This invention generally relates to diamond bonded materials and, more specifically, diamond bonded materials and compacts formed therefrom that are specially designed to provide improved thermal stability when compared to conventional polycrystalline diamond materials.
Polycrystalline diamond (PCD) materials and PCD elements formed therefrom are well known in the art. Conventional PCD is formed by combining diamond grains with a suitable solvent catalyst material to form a mixture. The mixture is subjected to processing conditions of extremely high pressure/high temperature, where the solvent catalyst material promotes desired intercrystalline diamond-to-diamond bonding between the grains, thereby forming a PCD structure. The resulting PCD structure produces enhanced properties of wear resistance and hardness, making PCD materials extremely useful in aggressive wear and cutting applications where high levels of wear resistance and hardness are desired.
Solvent catalyst materials that are typically used for forming conventional PCD include metals from Group VIII of the Periodic table, with cobalt (Co) being the most common. Conventional PCD can comprise from 85 to 95% by volume diamond and a remaining amount of the solvent catalyst material. The solvent catalyst material is present in the microstructure of the PCD material within interstices that exist between the bonded together diamond grains.
A problem known to exist with such conventional PCD materials is thermal degradation due to differential thermal expansion characteristics between the interstitial solvent catalyst material and the intercrystalline bonded diamond. Such differential thermal expansion is known to occur at temperatures of about 400° C., causing ruptures to occur in the diamond-to-diamond bonding, and resulting in the formation of cracks and chips in the PCD structure.
Another problem known to exist with conventional PCD materials is also related to the presence of the solvent catalyst material in the interstitial regions and the adherence of the solvent catalyst to the diamond crystals to cause another form of thermal degradation. Specifically, the solvent catalyst material is known to cause an undesired catalyzed phase transformation in diamond (converting it to carbon monoxide, carbon dioxide, or graphite) with increasing temperature, thereby limiting practical use of the PCD material to about 750° C.
Attempts at addressing such unwanted forms of thermal degradation in PCD are known in the art. Generally, these attempts have involved the formation of a PCD body having an improved degree of thermal stability when compared to the conventional PCD material discussed above. One known technique of producing a thermally stable PCD body involves at least a two-stage process of first forming a conventional sintered PCD body, by combining diamond grains and a cobalt solvent catalyst material and subjecting the same to high pressure/high temperature process, and then removing the solvent catalyst material therefrom.
This method, which is fairly time consuming, produces a resulting PCD body that is substantially free of the solvent catalyst material, and is therefore promoted as providing a PCD body having improved thermal stability. However, the resulting thermally stable PCD body typically does not include a metallic substrate attached thereto by solvent catalyst infiltration from such substrate due to the solvent catalyst removal process. The thermally stable PCD body also has a coefficient of thermal expansion that is sufficiently different from that of conventional substrate materials (such as WC—Co and the like) that are typically infiltrated or otherwise attached to the PCD body to provide a PCD compact that adapts the PCD body for use in many desirable applications. This difference in thermal expansion between the thermally stable PCD body and the substrate, and the poor wetability of the thermally stable PCD body diamond surface makes it very difficult to bond the thermally stable PCD body to conventionally used substrates, thereby requiring that the PCD body itself be attached or mounted directly to a device for use.
However, since such conventional thermally stable PCD body is devoid of a metallic substrate, it cannot (e.g., when configured for use as a drill bit cutter) be attached to a drill bit by conventional brazing process. The use of such thermally stable PCD body in this particular application necessitates that the PCD body itself be mounted to the drill bit by mechanical or interference fit during manufacturing of the drill bit, which is labor intensive, time consuming, and which does not provide a most secure method of attachment.
Additionally, because such conventional thermally stable PCD body no longer includes the solvent catalyst material, it is known to be relatively brittle and have poor impact strength, thereby limiting its use to less extreme or severe applications and making such thermally stable PCD bodies generally unsuited for use in aggressive applications such as subterranean drilling and the like.
It is, therefore, desired that a diamond material be developed that has improved thermal stability when compared to conventional PCD materials. It is also desired that a diamond compact be developed that includes a thermally stable diamond material bonded to a suitable substrate to facilitate attachment of the compact to an application device by conventional method such as welding or brazing and the like. It is further desired that such thermally stable diamond material and compact formed therefrom have improved properties of hardness/toughness and impact strength when compared to conventional thermally stable PCD material described above, and PCD compacts formed therefrom. It is further desired that such a product can be manufactured at reasonable cost without requiring excessive manufacturing times and without the use of exotic materials or techniques.
Thermally stable diamond bonded materials of this invention generally comprise a diamond bonded body including a thermally stable region and a PCD region. Thermally stable diamond bonded materials of this invention may additionally comprise a substrate attached or integrally joined to the diamond bonded body, thereby providing a thermally stable diamond bonded compact.
The diamond body thermally stable region extends a distance below a surface, e.g., a working surface, of the diamond bonded body, and has a material microstructure comprising a plurality of diamond grains bonded together by a reaction with a reactant material. The diamond body thermally stable region can be formed by placing the reactant material adjacent a region of diamond grains, or by mixing the reactant material together with the diamond grains in a particular region, to become thermally stable during high pressure/high temperature processing.
The PCD region extends a depth within the diamond body from the thermally stable region and has a material microstructure comprising intercrystalline bonded together diamond grains and a metal solvent catalyst disposed within interstitial regions between the bonded together diamond grains. The PCD region can be formed by subjecting a region of diamond grains in the body distinct from the thermally stable region to infiltration by a suitable infiltrant, e.g., a metal solvent catalyst, that may be provided for example from a substrate used for attaching to the diamond body to form a thermally stable diamond bonded compact.
Reactant materials useful for forming thermally stable diamond bonded materials of this invention include those that are capable of reacting with the diamond grains at a temperature that is below the melting temperature of the infiltrant used to form the PCD region, thereby permitting the formation of the diamond body comprising such different thermally stable and PCD regions during a single press operation. In an example embodiment, thermally stable diamond bonded compacts of this invention are prepared by placing an assembly comprising the volume of diamond grains, reactant material, infiltrant, and substrate in a high pressure/high temperature device, and subjecting the assembly to a first temperature and pressure condition to facilitate melting, infiltration and reaction of the reactant material with the region of the diamond grains targeted to become thermally stable. Without removing the assembly from the device, it is then subjected to a second temperature condition to cause the infiltration of the infiltrant into the diamond grains within a second targeted region of the body to facilitate diamond bonding to form PCD. During this second temperature condition, the so-formed diamond body is also bonded or joined to the substrate, thereby forming the compact.
Thermally stable diamond bonded materials and compacts formed therefrom according to principles of this invention have improved thermal stability when compared to conventional PCD materials, and include a suitable substrate to facilitate attachment of the compact to an application device by conventional method such as welding or brazing and the like. Thermally stable diamond materials and compacts formed therefrom have improved properties of hardness/toughness and impact strength when compared to conventional thermally stable PCD material described above, and PCD compacts formed therefrom.
These and other features and advantages of the present invention will be appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Thermally stable diamond bonded materials and compacts of this invention are specifically engineered having a diamond bonded body comprising a thermally stable diamond bonded region, thereby providing improved thermal stability when compared to conventional PCD materials. As used herein, the term PCD is used to refer to polycrystalline diamond that has been formed, at high pressure/high temperature (HPHT) conditions, through the use of a metal solvent catalyst, such as those metals included in Group VIII of the Periodic table. The thermally stable diamond bonded region in diamond bonded bodies of this invention, is not referred to as being PCD because, unlike conventional PCD and thermally stable PCD, it is not formed by the removal of a metal solvent catalyst.
Thermally stable diamond bonded materials and compacts of this invention also include a region comprising conventional PCD, i.e., intercrystalline bonded diamond formed using a metal solvent catalyst, thereby providing properties of hardness/toughness and impact strength that are superior to conventional thermally stable PCD materials that have been rendered thermally stable by having substantially all of the solvent catalyst material removed. Such PCD region also enables thermally stable diamond bonded materials of this invention to be permanently attached to a substrate by virtue of the presence of such metal solvent catalyst, thereby enabling thermally stable diamond bonded compacts of this invention to be attached to cutting or wear devices, e.g., drill bits when the diamond compact is configured as a cutter, by conventional means such as by brazing and the like.
Thermally stable diamond bonded materials and compacts of this invention are formed during a single HPHT process to produce a desired thermally stable diamond bonded material in one region of the body, while also providing PCD in another region to provide a permanent attachment between the diamond bonded body and a desired substrate.
Diamond grains useful for forming thermally stable diamond bonded materials of this invention include synthetic diamond powders having an average diameter grain size in the range of from submicrometer in size to 100 micrometers, and more preferably in the range of from about 5 to 80 micrometers. The diamond powder can contain grains having a mono or multi-modal size distribution. In an example embodiment, the diamond powder has an average particle grain sized of approximately 20 micrometers. In the event that diamond powders are used having differently sized grains, the diamond grains are mixed together by conventional process, such as by ball or attrittor milling for as much time as necessary to ensure good uniform distribution.
The diamond grain powder is preferably cleaned, to enhance the sinterability of the powder by treatment at high temperature, in a vacuum or reducing atmosphere. The diamond powder mixture is loaded into a desired container for placement within a suitable HPHT consolidation and sintering device. In an example embodiment where the diamond bonded body is to be attached to a substrate, a suitable substrate material is disposed within the consolidation and sintering device adjacent the diamond powder mixture.
In a preferred embodiment, the substrate is provided in a preformed state and includes a metal solvent catalyst that is capable of infiltrating into the adjacent diamond powder mixture during processing. Suitable metal solvent catalyst materials include those metals selected from Group VIII elements of the Periodic table. A particularly preferred metal solvent catalyst is cobalt (Co).
The substrate material can be selected from the group of materials conventionally used as substrate materials for forming conventional PCD compacts. In a preferred embodiment, the substrate material comprises cemented tungsten carbide (WC—Co).
It is desired that a predetermined region of the diamond bonded body formed during the consolidation and sintering process become thermally stable. It is further desired that a predetermined region of the diamond body formed during the same process also form a desired attachment with the substrate. In an example embodiment, the predetermined region to become thermally stable is one that will form the wear or cutting surface of the final product.
In a first invention embodiment, a suitable first or initial stage infiltrant is disposed adjacent a surface portion of the predetermined region of the diamond powder to become thermally stable. The first infiltrant can be selected from those materials having a melting temperature that is below the melting temperature of the metal solvent catalyst in the substrate, that are capable of infiltrating the diamond powder mixture upon melting during processing, and that are capable of bonding together the diamond grains. In an example embodiment, the first infiltrant actually participates in the bonding process, forming a reaction product that bonds the diamond grains together.
In a preferred first embodiment, the first infiltrant is a silicon material that is provided in a form suitable for placement and use within the consolidation and sintering device. In an example embodiment, the silicon material can be provided in the form of a silicon metal foil or powder, or in the form of a compacted green powder. The first infiltrant is positioned within the device adjacent the surface of the predetermined region of the diamond powder to become thermally stable. In an example embodiment, the first infiltrant is positioned adjacent the diamond powder during assembly of the container prior to its placement into the HPHT consolidation and sintering device.
The device is then activated to subject the container to a desired HPHT condition to effect consolidation and sintering. In an example embodiment, the device is controlled so that the container is subjected to a HPHT process where the applied pressure and temperature is first held at a suitable intermediate level for a period of time sufficient to melt the first infiltrant, e.g., a silicon material, and allow the first infiltrant to infiltrate into the diamond powder mixture and react with and bond together the diamond grains. In such example embodiment, the intermediate level can be at a pressure of approximately 5500 MPa, and at a temperature of from 1150° C. to 1300° C. It is to be understood that the particular intermediate pressure and temperatures presented above are based on using a silicon metal first infiltrant and a specific type and volume of diamond powder. Accordingly, pressures and/or temperatures other than those noted above may be useful for other types of infiltrants and/or other types and volumes of diamond powder.
The use of temperatures below this range may not be well suited for the intermediate level, when silicon metal is chosen as the first infiltrant, because at lower temperatures the silicon metal may not melt, and thus not infiltrate into the diamond mixture as desired. Using a temperature above this range may not be desired for the intermediate level because, although the first infiltrant will melt and infiltrate into the diamond powder mixture, such higher temperature may also cause a second stage infiltrant, i.e., the metal solvent catalyst in the substrate (e.g., cobalt), to melt and infiltrate the diamond grains at the same time.
Infiltration of the metal solvent catalyst prior to or at the same time as infiltration of the first infiltrant, e.g., silicon metal, is not desired because it can initiate unwanted conventional diamond sintering throughout the diamond body. Such conventional diamond sintering operates to inhibit infiltration into the diamond mixture by the first stage infiltrant, thereby preventing reaction of the first infiltrant with the diamond grains to preclude formation of the desired thermally stable diamond region.
During this intermediate stage of processing, the first infiltrant melts and infiltrates into the adjacent surface of the diamond mixture. In the case where the first infiltrant is a silicon metal, it then reacts with the diamond grains to form silicon carbide (SiC) between the diamond particles in the adjacent region of the compact. In such example embodiment, where silicon is provided as the selected first infiltrant, it is desired that the intermediate level of processing be held for a period of time of from 2 to 20 minutes. This time period must be sufficient to melt all of the silicon, allow the melted silicon to infiltrate the diamond powder, and allow the infiltrated silicon to react with the diamond to form the desired SiC, thereby bonding the diamond particles together. It is desired that substantially all of the silicon infiltrant be reacted, as silicon metal is known to be brittle and any residual unreacted silicon metal in the diamond can have a deleterious effect on the final properties of the resulting thermally stable diamond bonded compact.
While particular intermediate level pressures, temperatures and times have been provided, it is to be understood that one or more of these process variables may change depending on such factors as the type and amount of infiltrant and/or diamond powder that is selected. A key point, however, is that the temperature for the intermediate level be below the melting temperature of the second stage infiltrant, i.e., the metal solvent catalyst in the substrate, to permit the first stage infiltrant to infiltrate and react with the diamond powder prior to melting and infiltration of the metal solvent catalyst.
In an example embodiment, where the thermally stable diamond bonded compact being formed according to this invention will be embodied as a diamond cutter, the first infiltrant is provided in the form of a silicon metal foil that is positioned adjacent what will be a working or cutting surface of the to-be-formed diamond bonded body, and the silicon infiltrates the diamond body a desired depth from the working surface, thereby providing a desired thermally stable diamond bonded region extending the desired depth from the working surface. In such example embodiment, the silicon may infiltrate the diamond powder a depth from the working surface of from 1 to 1,000 micrometers, and preferably at least 10 micrometers. In an example embodiment, the silicon may infiltrate the diamond powder a depth from the working surface of from about 20 to 500 micrometers.
A key feature of thermally stable diamond bonded materials and compacts of this invention is that the thermally stable region of the diamond body is formed in a single process step without the presence or assistance of a conventional metal solvent catalyst, such as cobalt, and without the need for subsequent processing to remove the metal solvent catalyst. Rather, the thermally stable region is formed by the infiltration and reaction of a first stage infiltrant, such as silicon, into the diamond powder during HPHT processing to produce a bonded reaction product between the diamond grains.
After the desired time has passed during the intermediate level, the consolidation and sintering process is continued by increasing the temperature to a range of from about 1350° C. to 1500° C. The pressure for this secondary processing step is preferably maintained at the same level as noted above for the intermediate level. At this temperature, the second stage infiltrant in the form of the metal solvent catalyst component in the substrate melts and infiltrates into an adjacent region of the diamond powder mixture, thereby sintering the adjacent diamond grains in this region by conventional method to form conventional PCD in this region, and forming a desired attachment or bond between the PCD region of the diamond bonded body and the substrate.
While a particular temperature range for this secondary phase of processing has been provided, it is to be understood that such secondary processing temperature can and will vary depending on such factors as the type and/or amount of metal solvent catalyst used in the substrate, as well as the type and/or amount of diamond powder used to form the diamond bonded body.
In the example embodiment discussed above, where the diamond bonded compact is configured for use as a cutter, the region of the compact body that is secondarily infiltrated with the metal solvent catalyst component from the substrate is positioned adjacent a surface of the diamond mixture opposite from the working surface, and it is desired that the metal solvent catalyst infiltration depth be sufficient to provide a secure bonded attachment between the substrate and diamond bonded body.
During this secondary or final phase of the HPHT processing, the metal solvent catalyst, e.g., cobalt, infiltrates between the diamond grains in the region of the diamond powder adjacent the substrate to provide highly localized catalysis for the rapid creation of strong bonds between the diamond grains or crystals, i.e., producing intercrystalline bonded diamond or conventional PCD. As these bonds are formed, the cobalt moves into and remains disposed within interstitial regions between the intercrystalline bonded diamond.
While there may be some possibility that, during this secondary phase of processing, the metal solvent catalyst from the substrate may infiltrate into the diamond powder to a point where it passes into the thermally stable region of the diamond bonded body, there is no indication that reactions between the metal solvent catalyst and any unreacted infiltrant, e.g., silicon, or reactions between the metal solvent catalyst and the infiltrant reaction product, e.g., silicon carbide, takes place or if it does has had any deleterious effect on the final properties of the diamond bonded body.
As noted above, when the first stage infiltrant selected for forming the thermal stable diamond region is silicon, the infiltrated silicone forms a reaction phase with the diamond grains, crystals or particles in the diamond bonded phase according to the reaction:
Si+C=SiC
This reaction between silicon and carbon present in the diamond grains, crystals or particles is desired as the reaction product; namely, silicon carbide is a ceramic material that has a coefficient of thermal expansion that is similar to diamond. At the interface within the diamond bonded body between the thermally stable diamond bonded region and the PCD region, where both cobalt and silicon carbide may be present, reactions such as the following may take place: Co+2SiC=CoSi2+2C. This, however, is not a concern and may be advantageous as CoSi2 is also known to be a thermally stable compound.
Additionally, if the Co and SiC do not end up reacting together at the boundary or interface between the two regions, the presence of the silicon carbide adjacent the PCD region operates to minimize or dilute the otherwise large difference in the coefficient of thermal expansion that would otherwise exist between the intercrystalline diamond and the cobalt phases in PCD region. Thus, the formation of silicon carbide within the silicon-infiltrated region of the diamond bonded body operates to minimize the development of thermal stress in that region and at the boundary between the Si and Co infiltrated regions, thereby improving the overall thermal stability of the entire diamond bonded body.
As noted above, the first stage infiltrant operates to provide a thermally stable diamond bonded region through the formation of a reaction product that actually forms a bond with diamond crystals. While a certain amount of diamond-to-diamond bonding can also occur within this thermally stable diamond region without the benefit of the second stage solvent-catalyst infiltrant, it is theorized that such direct diamond-to-diamond bonding represents a minority of the diamond bonding that occurs in this region. In an example embodiment, where the first stage infiltrant being used is silicon, it is believed that greater than about 75 percent, and more preferably 85 percent or more, of the diamond bonding occurring in the thermally stable region is provided by reaction of the diamond grains or particles with the first stage infiltrant.
While ideally, it is desired that all of the diamond bonding in the thermally stable region be provided by reaction with the first stage infiltrant, any amount of diamond-to-diamond bonding occurring in the thermally stable region occurs without the presence or use of a metal solvent catalyst, thus the resulting diamond bonded region is one having a degree of thermal stability that is superior to conventional PCD.
It is to be understood that the amount of the first stage infiltrant used during processing can and will vary depending on such factors as the size of the diamond grains that are used, the volume of diamond grains and region/volume of desired thermal stability, the amount and/or type of the first stage infiltrant material itself, in addition to the particular application for the resulting diamond bonded compact. Additionally, the amount of the first stage infiltrant used must be precisely determined for the purpose of infiltrating and reacting with a desired volume of the diamond powder to provide a desired thermally stable diamond region, e.g., a desired thermally stable diamond depth.
For example, using an excessive amount of the first stage infiltrant, e.g., silicon, to react with the diamond powder during intermediate stage processing can result in excess infiltrant being present during secondary or final processing when the second stage metal solvent catalyst infiltrant e.g., cobalt, in the substrates melts, infiltrates, and facilitates conventional diamond sintering adjacent the substrate. Excess first stage infiltrant present during this secondary phase of processing can remain unreacted as a brittle silicon phase or can react with the metal solvent catalyst material to form cobalt disilicide (CoSi2) at the boundary between the two regions.
In addition to silicon, the thermally stable region of first embodiment diamond bonded materials and compacts of this invention can be formed from other types of first stage materials. Such materials must be capable of melting or of reacting with diamond in the solid state during processing of the diamond bonded materials at a temperature that is below the melting temperature of the metal solvent catalyst component in the metallic substrate. Additionally, such first stage material must, upon reacting with the diamond, form a compound having a coefficient of thermal expansion that is relatively closer to that of diamond than that of the metal solvent catalyst. It is also desired that the compound formed by reaction with diamond be capable of bonding with the diamond and must possess significantly high-strength characteristics.
In an example embodiment, the source of silicon that is used for initial infiltration is provided in the form of a silicon metal disk. As noted above, the amount of silicon that is used can influence the depth of infiltration as well as the resulting types of silicon compounds that can be formed. In an example embodiment, where the volume of the diamond bonded body to become thermally stable is within the range of from about 50 to 400 cubic mm, it is desired that the amount of silicon infiltrant be in the range of from about 10 to 80 milligrams. In a preferred embodiment, where the desired silicon infiltration volume is approximately 100 cubic mm, the amount of silicon infiltrant to be used is approximately 23 milligrams.
A second embodiment thermally stable diamond bonded compact of this invention can be formed by mixing diamond powder together with a preselected material capable of participating in solid state reactions with the diamond powder. Thus, unlike the first embodiment described above, the preselected materials useful for forming the thermally stable region in this second embodiment is provided in situ with the diamond powder and is not positioned adjacent a surface of the diamond powder as an initial infiltrant.
Suitable preselected materials useful for forming second embodiment thermally stable diamond bonded compacts include those compounds or materials capable of forming a bond with the diamond grains, have a coefficient of thermal expansion that is relatively closer to that of the diamond grains than that of a conventional metal solvent catalyst, that is capable of reacting with the diamond at a temperature that is below that of the melting temperature of the metal solvent catalyst contained in the substrate, and that is capable of forming an attachment with an adjacent diamond region in the diamond body.
Example preselected materials useful for forming the second invention embodiment include ceramic materials such as TiC, Al2O3, Si3N4 and the like. These ceramic materials are known to bond with the diamond grains to form a diamond-ceramic microstructure. In an example embodiment, the volume percent of diamond grains in this mixture is in the range of from about 50 to 95 volume percent. Again, a key feature of this second embodiment of the invention is the ability to form both a thermally stable diamond region and a conventional PCD region in the diamond body during a single HPHT process.
Since the preselected material used to bond the diamond grains together in this second embodiment is mixed together with the diamond grains, the solid state reaction of these materials during HPHT processing operates to form thermally stable diamond within the entire region of the diamond body that was formally occupied by the diamond mixture. In other words, conventional PCD is not formed within this region.
To accommodate attachment of a desired substrate to the thermally stable region of the diamond body, second embodiments of this invention further include use of a green-state diamond grain material disposed adjacent the diamond grain mixture. The green-state diamond grain material may or may not include a metal solvent catalyst. Additionally the green-state diamond grain material can be provided in the form of a single layer of material or in the form of multiple layers of materials. Each layer may include the same or different diamond grain size, diamond volume, and may or may not include the use of a solvent catalyst. In an example embodiment, the green-state diamond grain material can be provided in the form of one or more layers of conventional diamond tape.
Thus, second embodiment thermally stable diamond compacts of this invention are formed by mixing together diamond grains, as described above, with the desired preselected material for reacting with the diamond grains as noted above. The mixture can be cleaned in the manner noted above and loaded into a desired container for placement within the HPHT device. The green-state diamond grain-containing material is positioned adjacent the mixture. In an example embodiment where the diamond bonded body is to be attached to a substrate, a substrate material as noted above is positioned adjacent the green-state diamond grain-containing material.
The container is placed in the HPHT device and the device is activated to affect consolidation and sintering. Like the process described above of forming the first invention embodiment, the device is controlled so that the container and its contents is subjected to a HPHT condition wherein the pressure and/or temperature is first held at a suitable intermediate level for a period of time sufficient to cause the desired solid state reaction to occur within the mixture of diamond grains and the preselected material. Subsequently, the HPHT condition is changed to a different pressure and/or temperature. At this subsequent HPHT condition, any solvent catalyst in the green-state diamond grain material melts and facilitates diamond-diamond bonding to form conventional PCD within this region. Also, the two adjacent diamond regions will become attached to one another, and the solvent catalyst in the substrate will melt and infiltrate the adjacent green-state material to form a desired attachment or bond between the PCD region of the diamond body and the substrate.
In this second embodiment, the intermediate HPHT process conditions are such that will cause the diamond grains and preselected material mixture to undergo solid state reactions to form a thermally stable diamond-ceramic phase. The specific pressure and temperature for this intermediate HPHT condition can and will vary depending on the particular nature of the preselected material that is used to react with the diamond grains. Again, a key processing point here is that the temperature at this intermediate HPHT condition be below the melting point of any solvent catalyst present in the adjacent green-state diamond material, and present in the substrate, to ensure formation of the thermally stable diamond region prior to the melting and infiltration of the solvent catalyst.
In an example embodiment where the preselected material is Al2O3, and the diamond powder used is the same as that described above for the first invention embodiment, the intermediate HPHT process can be conducted at a pressure of approximately 5500 MPa, and at a temperature of from 1250° C. to 1300° C. The intermediate level of HPHT processing can be held for a period of time of from about 10 to 60 minutes to facilitate plastic deformation and filling of the voids between the diamond grains by the ceramic powder and initiation of solid state reactions of the ceramic with the diamond particles. Again, it is to be understood that the intermediate HPHT conditions provided above are based on using Al2O3 as the preselected material and a specific size and volume of diamond powder. Accordingly, pressure and/or temperatures other than those noted above may be useful for other types of preselected materials and/or other types and/or volumes of diamond powder.
Once the intermediate level HPHT processing has been completed, the HPHT process is changed to facilitate further consolidation and sintering by increasing the temperature to a point where any solvent catalyst present in the green-state material region, and the solvent catalyst in the substrate, melts. When the solvent catalyst is cobalt, the temperature is increased to about 1350° C. to 1500° C. The pressure at this subsequent HPHT process condition is maintained at the same level as noted above for the intermediate HPHT process condition.
As noted above, at this temperature all or a portion of the green-state diamond material becomes PCD. In the event that the green-state diamond material itself includes a solvent catalyst, then the entire region occupied by the green-state diamond becomes PCD. If the green-state diamond material does not include a solvent catalyst, then at least the portion of the region occupied by the green-state diamond adjacent the substrate becomes PCD by virtue of solvent catalyst infiltration from the substrate. In either case, at this temperature solvent catalyst from the substrate infiltrates the adjacent portion of the green-state material and the substrate becomes attached or bonded thereto.
In this embodiment where a ceramic material is used as a second phase binder material between the diamond grains forming the thermally stable material, a further HPHT process step at higher temperatures and/or pressures than the previous stages may be desirable to encourage the formation of good sintering of the ceramic phase and reaction with the diamond. In the example embodiment where the preselected material is Al2O3, the final HPHT process may be conducted at a pressure of approximately 5500 MPa and at a temperature of 1500° C. to 1700° C.
A feature of thermally stable diamond bonded material prepared according to this second invention embodiment is that, like the first invention embodiment, it can be formed during a single HPHT process, i.e., unlike conventional thermally stable diamond that requires the multi-step process of forming conventional PCD, and then removing the solvent catalyst therefrom. Additionally, like the first invention embodiment, the second invention embodiment of this invention comprises a thermally stable diamond bonded material generally comprising a thermally stable diamond bonded region, a conventional PCD region, and a substrate attached thereto to facilitate attachment of the diamond body to a desired device by conventional means such as brazing at the like.
In each invention embodiment, the thermally stable region 29 has a material microstructure comprising primarily diamond crystals bonded together by the reaction product of the initial infiltrant or preselected material, and to a lesser extent diamond-diamond bonded crystals, as best illustrated in
The diamond bonded body 26 includes another region 31, a conventional PCD region that extends a depth from the thermally stable region 29 through the body 26 to an interface 32 between the diamond bonded body and the substrate 28. In the first embodiment of the invention, this conventional PCD region 31 is formed by infiltration of the solvent catalyst into a portion of the diamond grains powder that is adjacent the substrate. In the second embodiment of the invention, this conventional PCD region 31 is formed within the green-state diamond grain material either by the presence of solvent catalyst therein or by infiltration of the solvent catalyst from the substrate.
In a second embodiment, where the PCD region 31 is formed by sintering of the green-state diamond grain material, the amount of solvent catalyst material may also increase moving towards the substrate due to solvent catalyst infiltration into the adjacent portion of the green-state diamond grain material during second phase HPHT processing.
Substrates useful for forming thermally stable diamond bonded materials and compacts of this invention can be selected from the same general types of materials conventionally used to form substrates for conventional PCD materials, including carbides, nitrides, carbonitrides, cermet materials, and mixtures thereof A key feature is that the substrate includes a metal solvent catalyst that melts at a temperature above the melting or reaction temperature of the matrix material mixed with the diamond powder used to form the thermally stable layer. The purpose of the metal solvent catalyst in the substrate is to melt and infiltrate into the adjacent diamond grain region of the diamond body to both facilitate conventional diamond-to-diamond intercrystalline bonding forming PCD, and to form a secure attachment between the diamond bonded body and the substrate. In an example embodiment, the substrate can be formed from cemented tungsten carbide (WC—Co).
The above-described thermally stable diamond bonded materials and compacts formed therefrom will be better understood with reference to the following examples:
Synthetic diamond powders having an average grain size of approximately 2-50 micrometers were mixed together for a period of approximately 2-6 hours by ball milling. The resulting mixture was cleaned by heating to a temperature in excess of 850° C. under vacuum. The mixture was loaded into a refractory metal container with a first stage infiltrant in the form of a silicon metal disk adjacent to a predetermined working or cutting surface of the resulting diamond bonded body. A WC—Co substrate was positioned adjacent an opposite surface of the resulting diamond bonded body. The container was surrounded by pressed salt (NaCl) and this arrangement was placed within a graphite heating element. This graphite heating element containing the pressed salt and the diamond powder and substrate encapsulated in the refractory container was then loaded in a vessel made of a high-temperature/high-pressure self-sealing powdered ceramic material formed by cold pressing into a suitable shape.
The self-sealing powdered ceramic vessel was placed in a hydraulic press having one or more rams that press anvils into a central cavity. The press was operated to impose an intermediate stage processing pressure and temperature condition of approximately 5500 MPa and approximately 1250° C. on the vessel for a period of approximately 10 minutes. During this intermediate stage HPHT processing, the silicon from the silicon metal disk melted and infiltrated into an adjacent region of the blended diamond powder mixture, and formed SiC by reaction with the diamond in the blended mixture, thereby bonding the diamond grains together.
The press was subsequently operated at constant pressure to impose an increased final temperature of approximately 1450° C. on the vessel for a period of approximately 20 minutes. During this final stage HPHT processing, cobalt from the WC—Co substrate infiltrated into an adjacent region of the blended diamond mixture, and intercrystalline bonding between the diamond crystals, and between the diamond crystals and SiC along the interface between the regions took place, thereby forming conventional PCD.
The vessel was opened and the resulting thermally stable diamond bonded compact was removed. Subsequent examination of the compact revealed that the bonded diamond body included a thermally stable upper layer/region of approximately 500 micrometers thick and that was characterized by diamond bonded by SiC. This thermally stable region was well bonded to a PCD lower layer/region of approximately 1,000 micrometers thick that consisted of sintered PCD containing residual Co solvent catalyst.
Synthetic diamond powders having an average grain size of approximately 2-50 micrometers are mixed together with Al2O3 for a period of approximately 2-6 hours by ball milling. The volume percent of diamond grains in the mixture is approximately 60-80%. The resulting mixture is cleaned by heating to a temperature in excess of 850° C. under vacuum and is loaded into a refractory metal container. A green-state diamond material is provided in the form of a diamond tape having a thickness of approximately 1.2 mm, comprising diamond grains having an average diamond grain size of approximately 20-30 micrometers, and having a diamond volume percent of approximately 65%. The green-state diamond grain material is loaded into the container adjacent the diamond powder mixture. A WC—Co substrate is positioned adjacent the green-state diamond grain material. The container is surrounded by pressed salt (NaCl) and this arrangement is placed within a graphite heating element. This graphite heating element containing the pressed salt and the diamond powder, green-state diamond grain material, and substrate encapsulated in the refractory container is then loaded in a vessel made of a high-temperature/high-pressure self-sealing powdered ceramic material formed by cold pressing into a suitable shape.
The self-sealing powdered ceramic vessel is placed into a hydraulic press having one or more rams that press anvils into a central cavity. The press is operated to impose an intermediate stage HPHT processing condition of approximately 5500 MPa and approximately 1250° C. on the vessel for a period of approximately 30 minutes. During this intermediate stage processing, the Al2O3 softens and plastically deforms, filling the void spaces between the diamond grains and undergoes limited solid state reaction with the diamond grains in the mixture to form a diamond region comprising both diamond-to-diamond bonded crystals and diamond crystals bonded together by a reaction product of diamond and the Al2O3.
The press is subsequently operated at constant pressure to impose an increased temperature of approximately 1450° C. on the vessel for a period of approximately 20 minutes. During this second stage HPHT processing, intercrystalline bonding between the diamond crystals takes place within the green-state diamond grain material to form conventional PCD. Additionally, cobalt from the WC—Co substrate infiltrates into an adjacent region of the green-state diamond grain material, thereby forming a strong bond with the PCD region attaching the substrate thereto.
The press is subsequently operated at constant pressure to impose an increased temperature of approximately 1700° C. on the vessel for a period of approximately 20 minutes. During this final stage HPHT processing, dense sintering of the Al2O3 ceramic between the diamond crystals in the thermally stable layer takes place and additional interdiffusion between the diamond and Al2O3 ceramic occurs.
The vessel is opened and the resulting thermally stable diamond bonded compact is removed. Subsequent examination of the compact revealed that the bonded diamond body includes a thermally stable upper layer/region of approximately 500 micrometers thick that is primarily characterized as having a ceramic-bonded diamond microstructure. The diamond body includes another diamond region bonded to the thermally stable region comprising conventional PCD having a layer thickness of approximately 1,000 micrometers thick. Attached to the PCD layers was the substrate having a thickness of approximately 12 mm.
A key feature of thermally stable diamond bonded materials and compacts of this invention is that they are made during a single HPHT process using staged processing techniques. Compacts of this invention comprise a diamond body having both a thermally stable region and a conventional PCD region that are both formed and that is adhered to a metallic substrate during such single HPHT process, thereby reducing manufacturing time and expense. Further, thermally stable diamond bonded materials and compacts of this invention are specifically engineered to facilitate use with a substrate, thereby enabling compacts of this invention to be attached by conventional methods such as brazing or welding to variety of different cutting and wear devices to greatly expand the types of potential use applications for compacts of this invention.
Thermally stable diamond bonded materials and compacts of this invention can be used in a number of different applications, such as tools for mining, cutting, machining and construction applications, where the combined properties of thermal stability, wear and abrasion resistance are highly desired. Thermally stable diamond bonded materials and compacts of this invention are particularly well suited for forming working, wear and/or cutting components in machine tools and drill and mining bits such as roller cone rock bits, percussion or hammer bits, diamond bits, and shear cutters.
Other modifications and variations of diamond bonded bodies comprising a thermally-stable region and thermally stable diamond bonded compacts formed therefrom will be apparent to those skilled in the art. It is, therefore, to be understood that within the scope of the appended claims, this invention may be practiced otherwise than as specifically described.
This application is a divisional of U.S. patent application Ser. No. 11/122,541 filed May 4, 2005, which claims the benefit of U.S. Provisional Application No. 60/568,893 filed May 6, 2004, which are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3136615 | Bovenkerk et al. | Jun 1964 | A |
3141746 | Lai | Jul 1964 | A |
3233988 | Wentorf, Jr. et al. | Feb 1966 | A |
3745623 | Wentorf, Jr. et al. | Jul 1973 | A |
4108614 | Mitchell | Aug 1978 | A |
4151686 | Lee et al. | May 1979 | A |
4224380 | Bovenkerk et al. | Sep 1980 | A |
4255165 | Dennis et al. | Mar 1981 | A |
4268276 | Bovenkerk | May 1981 | A |
4288248 | Bovenkerk et al. | Sep 1981 | A |
4303442 | Hara et al. | Dec 1981 | A |
4311490 | Bovenkerk et al. | Jan 1982 | A |
4373593 | Phaal et al. | Feb 1983 | A |
4387287 | Marazzi | Jun 1983 | A |
4412980 | Tsuji et al. | Nov 1983 | A |
4481016 | Campbell et al. | Nov 1984 | A |
4486286 | Lewin et al. | Dec 1984 | A |
4504519 | Zelez | Mar 1985 | A |
4522633 | Dyer | Jun 1985 | A |
4525179 | Gigl | Jun 1985 | A |
4534773 | Phaal et al. | Aug 1985 | A |
4556403 | Almond et al. | Dec 1985 | A |
4560014 | Geczy | Dec 1985 | A |
4570726 | Hall | Feb 1986 | A |
4572722 | Dyer | Feb 1986 | A |
4604106 | Hall | Aug 1986 | A |
4605343 | Hibbs, Jr. et al. | Aug 1986 | A |
4606738 | Hayden | Aug 1986 | A |
4621031 | Scruggs | Nov 1986 | A |
4636253 | Nakai et al. | Jan 1987 | A |
4645977 | Kurokawa et al. | Feb 1987 | A |
4662348 | Hall et al. | May 1987 | A |
4664705 | Horton et al. | May 1987 | A |
4670025 | Pipkin | Jun 1987 | A |
4707384 | Schachner et al. | Nov 1987 | A |
4726718 | Meskin et al. | Feb 1988 | A |
4766040 | Hillert et al. | Aug 1988 | A |
4776861 | Frushour | Oct 1988 | A |
4784023 | Dennis | Nov 1988 | A |
4792001 | Zijsling | Dec 1988 | A |
4793828 | Burnand | Dec 1988 | A |
4797241 | Peterson et al. | Jan 1989 | A |
4798026 | Cerceau | Jan 1989 | A |
4802539 | Hall et al. | Feb 1989 | A |
4807402 | Rai | Feb 1989 | A |
4828582 | Frushour | May 1989 | A |
4844185 | Newton, Jr. et al. | Jul 1989 | A |
4861350 | Phaal et al. | Aug 1989 | A |
4871377 | Frushour | Oct 1989 | A |
4899922 | Slutz et al. | Feb 1990 | A |
4919220 | Fuller et al. | Apr 1990 | A |
4940180 | Martell | Jul 1990 | A |
4943488 | Sung et al. | Jul 1990 | A |
4944772 | Cho | Jul 1990 | A |
4976324 | Tibbitts | Dec 1990 | A |
4985051 | Ringwood | Jan 1991 | A |
5011514 | Cho et al. | Apr 1991 | A |
5027912 | Juergens | Jul 1991 | A |
5030276 | Sung et al. | Jul 1991 | A |
5032147 | Frushour | Jul 1991 | A |
5037704 | Nakai et al. | Aug 1991 | A |
5092687 | Hall | Mar 1992 | A |
5116568 | Sung et al. | May 1992 | A |
5127923 | Bunting et al. | Jul 1992 | A |
5135061 | Newton, Jr. | Aug 1992 | A |
5176720 | Martell et al. | Jan 1993 | A |
5186725 | Martell et al. | Feb 1993 | A |
5199832 | Meskin et al. | Apr 1993 | A |
5205684 | Meskin et al. | Apr 1993 | A |
5213248 | Horton et al. | May 1993 | A |
5238074 | Tibbitts et al. | Aug 1993 | A |
5264283 | Waldenstrom et al. | Nov 1993 | A |
5337844 | Tibbitts | Aug 1994 | A |
5370195 | Keshavan et al. | Dec 1994 | A |
5379853 | Lockwood et al. | Jan 1995 | A |
5439492 | Anthony et al. | Aug 1995 | A |
5464068 | Najafi-Sani | Nov 1995 | A |
5468268 | Tank et al. | Nov 1995 | A |
5496638 | Waldenstrom et al. | Mar 1996 | A |
5505748 | Tank et al. | Apr 1996 | A |
5510193 | Cerutti et al. | Apr 1996 | A |
5523121 | Anthony et al. | Jun 1996 | A |
5524719 | Dennis | Jun 1996 | A |
5560716 | Tank et al. | Oct 1996 | A |
5607024 | Keith et al. | Mar 1997 | A |
5620382 | Cho et al. | Apr 1997 | A |
5624068 | Waldenstrom et al. | Apr 1997 | A |
5645617 | Frushour | Jul 1997 | A |
5667028 | Truax et al. | Sep 1997 | A |
5718948 | Ederyd et al. | Feb 1998 | A |
5722499 | Nguyen et al. | Mar 1998 | A |
5776615 | Wong et al. | Jul 1998 | A |
5833021 | Mensa-Wilmot et al. | Nov 1998 | A |
5871060 | Jensen et al. | Feb 1999 | A |
5875862 | Jurewicz et al. | Mar 1999 | A |
5897942 | Karner et al. | Apr 1999 | A |
5954147 | Overstreet et al. | Sep 1999 | A |
5979578 | Packer | Nov 1999 | A |
6009963 | Chaves et al. | Jan 2000 | A |
6063333 | Dennis | May 2000 | A |
6123612 | Goers | Sep 2000 | A |
6126741 | Jones et al. | Oct 2000 | A |
6193001 | Eyre et al. | Feb 2001 | B1 |
6234261 | Evans et al. | May 2001 | B1 |
6248447 | Griffin et al. | Jun 2001 | B1 |
6269894 | Griffin | Aug 2001 | B1 |
6302225 | Yoshida et al. | Oct 2001 | B1 |
6344149 | Oles | Feb 2002 | B1 |
6410085 | Griffin et al. | Jun 2002 | B1 |
6435058 | Matthias et al. | Aug 2002 | B1 |
6443248 | Yong et al. | Sep 2002 | B2 |
6544308 | Griffin et al. | Apr 2003 | B2 |
6562462 | Griffin et al. | May 2003 | B2 |
6585064 | Griffin et al. | Jul 2003 | B2 |
6589640 | Griffin et al. | Jul 2003 | B2 |
6592985 | Griffin et al. | Jul 2003 | B2 |
6601662 | Matthias et al. | Aug 2003 | B2 |
6739214 | Griffin et al. | May 2004 | B2 |
6797326 | Griffin et al. | Sep 2004 | B2 |
6951578 | Belnap et al. | Oct 2005 | B1 |
7377341 | Middlemiss et al. | May 2008 | B2 |
7462003 | Middlemiss | Dec 2008 | B2 |
7473287 | Belnap et al. | Jan 2009 | B2 |
7647992 | Fang et al. | Jan 2010 | B2 |
7647993 | Middlemiss | Jan 2010 | B2 |
7828088 | Middlemiss et al. | Nov 2010 | B2 |
7980334 | Voronin et al. | Jul 2011 | B2 |
8057562 | Middlemiss | Nov 2011 | B2 |
20020023733 | Hall | Feb 2002 | A1 |
20020034631 | Griffin et al. | Mar 2002 | A1 |
20020074168 | Matthias et al. | Jun 2002 | A1 |
20020194955 | Fang et al. | Dec 2002 | A1 |
20050050801 | Cho et al. | Mar 2005 | A1 |
20050139397 | Achilles et al. | Jun 2005 | A1 |
20050230156 | Belnap et al. | Oct 2005 | A1 |
20050263328 | Middlemiss | Dec 2005 | A1 |
20060060392 | Eyre et al. | Mar 2006 | A1 |
20060217258 | Zhao | Sep 2006 | A1 |
20070039762 | Achilles | Feb 2007 | A1 |
20070079994 | Middlemiss | Apr 2007 | A1 |
20070151769 | Slutz et al. | Jul 2007 | A1 |
20070181348 | Lancaster et al. | Aug 2007 | A1 |
20070187155 | Middlemiss | Aug 2007 | A1 |
20080073126 | Shen et al. | Mar 2008 | A1 |
20080223621 | Middlemiss et al. | Sep 2008 | A1 |
20090114454 | Belnap et al. | May 2009 | A1 |
20090152017 | Shen et al. | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
2506471 | Nov 2005 | CA |
0 196 777 | Oct 1986 | EP |
0196777 | Oct 1986 | EP |
0 297 071 | Dec 1988 | EP |
0297071 | Dec 1988 | EP |
0300699 | Jan 1989 | EP |
0329954 | Aug 1989 | EP |
0 352 811 | Jan 1990 | EP |
0352811 | Jan 1990 | EP |
0 374 424 | Jun 1990 | EP |
0511253 | Aug 1992 | EP |
0585631 | Mar 1994 | EP |
0595630 | May 1994 | EP |
0612868 | Aug 1994 | EP |
0612868 | Aug 1994 | EP |
0617207 | Sep 1994 | EP |
0787820 | Aug 1997 | EP |
0860515 | Aug 1998 | EP |
1116858 | Jul 2001 | EP |
1190791 | Mar 2002 | EP |
1190791 | Mar 2002 | EP |
1349385 | Apr 1974 | GB |
1349685 | Apr 1974 | GB |
2006733 | May 1979 | GB |
2048927 | Dec 1980 | GB |
2 261 894 | Jun 1993 | GB |
2268768 | Jan 1994 | GB |
2323398 | Sep 1998 | GB |
2408735 | Jun 2005 | GB |
2413813 | Nov 2005 | GB |
2427215 | Dec 2006 | GB |
2429471 | Feb 2007 | GB |
2 431 948 | May 2007 | GB |
2431948 | May 2007 | GB |
2 413 813 | Nov 2008 | GB |
2 408 735 | Jan 2009 | GB |
2453023 | Mar 2009 | GB |
59219500 | Dec 1984 | JP |
S59-218500 | Dec 1984 | JP |
8176696 | Jul 1996 | JP |
8176696 | Jul 1996 | JP |
2034937 | May 1995 | RU |
2034937 | May 1995 | RU |
990486 | Jan 1983 | SU |
566439 | Jan 2000 | SU |
9323204 | Nov 1993 | WO |
9634131 | Oct 1996 | WO |
0028106 | May 2000 | WO |
0028106 | May 2000 | WO |
2004040095 | May 2004 | WO |
2004106003 | Dec 2004 | WO |
2004106004 | Dec 2004 | WO |
2007042920 | Apr 2007 | WO |
Entry |
---|
Response dated Jan. 7, 2011, to Office Action dated Oct. 7, 2011, for related U.S. Appl. No. 11/867,629 (17 pages). |
Noitice of Allowance issued in related U.S. Appl. No. 11/867,629 dated Mar. 10, 2011 (23 pages). |
EP Search Report issued in related European Application No. 06118267.1 dated Nov. 2, 2011 (10 pages). |
Response dated Jun. 1, 2011 to EP Search Report issued in European Application No. 06118267.1 (8 pages). |
Office Action issued in Canadian Application No. 2489187 dated Mar. 1, 2011(2 pages). |
Examination Report issued in United Kingdom Application No. 0818022.6 dated May 26, 2011 (3 pages). |
Response dated Jul. 26, 2011, to Examination Report issued in United Kingdom Application No. 0818022.6 (4 pages). |
Office Action issued in Candian Application No. 2556052 dated Jun. 1, 2011 (3 pages). |
Search Report for corresponding British Application No. GB0509247.3 dated Jul. 19, 2005, total 3 pages. |
Office Action issued in corresponding Canadian Application No. 2,506,471 dated Mar. 14, 2012 (2 pages). |
Office Action issued in corresponding Canadian Application No. 2,506,471 dated Jun. 30, 2011 (4 pages). |
Nonfinal Office Action in U.S. Appl. No. 11/857,334 dated Mar. 3, 2010. |
Final Office Action issued in U.S. Appl. No. 11/122,541 dated May 21, 2009 (8 pages). |
Office Action issued in U.S. Appl. No. 11/857,334 dated Mar. 3, 2010 (40 pages). |
Search Report issued in United Kingdom Application No. GB0815944.4 dated Jan. 9, 2009 (3 pages). |
Number | Date | Country | |
---|---|---|---|
20100115855 A1 | May 2010 | US |
Number | Date | Country | |
---|---|---|---|
60568893 | May 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11122541 | May 2005 | US |
Child | 12689389 | US |