the print pad but the inked print pad's surface temperature however, was uneven and difficult to control. This process of such blow treating of an ink laden print pad causes the evaporation of the wetted ink resulting in a single ink layer, and it also creates a non-uniformity in the disposition of the ink when the ink is applied to the printed item.
The current prior art systems are thus limited in their ability to create proper opaque images on absorbent and porous surfaces. This limitation is relative to both the maximum amount of pigment that can be contained in traditional plate etch depths and the wetted characteristics of the ink at time of transfer onto and from an inkpad.
This is best explained by understanding the theoretical capacity of the print plate to contain a volume of pigment necessary to achieve an opaque image and the result achieved when transferring wetted inks to an absorbent surface.
Pad printing inks are a mixture of resins or binders (lacking colorant), pigments (containing colorants) and solvents (lacking colorants) that comprise the ink formulation. Current art limits the maximum workable image etch depth to be in the 0.0015-0.0018 range. Depths of image etches greater than these will not support pick up and transfer of the ink by the prior art systems.
Further, wetted inks generated by current art restrictions, lack sufficient amounts of pigment to generate opaque images. In addition, these wetted ink films reconstitute themselves into a totally wet formulation at the time of transfer to the print surface resulting in absorption of the pigments and loss of opacity, in particular when printing lighter colors on darker surfaces.
It is an object of the present invention therefore, to overcome the disadvantages of the prior art.
It is a further object of the present invention to provide an ink pad transfer system which enables a multilayered or dual layered ink transfer arrangement from an etched inkwell to a printable item in a controllable manner and in a single operative step.
It is yet a further object of the present invention to provide that dual or multilayered ink to have a display layer of high opacity.
It is yet another object of the present invention to apply that dual or multilayered ink to the print item with an attachable, printable-item high-absorbency layer.
It is yet another object of the present invention to manufacture a printed item which item has a one-step multilayer ink transfer arrangement thereon.
It is still another object of the present invention to manufacture a printed item with an item-absorbable layer and a contiguous, content-different, denser, commonly applied outwardly-displayed opaque layer.
It is still another object of the present invention to manufacture a printed item with a single print-pad-delivery-motion of an item-absorbable layer and a contiguous, content-different, denser, commonly applied outwardly-displayed opaque layer.
It is still yet another object of the present invention to provide a method of manufacturing a single printed item having a multilayer ink transfer arrangement placed thereon by a single ink pad application thereagainst.
It is yet a further object of the present invention to provide a dual layer image ink transfer to an item wherein the applied dual layer images differ from one another in thermal characteristics.
It is yet a further object of the present invention to provide a dual layer image ink transfer to an item wherein the dual layer images differ from one another in opacity.
The present invention comprises a print pad machine for the controlled transfer of layered ink from a deep well ink cliché or image to a printable item. The print pad machine includes a frame and support assembly for securing an etched image print plate and thereon. The frame support assembly includes a print fixture for supporting a printable item thereon. The frame and support assembly also includes an overhead gantry to enable the slidable moving a support housing back and forth between the image print plate and the print fixture. The support housing supports the sliding lateral displacement of an ink supply cup back and forth over the image print plate. The support housing also supports the corresponding back and forth lateral displacement of a print pad between the image on the image print plate and a printable item supported on the print fixture. The printable item may be manually placed on and removed seriatim from the print fixture, or mechanically placed and removed therefrom in a further embodiment. The support housing also permits and supports the controlled up-and-down movement of the print pad over the image and onto the image print plate, and subsequently, the up-and-down movement of the print pad against a printable item supported on the print fixture to apply a particular image thereon.
The frame support assembly also includes an enclosure for a proper system control computer for operable control of the support housing and its associated mechanisms of the print pad machine by a machine operator at a first end of the print pad machine.
The frame support assembly includes heat control modules and pad position sensors connected through a proper circuit to the system control computer within the first end of the print pad machine. In a first preferred embodiment, an articulable heat sensor is arranged on the frame support assembly adjacent the print fixture at the first end of the print pad machine. The articulable heat sensor is connected through a proper circuit to the system control computer and the heat control module for monitoring the heat of the print pad as it traverses the print pad machine from ink image pickup to ink image deposition on the printable item.
In a second preferred embodiment, the print pad has a uniform array of temperature sensors therewithin, to monitor and assist in the control and regulation of the array of heating elements within the print pad. Such temperature sensors would be connected to the system control computer which regulates the temperature of the heating elements within the print pad.
The print plate or cliché contains the etched inkwell which forms the image to be transferred to the printed item. The preferred depth of the etched inkwell image in the print plate or cliché is critically between about 0.0015 to 0.0035 inches. The etched image-bearing print plate is supported on a mounting plate and may in one embodiment have a system computer controlled arrangement for heating (or chilling) the ink therewithin. The print pad has its system computer controlled arrangement of heating elements therewithin. In another preferred embodiment, the print fixture which supports the printable item has a system computer controlled heating (or chilling) element therewithin as well. The respective heating elements within the support plate, the print pad, and the print fixture are all controlled by the system central control computer in conjunction with the heat/chilling temperature control module within the frame assembly of the print pad machine.
The articulable heat sensor embodiment and the embodiment of the implanted array of heat sensors within the print pad are controlled through a proper circuit in conjunction with the system control computer and pad position sensors to monitor and regulate those respective temperatures, particularly the temperature of the print pad so as to control and treat the thermally printed ink before and upon its deposition on an item being printed.
The articulable heat sensor tracks the movement of the laterally and vertically displaceable print pad during its transition from picking up ink on the image bearing print plate through to the deposition of ink layers upon the upwardly facing surface of the to-be printed printable item. Regulation of the temperature with respect to either the articulable heat sensor or the implanted heat sensors within the print pad, and with respect to the print fixture are critical to the development of the dual or multiple contiguous layers simultaneously deposited both in and on the structure of the printable item. The system control computer tracks the time and the temperature so as to ensure compatibility and efficacy of the specific type of ink being utilized for a particular application.
The invention thus comprises a pad printing arrangement for enabling the transfer and application of multiple layers of ink from an ink source into and onto an ink receiving member, comprising: a depth enhanced, image-constrained ink well for peripherally enclosing an absorbable pattern of ink; a vertically and horizontally displaceable temperature controlled ink transfer print pad; and a temperature controlled printable item support print fixture for supporting an ink receiving printable item member, to enable multiple layers of ink to be simultaneously transferred after pickup by the print pad as one layer, and inversely and simultaneously applied as multiple layers into and onto the ink receiving printable item member on the support print fixture.
A dual layer of ink, picked up and carried by the temperature controlled print pad to a printable item supported on the print fixture in a single step. The depth enhanced ink well has a depth of at least about 0.0015 to about 0.0035 inches. The depth enhanced ink well may be heated above ambient temperature. The temperature of the print pad and the print fixture is governed by a system control computer member. The print pad has a temperature sensor monitor either within the print pad or a sensor temperature monitor trackably following any vertical and horizontal displacement of the print pad. The temperature sensor monitor regulates the temperature of the print pad through communication with the system control computer member. The print pad carries a first layer of dense opaque ink immediately on a surface thereof and a second peripherally contiguous layer of wetted printable-item absorbable ink, for absorption in and attachment on the printable item.
The invention also comprises a process for a single step for printing multiple layers of ink from a single ink source to an ink receiving member comprising providing a pre-configured, etched enhanced depth ink source, engaging a heated print pad onto and into the temperature controlled ink source to coat the curvilinear pickup surface of the temperature controlled heated print pad with a pre-configured layer of ink, dissipating volatiles from an outer surface of the pre-configured layer of ink forming a second or wetted-surface layer of pre-configured ink and a first or dense/opaque sub-surface layer of pre-configured ink on the heated print pad during movement of the print pad from ink pick up to ink deposition, applying the sub-surface layer of pre-configured ink into the ink receiving member arranged on a printable item on the support print fixture. The process includes one or more of the following steps of simultaneously applying the first dense/opaque layer of pre-configured ink on top of the second surface of ink applied into an ink receiving printable item, heating the printable item support print fixture, monitoring the temperature of the print pad during a displacement thereof from ink pickup at an ink source to ink disposition on a printable item, controlling the temperature of the heat pad through a computer connected therewith, to maintain ink temperature and volatile displacement prior to application of the ink to a printed item, following displacement of the print pad with internal heat sensors built therewithin or an articulable temperature sensor, tracking the print pad from ink pickup to ink deposit onto a printable item, thus maintaining a uniform temperature of the ink pick-up surface print pad to a range of preferably about 230 to 270 degrees F.
The invention also includes a system for applying an enhanced opaque multi-layer applique of pre-configured ink onto a receiving surface, wherein the system effects the transition of a single layer of pre-configured ink into a multiple pre-configured layer arrangement of ink, the system may comprise: a heat controlled pre-configuration of ink engaged by a temperature controlled articulable curvilinear surfaced print pad which dissipates ink volatiles in the transition from an ink pickup location to inversely applied ink deposition location as a multiple-layer or dual layer, pre-configured ink pattern on the receiving member supported on a print fixture, wherein a print pad-outer-ink layer, which is a volatile (wetted) layer, and a print pad-dense-inner-layer inversely become respectively, the dense, opaque receiving-member outer-layer and the innermost wetted layer when they both are applied to the surface of the receiving member at a ink deposition location. The temperature of the print pad is maintained at a preferred range of about 230 to about 270 degrees F. The system may include an articulable temperature sensing monitor which follows the print pad from its ink pick up location to the print pad's ink deposition location. The system may alternatively include a print pad ink-surface sensor built into the sub surface of the curvilinear print pad. The sensing monitor arrangements provide temperature feedback to a system computer at adjust the temperature of the print pad within the desired range. The print fixture supporting an item to be printed, may also be heated by a heating arrangement therewith. The system computer controls the temperature of the print fixture within the desired range. The invention also includes a textile garment receiving material with a multiple-layer concomitantly-applied ink display pattern therewith, the multiple layer ink display pattern arranged so as to provide an opaque product indicia, the multiple-layer concomitantly-applied display pattern comprised of: a wetted layer of a pre-configured pattern of ink absorbed into the textile garment receiving material; and an opaque, concomitantly applied dense layer of ink corresponding to the pre-configured pattern of ink, overlaying the wetted layer absorbed into the textile garment receiving material. The applied multiple-layer pattern of ink is applied to the garment at a temperature of about 220 to 270 degrees F. The applied multiple-layer of ink is about 0.0022 to about 0.0030 inches thick. The textile garment as recited in claim 24, wherein the applied multiple-layer pattern of ink is applied to the garment at a temperature of about 220 to 260 degrees F. The applied multiple-layer of ink is about 0.0022 to about 0.0030 inches thick. The applied multiple-layers of ink are of different consistencies from one another. The textile garment may be supported on a heated printable item support which is heated to a temperature of about 220 to 260 degrees F. The opaque layer of ink is applied to the garment is a surface layer.
The objects and advantages of the present invention will become more apparent, when viewed in conjunction with the following drawings, in which:
Referring now to the drawings in detail and particularly to
The frame and support assembly 12 also includes an overhead gantry 20, best represented in
In a further embodiment of the print pad 30 itself, which includes the convex ink receiving portion 31 being formed of a thermochromic silicon material which changes color according to the temperature of the print pad 30. For example, that convex ink receiving portion 31 of the print pad 30 may turn from a dark blue color to a beige color to visually indicate that the desired temperature of the ink bearing surface has been reached.
The frame support assembly 12 also includes an enclosure 36 for a proper system control computer 38 for operable control of the support housing 22 and its associated mechanisms of the print pad machine 10 by a machine operator (not shown), typically operating at a first end of the print pad machine 10, represented primarily in
The frame support assembly 12 includes temperature (heating or chilling) control modules 39 and pad position sensors 40 connected through a proper circuit 42 to the system control computer within the first end of the print pad machine, as shown in
In a second preferred embodiment, the print pad 30 has a uniform array of temperature sensors 33 within the surface 31 of the print pad 30, to monitor and assist in the control and regulation of an array of heating elements 60 within the print pad 30, as represented in
The print plate or cliché represented in
The print pad 30 has its system computer temperature-controlled heating element 60 therewithin, as represented in
The articulable heat sensor 44 embodiment and the embodiment of the inner implanted array of heat sensors 33 is within the print pad 30 is controlled through a proper circuit 42 in conjunction with the system control computer 38 and pad position sensors 40 represented in
The articulable heat sensor 44 is controllably programmed to track the transitory movement of the laterally and vertically displaceable print pad 30 during its transition from the picking up of ink 47 from the etched image bearing print plate 14 through to the concomitant deposition of multiple ink layers 50 and 52 upon the upwardly facing surface of the to-be-printed, being printable item 18, as represented in
Number | Date | Country | |
---|---|---|---|
62391518 | May 2016 | US |