This application relates to a valve that provides precise movement of a valve pin relative to a valve seat through the use of materials having distinct coefficients of thermal expansion.
Valves are utilized in any number of applications to control the flow of fluids from one location to another. In a typical valve, a valve seat receives a valve pin, and when the valve pin is seated in the seat, fluid flow is blocked from an upstream location to a downstream location. The valve pin is moved relative to the valve seat to allow fluid flow.
Typically, some actuator is provided to move the valve pin. The use of an actuator requires additional components, and is somewhat expensive. Moreover, the actuator may not provide precise movement, or adequate sealing.
It has been proposed to utilize a material which expands or contracts with heating and cooling to form the valve pin. In such valves, the valve pin moves when heated to allow flow of fluid.
A valve has a housing including a valve seat. A valve pin is supported by a support shell. The support shell and the valve pin have distinct coefficients of thermal expansion such that when exposed to a temperature change, the support shell moves differently than the valve pin. In this way, the valve pin can be caused to move toward and away from the valve seat to allow operation of the valve.
These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
A valve 20 is shown in
The valve pin 22 is coupled at 28 to a support shell 30. The support shell 30 is received within a bore 31, and coupled at 32 to the housing 34. The coupling at 28 and 32 may be performed by welding or other techniques known in the art. The support shell 30 is formed of a material having a different coefficient of thermal expansion than the valve pin 22. The difference in the coefficient of thermal expansion may be selected such that the coefficient of one of the materials will be at least twice the coefficient of the other. This will provide significant movement that can be achieved in a relatively short period of time to provide better control over the amount of a sample fluid, as an example.
In one embodiment, the support shell 30 and the housing 34 are formed of a stainless steel, and in particular stainless steel 304. In that same embodiment, the valve pin 22 may be formed of a tungsten. With such materials, the stainless steel will expand with a coefficient of thermal expansion that is three or four times the coefficient of the tungsten.
While the support shell 30 is shown in
When exposed to heat, the support shell 30 will expand more than the valve pin 22. Since the two are connected together, this will cause the valve pin 22 to move to the left as shown in
The present invention is capable of providing very precise movement of the valve pin 22, such that extremely small amounts of fluid can be metered between port 36 to port 38. The valve 20 is particularly well suited for applications in which it is desirable to gather a small metered quantity of a gas.
While the valve pin 22 is described as having the lower coefficient of thermal expansion relative to the support shell 30 or housing 34, the opposite could be utilized. In addition, while heating is disclosed as actuating the valve 20, in fact cooling can be used to actuate the valve 20 in other embodiments. For example, depending upon the materials selected for the valve pin 22 and the support shell 30, the valve 20 can be configured to passively open or close responsive to an increase or decrease temperature.
In the embodiment shown in
A frit 70, which may be formed of a powdered sintered metal, allows a controlled amount of leakage across its surface area in a pre-determined period of time. In this embodiment, a very precise amount of gas may be sampled by simply actuating the valve 51 to pull the valve pin head 48 away from the opening 54, and while a vacuum is applied. This will sample a very precise amount of the fluid flowing between inlet 56 to outlet 58. The sample is drawn across the frit 70 and into connection 62.
In the embodiments as depicted in
In one application, an embodiment of the valve 20 of
In many valve applications, both the valve pin and the valve seat are polished after formation. However, it is preferred in this embodiment that only the valve pin is polished, with the valve seat left unpolished. Then, during initial run-in, the valve will form the actual contour of the valve seat such that a very tight and precise seat will be provided that will block almost all leakage.
The valves 20 and 51 of
Although embodiments of this invention have been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.