Thermally stable, high tensile strength encapsulated actives

Information

  • Patent Grant
  • 7955630
  • Patent Number
    7,955,630
  • Date Filed
    Wednesday, August 17, 2005
    19 years ago
  • Date Issued
    Tuesday, June 7, 2011
    13 years ago
Abstract
In some embodiments there is a composition including a thermally stabilized active composition and a high molecular weight polymer. The thermally stabilized active composition is resistance to degradation at higher temperatures such as those used for conducting extrusion with high molecular weight polyvinyl aceate.
Description
FIELD

Included are thermally stabilized encapsulated compositions. The thermally stabilized compositions include an active which resists degradation or decomposition at higher temperatures such as the temperatures required for extrusion of the thermally stabilized compositions with a high molecular weight polymer.


BACKGROUND

Encapsulated intense sweeteners have a particular advantage when included in gum compositions such as chewing gum and bubble gum compositions. The encapsulated sweeteners are not immediately released as sugar would be when included in a chewing gum. By contrast, an encapsulated sweetener composition provides extended sweetening on chewing because the sweetener is not released until the encapsulating material has been subjected to mastication.


Intense sweeteners such as aspartame (APM) and acesulfame potassium (Ace-K) have been used in encapsulated compositions in combination with high molecular weight polymers which allow for their slow release upon chewing in a gum composition.


Sucralose is another popular intense sweetener which is derived from sucrose in which one or more hydroxy groups are replaced by chlorine atoms. This compound is described in U.K. Patent No. 1,543,167, the disclosure of which is incorporated herein by reference. Sucralose may be referred to by different chemical names including: 4-chloro-4-deoxy-α-D-galactopyranosyl, 1,6-dichloro1,6-dideoxy-β-D-fructofuranoside, and known as 4,1′,6′,-trichloro-4,1′,6′-trideoxygalactosucrose.


Sucralose is relatively stable and inert. This stability includes exhibiting stability in acid aqueous solutions, in marked contrast to peptide-based sweeteners such as aspartame. Under completely dry conditions, however, sucralose which is present in a crystalline form tends to discolor in response to elevated temperatures. For example, such discoloration can be exhibited after twenty minutes of exposure of pure dry sucralose to a temperature of 100° C., wherein the color changes to a pale brown. This degradation of sucralose results in a commercially unacceptable product. This high temperature instability of sucralose has made it commercially impractical to prepare an encapsulated sucralose with the extrusion techniques used to prepare the encapsulated APM and Ace-K compositions.


The heat stability issues of sucralose were addressed in U.S. Pat. No. 4,971,797 to Cherukuri, et al. Cherukuri provides a method of preparing a co-crystallized/precipitated complex of cyclodextrin and sucralose which reduces the degradation of the sucralose when the complex is exposed to heat. The method of Cherukuri uses an organic solvent, such as methanol, in the co-crystallization in order to allow the method to be conducted at room temperature. The co-crystallized/precipitated complex must then be subjected to an additional process step to ensure removal of the methanol, a highly toxic material. Proper handling and disposal of methanol is also required in such a process and is undesirable in view of environmental concerns.


There is a need for an encapsulated sucralose composition having enhanced stability and which may be used in a variety of compositions including gum compositions.


The compositions of some embodiments are designed to enhance the stability of actives contained therein and to make them more resistant to heat both during processing and during storage.


SUMMARY

Some embodiments include a thermally stabilized active composition and a high molecular weight polymer which at least partially encapsulates the thermally stabilized active compositions. One benefit provided by the thermally stabilized active composition is that it has enhanced resistance to degradation of the active at high temperatures.


In some embodiments there is an encapsulated sweetener composition which may be provided by:

    • (a) preparing a thermally stabilized sucralose composition;
    • (b) combining said thermally stabilized sucralose composition with a polymer;
    • (c) melting and extruding said thermally stabilized sucralose composition with said polymer to provide an encapsulated sucralose composition; and
    • (d) forming said encapsulated sucralose composition to a suitable particle size


Also provided is a method of preparing an encapsulated active composition including:

    • (a) preparing a thermally stabilized active composition;
    • (b) combining said thermally stabilized active composition with a polymer;
    • (c) melting and extruding the thermally stabilized active composition with the polymer providing an encapsulated active composition; and
    • (d) forming said encapsulated active composition to a suitable particle size.


In some embodiments there is a gum composition including:

    • (a) a gum base; and
    • (b) an at least partially encapsulated sweetener composition comprising:
      • (i) a thermally stabilized sucralose composition; and
      • (ii) a high molecular weight polymer, said polymer at least partially encapsulating said thermally stabilized sucralose composition.


In some embodiments there is a method of preparing an encapsulated active comprising combining a thermally stable active composition with a polymer followed by melting and extruding the combination of the thermally stabilized active and the polymer to provide an encapsulated active composition.







DETAILED DESCRIPTION

As used herein the transitional term “comprising,” (also “comprises,” etc.) which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps, regardless of its use in the preamble or the body of a claim.


As used herein, the terms “bubble gum” and “chewing gum” are used interchangeably and are both meant to include any gum compositions.


As used herein, the term “active” refers to any composition which may be included in the encapsulated compositions of some embodiments, wherein the active provides some desirable property upon release from encapsulation. Examples of suitable actives include sweeteners, such as sucralose, flavors, breath fresheners, sensates such as coolers, warmer and spicy components, medicaments, vitamins, and combinations thereof.


As used herein, the term “thermally stabilized active” refers to an active which has been treated to allow the active to be subjected to higher temperatures without decomposition, degradation, and/or discoloration of the active. These temperatures are higher than the temperatures at which the free or untreated actives would normally begin to decompose, degrade, and/or discolor.


The thermally stabilized composition of some embodiments may include an active which resists decomposition or degradation at high temperatures. The thermally stabilized composition may be prepared by different methods such as encapsulation or complexation.


The encapsulated composition of some embodiments includes a thermally stabilized active composition in combination with an encapsulating polymer. Since the thermally stabilized active composition is resistant to heat degradation compared with free active, especially wherein the active is sucralose, thermally stabilized active composition may be combined with the polymer by melt extrusion. This provides an encapsulated composition which is suitable for use in a variety of confectionary products including gum compositions. The active may be present in any desired amount such as from about 5% to about 50% by weight of the encapsulated composition.


A variety of different sweeteners may be used in the compositions of some embodiments. These sweeteners may be selected from a wide range of materials including water-soluble sweeteners, water-soluble artificial sweeteners, water-soluble sweeteners derived from naturally occurring water-soluble sweeteners, dipeptide based sweeteners, and protein based sweeteners, including mixtures thereof. Without being limited to particular sweeteners, representative categories and examples include:

    • (a) water-soluble sweetening agents such as dihydrochalcones, monellin, steviosides, glycyrrhizin, dihydroflavenol, monatin, and sugar alcohols such as sorbitol, mannitol, maltitol, and L-aminodicarboxylic acid aminoalkenoic acid ester amides, such as those disclosed in U.S. Pat. No. 4,619,834, which disclosure is incorporated herein by reference, and mixtures thereof;
    • (b) water-soluble artificial sweeteners such as soluble saccharin salts, i.e., sodium or calcium saccharin salts, cyclamate salts, the sodium, ammonium or calcium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2,2-dioxide, the potassium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2,2-dioxide (Acesulfame-K), the free acid form of saccharin, and mixtures thereof;
    • (c) dipeptide based sweeteners, such as L-aspartic acid derived sweeteners, such as L-aspartyl-L-phenylalanine methyl ester (Aspartame) and materials described in U.S. Pat. No. 3,492,131, L-alphaaspartyl-N-(2,2,4,4-tetramethyl-3-thietanyl)-D-alaninamide hydrate (Alitame), methyl esters of L-aspartyl-L-phenylglycerine and L-aspartyl-L-2,5-dihydrophenyl-glycine, L-aspartyl-2,5-dihydro-L-phenylalanine; L-aspartyl-L-(1-cyclohexen)-alanine, Neotame and mixtures thereof;
    • (d) water-soluble sweeteners derived from naturally occurring water-soluble sweeteners, such as chlorinated derivatives of ordinary sugar (sucrose), e.g., chlorodeoxysugar derivatives such as derivatives of chlorodeoxysucrose or chlorodeoxygalactosucrose, known, for example, under the product designation of Sucralose; examples of chlorodeoxysucrose and chlorodeoxygalactosucrose derivatives include but are not limited to: 1-chloro-1′-deoxysucrose; 4-chloro-4-deoxy-alpha-D-galactopyranosyl-alpha-D-fructofuranoside, or 4-chloro-4-deoxygalactosucrose; 4-chloro-4-deoxy-alpha-D-galactopyranosyl-1-chloro-1-deoxy-beta-D-fructo-furanoside, or 4,1′-dichloro-4,1′-dideoxygalactosucrose; 1′,6′-dichloro1′,6′-dideoxysucrose; 4-chloro-4-deoxy-alpha-D-galactopyranosyl-1,6-dichloro-1,6-dideoxy-beta-D-fructofuranoside, or 4,1′,6′-trichloro-4,1′,6′-trideoxygalactosucrose; 4,6-dichloro-4,6-dideoxy-alpha-D-galactopyranosyl-6-chloro-6-deoxy-beta-D-fructofuranoside, or 4,6,6′-trichloro-4,6,6′-trideoxygalactosucrose; 6,1′,6′-trichloro-6,1′,6′-trideoxysucrose; 4,6-dichloro-4,6-dideoxy-alpha-D-galacto-pyranosyl-1,6-dichloro-1,6-dideoxy-beta-D-fructofuranoside, or 4,6,1′,6′-tetrachloro-4,6,1′,6′-tetradeoxygalacto-sucrose; and 4,6,1′,6′-tetradeoxy-sucrose, and mixtures thereof; and
    • (e) protein based sweeteners such as thaumaoccous danielli (Thaumatin I and II).


The intense sweetening agents may be used in many distinct physical forms well-known in the art to provide an initial burst of sweetness and/or a prolonged sensation of sweetness. Without being limited thereto, such physical forms include free forms, such as spray dried, powdered, beaded forms, encapsulated forms, and mixtures thereof.


The thermally stabilized active compositions useful in some embodiments include a combination of a desired active such as sucralose in combination with other components. The combination of the active with the other components allow the active to resist decomposition when exposed to high temperatures such as 100° C. where free sucralose would begin to discolor. The thermally stabilized active composition may be prepared by a variety of methods which include the preparation of a co-crystallized/precipitated complex of an active and cyclodextrin, adding a coating to an active by a spray coating method, and extruding an active with a low to medium molecular weight polymer at a temperature below the decomposition temperature of the active.


Co-Crystallized/Precipitated Complex


The co-crystallized/precipitated complex of some embodiments may primarily include an active, such as sucralose, with cyclodextrin. Within the co-crystallized/precipitated complex, the cyclodextrin may be present in an amount greater than zero up to about 25% by weight of the complex, more specifically up to about 15% or up to about 5%. The cyclodextrin may be any of α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin, and combinations thereof.


A co-crystallized/precipitated complex of sucralose and cyclodextrin may be prepared by first preparing a solution in water or a combination of water with another suitable organic solvent. The solution is then heated to a temperature in the range from about 40° C. to about 80° C. for about 10 minutes to about 20 minutes. The heating of the solution has been found not to result in an appreciable degradation of a sucralose active, as measured by changed in color, i.e., discoloration as measured by spectrophotometry, as described below in the examples.


After the sucralose/cyclodextrin solution has been maintained under heat for a sufficient time to form the co-crystallized/precipitated complex of sucralose and cyclodextrin, the co-crystallized/precipitated complex is then obtained upon drying or otherwise removing the solvent. If necessary, the particles obtained after drying may be formed to a desired size. This may be accomplished by any mechanical means such as milling, grinding, or other methods of comminuting. In some embodiments the co-crystallized/precipitated complex has an average particle size ranging from about 1 μm to about 150 μm.


Encapsulated Active by Spray Coating


A thermally stabilized active composition may also be prepared by coating the active by a spray coating method. This process provides an active which is at least partially encapsulated by a polymer such as polyvinyl acetate.


The coating layer which surrounds the active, may also include a solvent which should be capable of dissolving the polymer. The solvent may be any solvent known for this purpose. For example, if the polymer is polyvinyl acetate, suitable solvents include of ethyl acetate, diethyl ether, acetone, benzene, ethylene dichloride, methanol, methyl ethyl ketone, ethanol, toluene, xylene, amyl acetate, and combinations thereof.


One or more coating layers may be present which include the encapsulating polymer and optionally may include the same or a different active. In some embodiments wherein more than one coating layer is present, the first coating layer may include a high tensile strength polymer with the optional addition of another active such as a sweetener. A second coating may completely or partially encapsulate the active particles and may include either a single polymer, a combination of different polymers, or a combination of one or more polymers and a sweetener such as sucralose.


Polymers which may be used in the coating layers include acrylic polymers and copolymers, carboxyvinyl polymer, polyamides, polystyrene, polyvinyl acetate, polyvinyl acetate phthalate, polyvinylpyrrolidone, and combinations thereof. One or more different polymers may be used in each of the coating layers. For example, polyvinyl acetate may be included in a first coating with a combination of polyvinyl acetate and another polymer in a subsequent exterior coating.


The encapsulated particles of some embodiments may be prepared by any suitable spray coating method as known in the art. One suitable process is the Wurster process. This process provides a method for encapsulating individual particulate materials. First the particles to be encapsulated are suspended in a fluidizing air stream which provides a generally cyclic flow in front of a spray nozzle. The spray nozzle sprays an atomized flow of the coating solution, which may include sucralose, a polymer and a suitable solvent.


The atomized coating solution collides with the particles as they are carried away from the nozzle to provide a particle coating with the coating solution. The temperature of the fluidizing air stream, which also serves to suspend the particles to be coated, may be adjusted to evaporate the solvent shortly after the coating solution contacts the particles. This serves to solidify the coating on the particles, resulting in the desired encapsulated particle.


This process may be repeated until the desired thickness of the coating is achieved. Alternatively, the process may be repeated with a different coating solution to provide different and distinct coating layers in the encapsulated particle composition.


Following the coating process, the particles may then be formed to an appropriate size as desired, generally from an average particle size range of about 50 μm to about 800 μm. This may be accomplished by any suitable means such as chopping, pulverizing, milling or grinding the particles.


Encapsulated Active by Extrusion


The active may also be extruded with a low to medium molecular weight polymer to achieve a thermally stabilized active composition. The polymer may be any of those described herein. The molecular weight of the polymer may be less than about 300,000, specifically from about 9,000 to about 200,000 and may be polyvinyl acetate.


In one method of preparing the extruded thermally stabilized active, the active is first combined with the polymer and melted. The combination of active and polymer may then be extruded, cooled and formed to the desired particle size. The particles may be sized by milling, grinding, pulverizing, etc. to achieve a particle an average particle size from about 50 μm to about 800 μm.


Combination of Thermally Stabilized Composition and Polymer


The thermally stabilized active composition may then be encapsulated in a high molecular weight or high tensile strength polymer. The thermally stabilized active composition may be prepared by any of the methods described hereinabove. Combinations of thermally stabilized active compositions, including combinations of different actives and combinations of compositions prepared by different may be combined.


Examples of suitable polymers for the encapsulation of the thermally stabilized active compositions include polyethylene, crosslinked polyvinyl pyrrolidone, polymethylmethacrylate, polylacticacid, polyhydroxyalkanoates, ethylcellulose, polyvinyl acetate phthalate, polyethyleneglycol esters, methacrylicacid-co-methylmethacrylate, acrylic polymers and copolymers, carboxyvinyl polymer, polyamides, polystyrene, polyvinyl acetate and combinations thereof, more specifically the polymer will include polyvinyl acetate either alone or in combination with another polymer. For example, the polymer may have a molecular weight higher than about 300,000, specifically about 500,000 or higher.


The thermally stabilized active composition may be combined with the encapsulating polymer by melt extrusion. This is conducting by melting a combination of one or more polymers in combination with the active composition in the temperature range of about 65° C. to about 140° C. Another sweetener, such as a high-intensity sweetener as described above may be added prior to melting the combination. The extrudate is then cooled and formed into particles of a desired size. This may be accomplished through cutting, grinding, pulverizing, milling or any other appropriate technique as know in the art. The extrudate particles may have an average particle size ranging from about 50 μm to about 800 μm.


The encapsulated active composition may include any desired combination of polymer and the active composition, in addition to an optionally added active, especially a sweetener. The active composition may be present in an amount from about 5% to about 50% by weight of the encapsulated sweetener composition.


The encapsulated active compositions as described herein may also be used in a gum composition, including but not limited to chewing gums and bubble gums, particularly where the active is sucralose or another sweetener. Encapsulation of the sweetener provides advantages in the preparation of gum compositions by providing an enhanced or prolonged sweetening perception to person who is chewing the gum. This perception results from the manner in which the sweetener is released over time as a result of the gum being chewed.


A sweetener composition may be used in any amount suitable for the desired sweetening effect to be achieved. In general, an effective amount of sweetener may be utilized to provide the level of sweetness desired, and this amount may vary especially when a sweetener is selected in addition to the encapsulated sweetener or wherein a sweetener is added in addition to the encapsulated sweetener. The amount of sweetener may be present in amounts from about 0.001% to about 3%, by weight of the gum composition, depending upon the sweetener or combination of sweeteners used. The exact range of amounts for each type of sweetener may be selected by those skilled in the art.


The gum compositions of some embodiments may include a gum base. The gum base may include any component known in the chewing gum art. For example, the gum composition may include elastomers, bulking agents, waxes, elastomer solvents, emulsifiers, plasticizers, fillers and mixtures thereof.


The elastomers (rubbers) employed in the gum base will vary greatly depending upon various factors such as the type of gum base desired, the consistency of gum composition desired and the other components used in the composition to make the final chewing gum product. The elastomer may be any water-insoluble polymer known in the art, and includes those gum polymers utilized for chewing gums and bubble gums. Illustrative examples of suitable polymers in gum bases include both natural and synthetic elastomers. For example, those polymers which are suitable in gum base compositions include, without limitation, natural substances (of vegetable origin) such as chicle, natural rubber, crown gum, nispero, rosidinha, jelutong, perillo, niger gutta, tunu, balata, guttapercha, lechi capsi, sorva, gutta kay, and the like, and combinations thereof. Examples of synthetic elastomers include, without limitation, styrene-butadiene copolymers (SBR), polyisobutylene, isobutylene-isoprene copolymers, polyethylene, polyvinyl acetate and the like, and combinations thereof.


Additional useful polymers include: crosslinked polyvinyl pyrrolidone, polymethylmethacrylate; copolymers of lactic acid, polyhydroxyalkanoates, plasticized ethylcellulose, polyvinyl acetatephthalate and combinations thereof.


The amount of elastomer employed in the gum base may vary depending upon various factors such as the type of gum base used, the consistency of the gum composition desired and the other components used in the composition to make the final chewing gum product. In general, the elastomer will be present in the gum base in an amount from about 10% to about 60% by weight of the gum region, desirably from about 35% to about 40% by weight.


In some embodiments, the gum base may include wax. It softens the polymeric elastomer mixture and improves the elasticity of the gum base. When present, the waxes employed will have a melting point below about 60° C., and preferably between about 45° C. and about 55° C. The low melting wax may be a paraffin wax. The wax may be present in the gum base in an amount from about 6% to about 10%, and preferably from about 7% to about 9.5%, by weight of the gum base.


In addition to the low melting point waxes, waxes having a higher melting point may be used in the gum base in amounts up to about 5%, by weight of the gum base. Such high melting waxes include beeswax, vegetable wax, candelilla wax, carnuba wax, most petroleum waxes, and the like, and mixtures thereof.


In addition to the components set out above, the gum base may include a variety of other ingredients, such as components selected from elastomer solvents, emulsifiers, plasticizers, fillers, and mixtures thereof.


The gum base may contain elastomer solvents to aid in softening the elastomer component. Such elastomer solvents may include those elastomer solvents known in the art, for example, terpinene resins such as polymers of alpha-pinene or beta-pinene, methyl, glycerol and pentaerythritol esters of rosins and modified rosins and gums such as hydrogenated, dimerized and polymerized rosins, and mixtures thereof. Examples of elastomer solvents suitable for use herein may include the pentaerythritol ester of partially hydrogenated wood and gum rosin, the pentaerythritol ester of wood and gum rosin, the glycerol ester of wood rosin, the glycerol ester of partially dimerized wood and gum rosin, the glycerol ester of polymerized wood and gum rosin, the glycerol ester of tall oil rosin, the glycerol ester of wood and gum rosin and the partially hydrogenated wood and gum rosin and the partially hydrogenated methyl ester of wood and rosin, and the like, and mixtures thereof. The elastomer solvent may be employed in the gum base in amounts from about 2% to about 15%, and preferably from about 7% to about 11%, by weight of the gum base.


The gum base may also include emulsifiers which aid in dispersing the immiscible components into a single stabilized system. The emulsifiers useful in this invention include glyceryl monostearate, lecithin, fatty acid monoglycerides, diglycerides, propylene glycol monostearate, and the like, and mixtures thereof. The emulsifier may be employed in amounts from about 2% to about 15%, and more specifically, from about 7% to about 11%, by weight of the gum base.


The gum base may also include plasticizers or softeners to provide a variety of desirable textures and consistency properties. Because of the low molecular weight of these ingredients, the plasticizers and softeners are able to penetrate the fundamental structure of the gum base making it plastic and less viscous. Useful plasticizers and softeners include lanolin, palmitic acid, oleic acid, stearic acid, sodium stearate, potassium stearate, glyceryl triacetate, glyceryl lecithin, glyceryl monostearate, propylene glycol monostearate, acetylated monoglyceride, glycerine, and the like, and mixtures thereof. Waxes, for example, natural and synthetic waxes, hydrogenated vegetable oils, petroleum waxes such as polyurethane waxes, polyethylene waxes, paraffin waxes, microcrystalline waxes, fatty waxes, sorbitan monostearate, tallow, propylene glycol, mixtures thereof, and the like, may also be incorporated into the gum base. The plasticizers and softeners are generally employed in the gum base in amounts up to about 20% by weight of the gum base, and more specifically in amounts from about 9% to about 17%, by weight of the gum base.


Plasticizers also include are the hydrogenated vegetable oils and include soybean oil and cottonseed oil which may be employed alone or in combination. These plasticizers provide the gum base with good texture and soft chew characteristics. These plasticizers and softeners are generally employed in amounts from about 5% to about 14%, and more specifically in amounts from about 5% to about 13.5%, by weight of the gum base.


Anhydrous glycerin may also be employed as a softening agent, such as the commercially available United States Pharmacopeia (USP) grade. Glycerin is a syrupy liquid with a sweet warm taste and has a sweetness of about 60% of that of cane sugar. Because glycerin is hygroscopic, the anhydrous glycerin may be maintained under anhydrous conditions throughout the preparation of the chewing gum composition.


In some embodiments, the gum base of this invention may also include effective amounts of bulking agents such as mineral adjuvants which may serve as fillers and textural agents. Useful mineral adjuvants include calcium carbonate, magnesium carbonate, alumina, aluminum hydroxide, aluminum silicate, talc, tricalcium phosphate, dicalcium phosphate, calcium sulfate and the like, and mixtures thereof. These fillers or adjuvants may be used in the gum base compositions in various amounts. The amount of filler, may be present in an amount from about zero to about 40%, and more specifically from about zero to about 30%, by weight of the gum base.


A variety of traditional ingredients may be optionally included in the gum base in effective amounts such as coloring agents, antioxidants, preservatives, flavoring agents, and the like. For example, titanium dioxide and other dyes suitable for food, drug and cosmetic applications, known as F. D. & C. dyes, may be utilized. An anti-oxidant such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), propyl gallate, and mixtures thereof, may also be included. Other conventional chewing gum additives known to one having ordinary skill in the chewing gum art may also be used in the gum base.


The gum composition may include amounts of conventional additives selected from the group consisting of sweetening agents (sweeteners), plasticizers, softeners, emulsifiers, waxes, fillers, bulking agents (carriers, extenders, bulk sweeteners), mineral adjuvants, flavoring agents (flavors, flavorings), coloring agents (colorants, colorings), antioxidants, acidulants, thickeners, medicaments, and the like, and mixtures thereof. Some of these additives may serve more than one purpose. For example, in sugarless gum compositions, a sweetener, such as maltitol or other sugar alcohol, may also function as a bulking agent.


The plasticizers, softening agents, mineral adjuvants, waxes and antioxidants discussed above, as being suitable for use in the gum base, may also be used in the chewing gum composition. Examples of other conventional additives which may be used include emulsifiers, such as lecithin and glyceryl monostearate, thickeners, used alone or in combination with other softeners, such as methyl cellulose, alginates, carrageenan, xanthan gum, gelatin, carob, tragacanth, locust bean gum, pectin, alginates, galactomannans such as guar gum, carob bean gum, glucomannan, gelatin, starch, starch derivatives, dextrins and cellulose derivatives such as carboxy methyl cellulose, acidulants such as malic acid, adipic acid, citric acid, tartaric acid, fumaric acid, and mixtures thereof, and fillers, such as those discussed above under the category of mineral adjuvants.


In some embodiments, the gum region may also contain a bulking agent. Suitable bulking agents may be water-soluble and include sweetening agents selected from, but not limited to, monosaccharides, disaccharides, polysaccharides, sugar alcohols, and mixtures thereof; randomly bonded glucose polymers such polydextrose available under the trade name LITESSE manufactured by Danisco Sweeteners, Terre Haute, Ind.; isomalt (a racemic mixture of alpha-D-glucopyranosyl-1,6-mannitol and alpha-D-glucopyranosyl-1,6-sorbitol manufactured under the trade name PALATINIT by Suddeutsche Zucker), maltodextrins; hydrogenated starch hydrolysates; hydrogenated hexoses; hydrogenated disaccharides; minerals, such as calcium carbonate, talc, titanium dioxide, dicalcium phosphate; celluloses; and mixtures thereof.


Suitable sugar bulking agents include monosaccharides, disaccharides and polysaccharides such as xylose, ribulose, glucose (dextrose), mannose, galactose, fructose (levulose), sucrose (sugar), maltose, invert sugar, partially hydrolyzed starch and corn syrup solids, and mixtures thereof.


Suitable sugar alcohol bulking agents include sorbitol, erythritol, xylitol, mannitol, galactitol, maltitol, and mixtures thereof.


Suitable hydrogenated starch hydrolysates include those disclosed in U.S. Pat. Nos. 25,959, 3,356,811, 4,279,931 and various hydrogenated glucose syrups and/or powders which contain sorbitol, hydrogenated disaccharides, hydrogenated higher polysaccharides, or mixtures thereof. Hydrogenated starch hydrolysates are primarily prepared by the controlled catalytic hydrogenation of corn syrups. The resulting hydrogenated starch hydrolysates are mixtures of monomeric, dimeric, and polymeric saccharides. The ratios of these different saccharides give different hydrogenated starch hydrolysates different properties. Mixtures of hydrogenated starch hydrolysates, such as LYCASIN, a commercially available product manufactured by Roquette Freres of France, and HYSTAR, a commercially available product manufactured by Lonza, Inc., of Fairlawn, N.J., are also useful.


Any sweetening agent, as described above, may also be added as an additional, optional, and independent component to the gum compositions.


The flavoring agents which may be used include those flavors known to the skilled artisan, such as natural and artificial flavors. These flavorings may be chosen from synthetic flavor oils and flavoring aromatics and/or oils, oleoresins and extracts derived from plants, leaves, flowers, fruits, and so forth, and combinations thereof. Nonlimiting representative flavor oils include spearmint oil, cinnamon oil, oil of wintergreen (methyl salicylate), peppermint oil, clove oil, bay oil, anise oil, eucalyptus oil, thyme oil, cedar leaf oil, oil of nutmeg, allspice, oil of sage, mace, oil of bitter almonds, and cassia oil. Also useful flavorings are artificial, natural and synthetic fruit flavors such as vanilla, and citrus oils including lemon, orange, lime, grapefruit, and fruit essences including apple, pear, peach, grape, strawberry, raspberry, cherry, plum, pineapple, apricot and so forth. These flavoring agents may be used in liquid or solid form and may be used individually or in admixture. Commonly used flavors include mints such as peppermint, menthol, spearmint, artificial vanilla, cinnamon derivatives, and various fruit flavors, whether employed individually or in admixture. Flavors may also provide breath freshening properties, particularly the mint flavors when used in combination with the cooling agents, described herein below.


Other useful flavorings include aldehydes and esters such as cinnamyl acetate, cinnamaldehyde, citral diethylacetal, dihydrocarvyl acetate, eugenyl formate, p-methylamisol, and so forth may be used. Generally any flavoring or food additive such as those described in Chemicals Used in Food Processing, publication 1274, pages 63-258, by the National Academy of Sciences, may be used. This publication is incorporated herein by reference. This may include natural as well as synthetic flavors.


Further examples of aldehyde flavorings include but are not limited to acetaldehyde (apple), benzaldehyde (cherry, almond), anisic aldehyde (licorice, anise), cinnamic aldehyde (cinnamon), citral, i.e., alpha-citral (lemon, lime), neral, i.e., beta-citral (lemon, lime), decanal (orange, lemon), ethyl vanillin (vanilla, cream), heliotrope, i.e., piperonal (vanilla, cream), vanillin (vanilla, cream), alpha-amyl cinnamaldehyde (spicy fruity flavors), butyraldehyde (butter, cheese), valeraldehyde (butter, cheese), citronellal (modifies, many types), decanal (citrus fruits), aldehyde C-8 (citrus fruits), aldehyde C-9 (citrus fruits), aldehyde C-12 (citrus fruits), 2-ethyl butyraldehyde (berry fruits), hexenal, i.e., trans-2 (berry fruits), tolyl aldehyde (cherry, almond), veratraldehyde (vanilla), 2,6-dimethyl-5-heptenal, i.e., melonal (melon), 2,6-dimethyloctanal (green fruit), and 2-dodecenal (citrus, mandarin), cherry, grape, strawberry shortcake, and mixtures thereof.


In some embodiments, the flavoring agent may be employed in either liquid form and/or dried form. When employed in the latter form, suitable drying means such as spray drying the oil may be used. Alternatively, the flavoring agent may be absorbed onto water soluble materials, such as cellulose, starch, sugar, maltodextrin, gum arabic and so forth or may be encapsulated. The actual techniques for preparing such dried forms are well-known.


In some embodiments, the flavoring agents may be used in many distinct physical forms well-known in the art to provide an initial burst of flavor and/or a prolonged sensation of flavor. Without being limited thereto, such physical forms include free forms, such as spray dried, powdered, beaded forms, encapsulated forms, and mixtures thereof.


The amount of flavoring agent employed herein may be a matter of preference subject to such factors as the type of final chewing gum composition, the individual flavor, the gum base employed, and the strength of flavor desired. Thus, the amount of flavoring may be varied in order to obtain the result desired in the final product and such variations are within the capabilities of those skilled in the art without the need for undue experimentation. In gum compositions, the flavoring agent is generally present in amounts from about 0.02% to about 5%, and more specifically from about 0.1% to about 2%, and even more specifically, from about 0.8% to about 1.8%, by weight of the chewing gum composition.


With respect to cooling agents, a variety of well known cooling agents may be employed. For example, among the useful cooling agents are included menthol, xylitol, menthane, menthone, ketals, menthone ketals, menthone glycerol ketals, substituted p-menthanes, acyclic carboxamides, substituted cyclohexanamides, substituted cyclohaxane carboxamides, substituted ureas and sulfonamides, substituted menthanols, hydroxymethyl and hydroxymethyl derivatives of p-menthane, 2-mercapto-cyclo-decanone, 2-isoprpanyl-5-methylcyclohexanol, hydroxycarboxylic acids with 2-6 carbon atoms, cyclohexanamides, menthyl acetate, menthyl lactate, menthyl salicylate, N,2,3-trimethyl-2-isopropyl butanamide (WS-23), N-ethyl-p-menthane-3-carboxamide (WS-3), menthyl succinate, 3,1-menthoxypropane 1,2-diol, among others. These and other suitable cooling agents are further described in the following U.S. patents, all of which are incorporated in their entirety by reference hereto: U.S. Pat. Nos. 4,230,688 and 4,032,661 to Rowsell et al.; U.S. Pat. No. 4,459,425 to Amano et al.; U.S. Pat. No. 4,136,163 to Watson et al.; U.S. Pat. No. 5,266,592 to Grub et al.; and U.S. Pat. No. 6,627,233 to Wolf et al. These cooling agents may be present in one or more of the outer gum coatings, the gum region surrounding the liquid fill, the liquid fill per se, or in any combination of those three gum areas. Cooling agents, when used in the outer coating composition for the gum, are generally present in amount of 0.01% to about 1.0%. When used in the other portions of the gum, such as the gum region or the center fill, they may be present in amounts of about 0.001 to about 10% by weight of the total chewing gum piece.


Warming components may be selected from a wide variety of compounds known to provide the sensory signal of warming to the user. These compounds offer the perceived sensation of warmth, particularly in the oral cavity, and often enhance the perception of flavors, sweeteners and other organoleptic components. Among the useful warming compounds included are vanillyl alcohol n-butylether (TK-1000) supplied by Takasago Perfumary Company Limited, Tokyo, Japan, vanillyl alcohol n-propylether, vanillyl alcohol isopropylether, vanillyl alcohol isobutylether, vanillyl alcohol n-aminoether, vanillyl alcohol isoamyleather, vanillyl alcohol n-hexyleather, vanillyl alcohol methylether, vanillyl alcohol ethyleather, gingerol, shogaol, paradol, zingerone, capsaicin, dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, homodihydrocapsaicin, ethanol, isopropyl alcohol, iso-amylalcohol, benzyl alcohol, glycerine, and combinations thereof.


The sensation of warming or cooling effects may be prolonged with the use of a hydrophobic sweetener as described in U.S. Patent Application Publication 2003/0072842 A1 to Johnson et al. which is incorporated in its entirety herein by reference. For example, such hydrophobic sweeteners include those of the formulae I-XI referenced therein. Perillartine may also be added as described in U.S. Pat. No. 6,159,509 also incorporated in its entirety herein by reference.


The breath freshening agents may include in addition to the flavors and cooling agents described hereinabove, a variety of compositions with odor controlling properties. These may include, without limitation, cyclodextrin and magnolia bark extract. The breath freshening agents may further be encapsulated to provide a prolonged breath freshening effect. Examples of malodor-controlling compositions are included in U.S. Pat. No. 5,300,305 to Stapler et al. and in U.S. Patent Application Publication Nos. 2003/0215417 and 2004/0081713 which are incorporated in their entirety herein by reference


Coloring agents may be used in amounts effective to produce the desired color. The coloring agents may include pigments which may be incorporated in amounts up to about 6%, by weight of the gum composition. For example, titanium dioxide may be incorporated in amounts up to about 2%, and preferably less than about 1%, by weight of the gum composition. The colorants may also include natural food colors and dyes suitable for food, drug and cosmetic applications. These colorants are known as F.D.& C. dyes and lakes. The materials acceptable for the foregoing uses are preferably water-soluble. Illustrative nonlimiting examples include the indigoid dye known as F.D.& C. Blue No. 2, which is the disodium salt of 5,5-indigotindisulfonic acid. Similarly, the dye known as F.D.& C. Green No. 1 comprises a triphenylmethane dye and is the monosodium salt of 4-[4-(N-ethyl-p-sulfoniumbenzylamino) diphenylmethylene]-[1-(N-ethyl-N-p-sulfoniumbenzyl)-delta-2,5-cyclohexadieneimine]. A full recitation of all F.D.& C. colorants and their corresponding chemical structures may be found in the Kirk-Othmer Encyclopedia of Chemical Technology, 3rd Edition, in volume 5 at pages 857-884, which text is incorporated herein by reference.


Suitable oils and fats usable in gum compositions include partially hydrogenated vegetable or animal fats, such as coconut oil, palm kernel oil, beef tallow, and lard, among others. These ingredients when used are generally present in amounts up to about 7%, and preferably up to about 3.5%, by weight of the gum composition.


Some embodiments may include a method for preparing the improved chewing gum compositions for the gum region, including both chewing gum and bubble gum compositions. The chewing gum compositions may be prepared using standard techniques and equipment known to those skilled in the art. The apparatus useful in accordance with some embodiments comprises mixing and heating apparatus well known in the chewing gum manufacturing arts, and therefore the selection of the specific apparatus will be apparent to the artisan.


Any of a variety of active ingredients may be included in any of the embodiments described herein. The active may be included in the extruded composition or alternatively in a gum composition. Examples of actives include sweetener, flavors, and breath-freshening agents (as described above), medicaments such as analgesics, anti-histamines, decongestants, and antacids, and vitamins.


A variety of drugs, including medications, herbs, and nutritional supplements may also be included as the active. Examples of useful drugs include ace-inhibitors, antianginal drugs, anti-arrhythmias, anti-asthmatics, anti-cholesterolemics, analgesics, anesthetics, anti-convulsants, anti-depressants, anti-diabetic agents, anti-diarrhea preparations, antidotes, anti-histamines, anti-hypertensive drugs, anti-inflammatory agents, anti-lipid agents, anti-manics, anti-nauseants, anti-stroke agents, anti-thyroid preparations, anti-tumor drugs, anti-viral agents, acne drugs, alkaloids, amino acid preparations, anti-tussives, anti-uricemic drugs, anti-viral drugs, anabolic preparations, systemic and non-systemic anti-infective agents, anti-neoplastics, anti-parkinsonian agents, anti-rheumatic agents, appetite stimulants, biological response modifiers, blood modifiers, bone metabolism regulators, cardiovascular agents, central nervous system stimulates, cholinesterase inhibitors, contraceptives, decongestants, dietary supplements, dopamine receptor agonists, endometriosis management agents, enzymes, erectile dysfunction therapies such as sildenafil citrate, which is currently marketed as Viagra®, fertility agents, gastrointestinal agents, homeopathic remedies, hormones, hypercalcemia and hypocalcemia management agents, immunomodulators, immunosuppressives, migraine preparations, motion sickness treatments, muscle relaxants, obesity management agents, osteoporosis preparations, oxytocics, parasympatholytics, parasympathomimetics, prostaglandins, psychotherapeutic agents, respiratory agents, sedatives, smoking cessation aids such as bromocryptine or nicotine, sympatholytics, tremor preparations, urinary tract agents, vasodilators, laxatives, antacids, ion exchange resins, anti-pyretics, appetite suppressants, expectorants, anti-anxiety agents, anti-ulcer agents, anti-inflammatory substances, coronary dilators, cerebral dilators, peripheral vasodilators, psycho-tropics, stimulants, anti-hypertensive drugs, vasoconstrictors, migraine treatments, antibiotics, tranquilizers, anti-psychotics, anti-tumor drugs, anti-coagulants, anti-thrombotic drugs, hypnotics, anti-emetics, anti-nauseants, anti-convulsants, neuromuscular drugs, hyper- and hypo-glycemic agents, thyroid and anti-thyroid preparations, diuretics, anti-spasmodics, terine relaxants, anti-obesity drugs, erythropoietic drugs, anti-asthmatics, cough suppressants, mucolytics, DNA and genetic modifying drugs, and combinations thereof.


The features and advantages of the present invention are more fully shown by the following examples which are provided for purposes of illustration, and are not to be construed as limiting the invention in any way.


EXAMPLES
Example 1
Co-Crystallized/Precipitated Complex

General steps followed for preparing the co-crystallized/precipitated compositions included the following procedure. First, a quantity of β cyclodextrin was added to sucralose and the resulting mixture was then dissolved in 25 ml. water and heated to 80° C. for one hour. The solution was then cooled to 20° C. and allowed to crystallize overnight under refrigeration. The crystalline precipitate was then filtered off by cold-filtration, air-dried, and then milled to a uniform particle size.


In particular, a series of samples of co-crystalline complexes were prepared for testing. Accordingly, 0.25 g, 0.5 g and 1.0 g of cyclodextrin were added to sucralose to prepare a total of 5 g of mixture in accordance with the general procedure above. The samples thus corresponded to mixtures containing 5%, 10% and 20% cyclodextrin. As a comparison, a sample containing pure sucralose was prepared in the same manner, and was likewise milled identically to eliminate any particle size differences.


The co-crystallized/precipitated particles prepared above were combined with polyvinyl acetate (PVAc) and were extruded at a temperature of about 195° F. (92° C.) to provided an extruded sucralose composition. The changes of color (discoloration) of extruded the sucralose compositions were measured by taking diffuse reflectance absorbance readings with a Minolta spectrophotometer of the respective samples. The results are set forth in Table 1.


Referring to Table 1, it is apparent that significant improvement in color is obtained with cyclodextrin stabilized sucralose/PVAc extrudate as compared to free sucralose/PVAc extrudate.


Measurement of Discoloration/Degradation of Extruded Sucralose


The change of color of extruded sucralose compositions were measured by taking Diffuse Reflectance Absorbance readings with a Minolta spectrophotometer model no. CR-321. Absorbance measurement over the entire visible color spectrum were obtained using the International Commission on Illumination (CIE) CIE L*a*b*ΔE color difference formula (CIELab color scale). This scale quantifies color according to a 3 parameters, L* (lightness-darkness scale), a* (red-green chroma), and b* (yellow-blue chroma). The overall change in the color of the encapsulated sucralose composition was calculated using the CIELAB equation ΔE=[(ΔL*)2+(Δa*)2+(Δb*)2]1/2. The ΔE value summarizes the overall change for each color factor (ΔL*=(Lf*−Li*), Δa*=)af*−ai*), and Δb*=(bf*−bi*)) and represents the ability of the cyclodextrin to prevent browning which is related to decomposition of sucralose. In order to obtain reproducible readings, measurements were conducted by aligning the center of the 4 mm square segment of encapsulated sucralose composition directly over the 3 mm diameter targeting aperture of the Minolta spectrophotometer. An average of 3 absorbance readings using the L*, a*, and b* scale were taken for each sucralose composition. There was a significant difference between cyclodextrin-sucralose versus free sucralose extrudates, 83.74 being whiter than 76.43. For Delta b*, which is a measure of brown color, there was also significant difference between cyclodextrin-sucralose and free sucralose 6.89 being more brown as compared to 2.26.









TABLE 1







The change of color of extruded sucralose compositions















Li*
ai*
bi*
Lf*
af*
bf*
ΔE


















Free sucralose-
94.74
−0.74
0.22
76.43
0.29
6.89
19.50


PVAc composition


β-Cyclodextrin
94.74
−0.74
0.22
83.71
0.29
2.26
10.50


stabilized


Sucralose-PVAc


composition









Example 2
Extrusion of Active with Polymer

Another method of preparing a thermally stabilized active composition is to first combine the active, such as sucralose with a low to medium molecular weight polymer prior to extrusion with a high molecular weight polymer.


The compositions for comparative Example 3A and inventive example 3B are set forth in Table 2.









TABLE 2







Compositions for Extruded Sucralose










Example 3A
Example 3B











Component
Weight %
















Step 1





Polyvinyl acetate (B100)1
65.00



Polyvinyl acetate (B17)2
23.10
23.10



Hydrogenated Oil
4.65
0.90



Glycerolmonostearate
1.25



Sucralose
6.00
6.00



Step 2



Polyvinyl acetate (B100)

65.00



Hydrogenated oil

3.75



Glycerolmonostearate

1.25








1High Molecular Weight - approx. 500,000





2Medium Molecular Weight - approx. 100,000







For comparative Example 3A, all the ingredients were mixed and extruded from a laboratory twin screw extruder at a temperature of about 110° C. The mixing and extrusion steps were conducted in a single step. The process resulted in a dark-brown product which is evidence of decomposition of the sucralose.


For inventive Example 3B, the components shown in step 1 were mixed and extruded from a laboratory twin screw extruder at temperature of about 80° C. The resulting sucralose/polymer matrix was then cooled, ground and sized (590 microns screen). HPLC analysis on the encapsulated sucralose showed now decomposition.


The composition resulting from Example 3B, step 1, were added to the components for step 2, mixed, and extruded from a laboratory twin screw extruder at t temperature of about 110° C. The resulting white color sucralose/polymer matrix was cooled, ground and sized (590 microns screen). HPLC analysis on the high strength encapsulation showed no decomposition.


While there have been described what are presently believed to be the preferred embodiments of the invention, those skilled in the art will realize that changes and modifications may be made thereto without departing from the spirit of the invention, and it is intended to include all such changes and modifications as fall within the true scope of the invention.

Claims
  • 1. A gum composition comprising: a composition comprising a heat-sensitive active and a first polymer having a molecular weight from about 9,000 to about 200,000, wherein the heat-sensitive active is at least partially encapsulated by the first polymer; anda second encapsulating layer comprising a second polymer having a molecular weight higher than about 300,000, wherein the composition comprising the heat-sensitive active and the first polymer having a molecular weight from about 9,000 to about 200,000 is encapsulated in the second encapsulating layer.
  • 2. The gum composition of claim 1, wherein said active comprises sucralose.
  • 3. The gum composition of claim 1, wherein said polymer having a molecular weight higher than about 300,000 is selected from the group consisting of acrylic polymers and copolymers, carboxyvinyl polymer, polyamides, polystyrene, polyvinyl acetate, polyvinyl acetate phthalate, polyvinyl pyrrolidone, and combinations thereof.
  • 4. The gum composition of claim 1, wherein said composition comprising the heat-sensitive active, the first polymer, and the second polymer has an average particle size ranging from about 50 μm to about 800 μm.
  • 5. The gum composition of claim 1, wherein said composition comprising the heat-sensitive active, the first polymer, and the second polymer is present in an amount from about 5% to about 50% of said gum composition.
  • 6. An encapsulated sweetener composition provided by: (a) preparing a thermally stabilized sucralose composition comprising sucralose and a polymer having a molecular weight from about 9,000 to about 200,000; wherein the sucralose is at least partially encapsulated by the polymer;(b) combining said thermally stabilized sucralose composition with a high molecular weight polymer having a molecular weight higher than about 300,000;(c) melting and extruding said thermally stabilized sucralose composition with said polymer having a molecular weight higher than about 300,000 to provide an encapsulated composition; and(d) forming said encapsulated compositions to a particle size.
  • 7. A method of preparing an encapsulated active composition comprising: (a) preparing a thermally stabilized active composition comprising a polymer having a molecular weight from about 9,000 to about 200,000 and a heat sensitive active; wherein the heat-sensitive active is at least partially encapsulated by the polymer;(b) combining said thermally stabilized active composition with a high molecular weight polymer having a molecular weight higher than about 300,000;(c) melting and extruding said thermally stabilized active composition with said polymer having a molecular weight higher than about 300,000 to provide an encapsulated composition; and(d) forming said encapsulated compositions to a particle size.
  • 8. A gum composition comprising: (a) a gum base; and(b) an at least partially encapsulated sweetener composition comprising: (i) a thermally stabilized sucralose composition comprising sucralose and a polymer having a molecular weight from about 9,000 to about 200,000; wherein the sucralose is at least partially encapsulated by the polymer; and(ii) an encapsulating layer comprising a high molecular weight polymer having a molecular weight higher than about 300,000, said encapsulating layer at least partially encapsulating said thermally stabilized sucralose composition; wherein said thermally stabilized sucralose composition is encapsulated in the encapsulating layer.
  • 9. The composition of claim 8, wherein said high molecular weight polymer is polyvinyl acetate having molecular weight of at least about 300,000.
  • 10. The composition of claim 8, wherein said sweetener composition has an average particle size ranging from about 50 μm to about 800 μm.
  • 11. The composition of claim 8, wherein said thermally stabilized sucralose composition comprises from about 5% to about 50% of said sweetener composition.
  • 12. The composition of claim 8, wherein said sweetener composition further comprises an additional active.
  • 13. The composition of claim 12, wherein said additional active is selected from the group consisting of high intensity sweeteners, flavors, medicaments, vitamins and combinations thereof.
  • 14. A method of preparing an encapsulated active comprising combining a thermally stabilized active composition comprising a heat-sensitive active with a polymer having a molecular weight from about 9,000 to about 200,000 and a high molecular weight polymer having a molecular weight higher than about 300,000 followed by melting and extruding said thermally stabilized active composition and said high molecular weight polymer to provide an encapsulated active composition.
  • 15. A composition comprising an extrudate of a polymer having a molecular weight from about 9,000 to about 200,000 and a heat-sensitive active; wherein the extrudate is combined with an encapsulating polymer by melt extrusion, wherein the encapsulating polymer is a high molecular weight polymer having a molecular weight higher than about 300,000, and wherein the composition shows no decomposition at a temperature of about 110° C.
  • 16. A composition comprising: (i) a composition comprising a heat-sensitive active which is encapsulated with a polymer having a molecular weight from about 9,000 to about 200,000 and(ii) a high molecular weight polymer having a molecular weight higher than about 300,000 which encapsulates said composition comprising said heat-sensitive active; wherein the heat-sensitive active shows no decomposition at a temperature of about 110° C.
  • 17. An encapsulated sweetener comprising the composition of claim 16.
  • 18. The composition of claim 1, wherein the high molecular weight polymer has a molecular weight of about 500,000 or higher.
  • 19. The encapsulated sweetener composition of claim 6, wherein the high molecular weight polymer has a molecular weight of about 500,000 or higher.
  • 20. The method of claim 7, wherein the high molecular weight polymer has a molecular weight of about 500,000 or higher.
  • 21. The composition of claim 8, wherein the high molecular weight polymer has a molecular weight of about 500,000 or higher.
  • 22. The method of claim 14, wherein the high molecular weight polymer has a molecular weight of about 500,000 or higher.
  • 23. The composition of claim 15, wherein the high molecular weight polymer has a molecular weight of about 500,000 or higher.
  • 24. The composition of claim 16, wherein the high molecular weight polymer has a molecular weight of about 500,000 or higher.
  • 25. The composition of claim 1, wherein the composition provides a sweetening perception upon chewing.
  • 26. The encapsulated sweetener composition of claim 6, which provides a sweetening perception upon chewing.
  • 27. The composition of claim 8, which provides a sweetening perception upon chewing.
  • 28. The method of claim 14, wherein the encapsulated active composition provides a sweetening perception upon chewing.
  • 29. The composition of claim 15, which provides a sweetening perception upon chewing.
  • 30. The composition of claim 16, which provides a sweetening perception upon chewing.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of both U.S. application Ser. No. 10/955,149, filed Sep. 30, 2004 and U.S. application Ser. No. 10/955,225, filed Sep. 30, 2004, the contents all of which are incorporated herein by reference.

US Referenced Citations (316)
Number Name Date Kind
1633336 Larson Jun 1927 A
1936456 Larson et al. Nov 1933 A
2191199 Hall Feb 1940 A
2197719 Conner Apr 1940 A
2876167 Manahan Mar 1959 A
2886440 Kramer et al. May 1959 A
2886441 Kramer et al. May 1959 A
2886442 Kramer et al. May 1959 A
2886443 Rosenthal et al. May 1959 A
2886444 Rosenthal et al. May 1959 A
2886445 Rosenthal et al. May 1959 A
2886446 Kramer et al. May 1959 A
2886449 Rosenthal et al. May 1959 A
3004897 Shore Oct 1961 A
3052552 Koerner et al. Sep 1962 A
3117027 Lindlof et al. Jan 1964 A
3124459 Erwin Mar 1964 A
3159585 Evans et al. Dec 1964 A
3241520 Wurster et al. Mar 1966 A
3475533 Mayrand Oct 1969 A
3538230 Pader et al. Nov 1970 A
3664962 Kelly et al. May 1972 A
3664963 Pasin May 1972 A
3677771 Kolar, Jr. Jul 1972 A
3795744 Ogawa et al. Mar 1974 A
3819838 Smith et al. Jun 1974 A
3821417 Westall et al. Jun 1974 A
3826847 Ogawa et al. Jul 1974 A
3857964 Yolles Dec 1974 A
3862307 Di Giulio Jan 1975 A
3872021 McKnight Mar 1975 A
3878938 Venables et al. Apr 1975 A
3897566 Bahoshy et al. Jul 1975 A
3912817 Sapsowitz Oct 1975 A
3930026 Clark Dec 1975 A
3943258 Bahoshy et al. Mar 1976 A
3962416 Katzen Jun 1976 A
3962463 Witzel Jun 1976 A
3974293 Witzel Aug 1976 A
3984574 Comollo Oct 1976 A
4032661 Rowsell et al. Jun 1977 A
4033994 Watson et al. Jul 1977 A
4037000 Burge et al. Jul 1977 A
4045581 Mackay et al. Aug 1977 A
4059118 Watson et al. Nov 1977 A
4060091 Watson et al. Nov 1977 A
4070449 Rowsell et al. Jan 1978 A
4083995 Mitchell et al. Apr 1978 A
4107360 Schmidgall Aug 1978 A
4130638 Dhabhar et al. Dec 1978 A
4136163 Watson et al. Jan 1979 A
4139639 Bahoshy et al. Feb 1979 A
4148872 Wagenknecht et al. Apr 1979 A
4150112 Wagenknecht et al. Apr 1979 A
4156715 Wagenknecht et al. May 1979 A
4156716 Wagenknecht et al. May 1979 A
4157385 Wagenknecht et al. Jun 1979 A
4159315 Wagenknecht et al. Jun 1979 A
4160054 Wagenknecht et al. Jul 1979 A
4160820 Wagenknecht et al. Jul 1979 A
4187320 Koch et al. Feb 1980 A
4193936 Watson et al. Mar 1980 A
4208431 Friello et al. Jun 1980 A
4217368 Witzel et al. Aug 1980 A
4224345 Tezuka et al. Sep 1980 A
4230688 Rowsell et al. Oct 1980 A
4271197 Hopkins et al. Jun 1981 A
4271199 Cherukuri et al. Jun 1981 A
4276312 Merritt Jun 1981 A
4295845 Sepulveda et al. Oct 1981 A
4314990 Denny, Jr. et al. Feb 1982 A
4340583 Wason Jul 1982 A
4352822 Cherukuri et al. Oct 1982 A
4352823 Cherukuri et al. Oct 1982 A
4352825 Cherukuri et al. Oct 1982 A
4363756 Sepulveda et al. Dec 1982 A
4384004 Cea et al. May 1983 A
4386106 Merritt et al. May 1983 A
4388328 Glass Jun 1983 A
4452821 Gergely Jun 1984 A
4457857 Sepulveda et al. Jul 1984 A
4459425 Amano et al. Jul 1984 A
4485118 Carroll et al. Nov 1984 A
4497832 Cherukuri et al. Feb 1985 A
4513012 Carroll et al. Apr 1985 A
4515769 Merritt et al. May 1985 A
4568560 Schobel Feb 1986 A
4585649 Lynch Apr 1986 A
4590075 Wei et al. May 1986 A
4597970 Sharma et al. Jul 1986 A
4614649 Gorman et al. Sep 1986 A
4614654 Ream et al. Sep 1986 A
4627987 Barnett et al. Dec 1986 A
4634593 Stroz et al. Jan 1987 A
4673577 Patel Jun 1987 A
4711784 Yang Dec 1987 A
4722845 Cherukuri et al. Feb 1988 A
4726953 Carroll et al. Feb 1988 A
4740376 Yang Apr 1988 A
4741905 Huzinec May 1988 A
4749575 Rotman Jun 1988 A
4751095 Karl et al. Jun 1988 A
4752481 Dokuzovic Jun 1988 A
4753790 Silva et al. Jun 1988 A
4771784 Kozin et al. Sep 1988 A
4800087 Mehta Jan 1989 A
4803082 Cherukuri et al. Feb 1989 A
4804548 Sharma et al. Feb 1989 A
4816265 Cherukuri et al. Mar 1989 A
4822599 Mitra Apr 1989 A
4824681 Schobel et al. Apr 1989 A
4828845 Zamudio-Tena et al. May 1989 A
4828857 Sharma et al. May 1989 A
4842762 Sabol, Jr. et al. Jun 1989 A
4871570 Barnett et al. Oct 1989 A
4904482 Patel et al. Feb 1990 A
4911934 Yang et al. Mar 1990 A
4915958 Faust et al. Apr 1990 A
4918182 Jackson et al. Apr 1990 A
4919841 Kamel et al. Apr 1990 A
4923684 Ibrahim et al. May 1990 A
4927646 Jenner May 1990 A
4929447 Yang May 1990 A
4931293 Cherukuri et al. Jun 1990 A
4933190 Cherukuri et al. Jun 1990 A
4952407 Record et al. Aug 1990 A
4971797 Cherukuri et al. Nov 1990 A
4971806 Cherukuri et al. Nov 1990 A
4978537 Song Dec 1990 A
4981698 Cherukuri et al. Jan 1991 A
4985236 Ibrahim et al. Jan 1991 A
4986991 Yatka et al. Jan 1991 A
4997659 Yatka et al. Mar 1991 A
5004595 Cherukuri et al. Apr 1991 A
5009893 Cherukuri et al. Apr 1991 A
5009900 Levine et al. Apr 1991 A
5017385 Wienecke May 1991 A
5041294 Patel Aug 1991 A
5043154 Gaffar et al. Aug 1991 A
5043169 Cherukuri et al. Aug 1991 A
5057327 Yatka et al. Oct 1991 A
5057328 Cherukuri et al. Oct 1991 A
5059429 Cherukuri et al. Oct 1991 A
5064658 Cherukuri et al. Nov 1991 A
5073389 Wienecke Dec 1991 A
5080887 Gaffar et al. Jan 1992 A
5082671 Cherukuri Jan 1992 A
5084278 Mehta Jan 1992 A
5096699 Gaffar et al. Mar 1992 A
5096701 White, Jr. et al. Mar 1992 A
5100678 Reed et al. Mar 1992 A
5108763 Chau et al. Apr 1992 A
5126151 Bodor et al. Jun 1992 A
5139793 Johnson et al. Aug 1992 A
5139794 Patel et al. Aug 1992 A
5139798 Yatka et al. Aug 1992 A
5154939 Broderick et al. Oct 1992 A
5158790 Witkewitz et al. Oct 1992 A
5164210 Campbell et al. Nov 1992 A
5169657 Yatka et al. Dec 1992 A
5169658 Yatka et al. Dec 1992 A
5174514 Prodi Dec 1992 A
5176900 White, Jr. et al. Jan 1993 A
5198251 Song et al. Mar 1993 A
5202112 Prencipe et al. Apr 1993 A
5208009 Gaffar et al. May 1993 A
5226335 Sitte et al. Jul 1993 A
5227182 Song et al. Jul 1993 A
5229148 Copper Jul 1993 A
5240710 Bar-Shalom et al. Aug 1993 A
5244670 Upson et al. Sep 1993 A
5256402 Prencipe et al. Oct 1993 A
5266335 Cherukuri et al. Nov 1993 A
5266592 Grub et al. Nov 1993 A
5273741 Gaftar et al. Dec 1993 A
5284659 Cherukuri et al. Feb 1994 A
5300283 Prencipe et al. Apr 1994 A
5334375 Nabi et al. Aug 1994 A
5334396 Yatka Aug 1994 A
5336509 McGrew et al. Aug 1994 A
5352439 Norfleet et al. Oct 1994 A
5364627 Song Nov 1994 A
5372824 Record et al. Dec 1994 A
5380530 Hill Jan 1995 A
5385729 Prencipe et al. Jan 1995 A
5391315 Ashkin Feb 1995 A
5405604 Hall Apr 1995 A
5407665 McLaughlin et al. Apr 1995 A
5413799 Song et al. May 1995 A
5415880 Song et al. May 1995 A
5429827 Song et al. Jul 1995 A
5431930 Patel et al. Jul 1995 A
5437876 Synosky et al. Aug 1995 A
5437878 Panhorst et al. Aug 1995 A
5458879 Singh et al. Oct 1995 A
5462754 Synosky et al. Oct 1995 A
5474787 Grey et al. Dec 1995 A
5480668 Nofre et al. Jan 1996 A
5487902 Andersen et al. Jan 1996 A
5498378 Tsaur et al. Mar 1996 A
5501864 Song et al. Mar 1996 A
5503823 Norfleet et al. Apr 1996 A
5505933 Norfleet et al. Apr 1996 A
5523098 Synosky et al. Jun 1996 A
5532004 Bell et al. Jul 1996 A
5545424 Nakatsu et al. Aug 1996 A
5582816 Mandanas et al. Dec 1996 A
5589160 Rice Dec 1996 A
5589194 Tsuei et al. Dec 1996 A
5599527 Hsu et al. Feb 1997 A
5603920 Rice Feb 1997 A
5603971 Porzio et al. Feb 1997 A
5618517 Miskewitz Apr 1997 A
5626892 Kehoe et al. May 1997 A
5629035 Miskewitz May 1997 A
5633027 Cherukuri et al. May 1997 A
5637618 Kurtz et al. Jun 1997 A
5645821 Libin Jul 1997 A
5651958 Rice Jul 1997 A
5658553 Rice Aug 1997 A
5676932 Wason et al. Oct 1997 A
5693334 Miskewitz Dec 1997 A
5698215 Kalili et al. Dec 1997 A
5702687 Miskewitz Dec 1997 A
5713738 Yarborough Feb 1998 A
5716601 Rice Feb 1998 A
5725865 Mane et al. Mar 1998 A
5736175 Cea et al. Apr 1998 A
5744180 Cherukuri et al. Apr 1998 A
5756074 Ascione et al. May 1998 A
5783725 Kuhn et al. Jul 1998 A
5789002 Duggan et al. Aug 1998 A
5800848 Yatka et al. Sep 1998 A
5824291 Howard Oct 1998 A
5869028 McGill et al. Feb 1999 A
5879728 Graff et al. Mar 1999 A
5912007 Pan et al. Jun 1999 A
5939051 Santalucia et al. Aug 1999 A
6027746 Lech Feb 2000 A
6056992 Lew May 2000 A
6159509 Johnson et al. Dec 2000 A
6174514 Cherukuri et al. Jan 2001 B1
6190644 McClanahan et al. Feb 2001 B1
6238690 Kiefer et al. May 2001 B1
6239690 Burbidge et al. May 2001 B1
6261540 Nelson Jul 2001 B1
6290933 Durga et al. Sep 2001 B1
6306429 Bealin-Kelly Oct 2001 B1
6365209 Cherukuri Apr 2002 B2
6379652 Liu et al. Apr 2002 B1
6379654 Gebreselassie et al. Apr 2002 B1
6416744 Robinson et al. Jul 2002 B1
6428827 Song et al. Aug 2002 B1
6471945 Luo et al. Oct 2002 B2
6475469 Montgomery Nov 2002 B1
6479071 Holme et al. Nov 2002 B2
6485739 Luo et al. Nov 2002 B2
6506366 Leinen et al. Jan 2003 B1
6534091 Garces et al. Mar 2003 B1
6555145 Cherukuri Apr 2003 B1
6623266 Jani et al. Sep 2003 B2
6627233 Wolf et al. Sep 2003 B1
6673844 Kumamoto et al. Jan 2004 B2
6685916 Holme et al. Feb 2004 B1
6692778 Yatka et al. Feb 2004 B2
6696044 Luo et al. Feb 2004 B2
6759066 Savage et al. Jul 2004 B2
6780443 Nakatsu et al. Aug 2004 B1
7022352 Castro et al. Apr 2006 B2
7025999 Johnson et al. Apr 2006 B2
7189760 Erman et al. Mar 2007 B2
20020044968 Van Lengerich Apr 2002 A1
20020054859 Alvarez Hernandez May 2002 A1
20020119231 Kumamoto et al. Aug 2002 A1
20020122842 Seielstad et al. Sep 2002 A1
20020150616 Vandecruys Oct 2002 A1
20030059519 Merkel et al. Mar 2003 A1
20030077362 Panhorst et al. Apr 2003 A1
20030091721 Ohta et al. May 2003 A1
20030099740 Colle et al. May 2003 A1
20030113274 Holme et al. Jun 2003 A1
20030198710 Ross et al. Oct 2003 A1
20030215532 Nakatsu et al. Nov 2003 A1
20040136928 Holme et al. Jul 2004 A1
20040146599 Andersen et al. Jul 2004 A1
20040175489 Clark et al. Sep 2004 A1
20040238993 Benczedi et al. Dec 2004 A1
20050019445 Wolf et al. Jan 2005 A1
20050025721 Holme et al. Feb 2005 A1
20050112236 Boghani et al. May 2005 A1
20050196517 Hodanko et al. Sep 2005 A1
20050214348 Boghani et al. Sep 2005 A1
20050220867 Boghani et al. Oct 2005 A1
20050260266 Gebreselassie et al. Nov 2005 A1
20060034897 Boghani et al. Feb 2006 A1
20060068059 Boghani et al. Mar 2006 A1
20060193896 Boghani et al. Aug 2006 A1
20060263413 Boghani et al. Nov 2006 A1
20060263472 Boghani et al. Nov 2006 A1
20060263473 Boghani et al. Nov 2006 A1
20060263477 Boghani et al. Nov 2006 A1
20060263478 Boghani et al. Nov 2006 A1
20060263479 Boghani et al. Nov 2006 A1
20060263480 Boghani et al. Nov 2006 A1
20070036733 Spence et al. Feb 2007 A1
20070048424 Moza et al. Mar 2007 A1
20070298061 Boghani et al. Dec 2007 A1
20080063747 Boghani et al. Mar 2008 A1
20080160138 Boghani et al. Jul 2008 A1
20080166449 Kabse et al. Jul 2008 A1
20080187621 Boghani et al. Aug 2008 A1
20080199564 Boghani et al. Aug 2008 A1
20090098252 Boghani et al. Apr 2009 A1
20090175982 Boghani et al. Jul 2009 A1
20090214445 Boghani et al. Aug 2009 A1
20090220642 Boghani et al. Sep 2009 A1
Foreign Referenced Citations (109)
Number Date Country
1 208 966 Aug 1986 CA
2 238 925 Nov 1999 CA
1063798 Aug 1992 CN
19653100 Jul 1998 DE
0 067 595 Dec 1982 EP
0 132 444 Feb 1985 EP
0 134 120 Mar 1985 EP
0 252 374 Jan 1988 EP
0 255 260 Feb 1988 EP
0 434 321 Jun 1991 EP
0 452 273 Oct 1991 EP
0 453 397 Oct 1991 EP
0 608 712 Aug 1994 EP
0 888 067 Jul 1997 EP
1 121 927 Aug 2001 EP
1 215 258 Jun 2002 EP
1 003 475 Jan 2004 EP
2 080 703 Feb 1996 ES
2 190 875 Aug 2003 ES
875763 Aug 1961 GB
1 351 761 May 1974 GB
1444024 Jul 1976 GB
2 388 581 Nov 2003 GB
53-136566 Nov 1978 JP
62-215349 Sep 1987 JP
01-206969 Aug 1989 JP
02-083030 Mar 1990 JP
02083030 Mar 1990 JP
02-227044 Sep 1990 JP
2-258714 Oct 1990 JP
4-311365 Nov 1992 JP
6-14739 Jan 1994 JP
10-511104 Oct 1998 JP
2002-511777 Apr 2002 JP
2002-541123 Dec 2002 JP
85679 Nov 1984 RO
WO 8503414 Aug 1985 WO
WO 8800463 Jan 1988 WO
WO 8903170 Apr 1989 WO
WO 8911212 Nov 1989 WO
WO 9004926 May 1990 WO
WO 9007859 Jul 1990 WO
WO 9012512 Nov 1990 WO
WO 9013994 Nov 1990 WO
WO 9107104 May 1991 WO
WO 9202145 Feb 1992 WO
WO 9206160 Apr 1992 WO
WO 9323005 Nov 1993 WO
WO 9325177 Dec 1993 WO
WO 9507683 Mar 1995 WO
WO 9511671 May 1995 WO
WO 9533034 Dec 1995 WO
WO 9603109 Feb 1996 WO
WO 9608166 Mar 1996 WO
WO 9617524 Jun 1996 WO
WO 9619193 Jun 1996 WO
WO 9702009 Jan 1997 WO
WO 9702011 Jan 1997 WO
WO 9702273 Jan 1997 WO
WO 9706695 Feb 1997 WO
WO 9706774 Feb 1997 WO
WO 9724036 Jul 1997 WO
9803076 Jan 1998 WO
WO 9803076 Jan 1998 WO
WO 9815192 Apr 1998 WO
9818610 May 1998 WO
WO 9818339 May 1998 WO
WO 9823165 Jun 1998 WO
WO 9829088 Jul 1998 WO
WO 9847483 Oct 1998 WO
WO 9847484 Oct 1998 WO
WO 9852540 Nov 1998 WO
WO 9852545 Nov 1998 WO
WO 9913870 Mar 1999 WO
WO 9915032 Apr 1999 WO
WO 9927798 Jun 1999 WO
WO 9943294 Sep 1999 WO
WO 9962354 Dec 1999 WO
WO 0001253 Jan 2000 WO
WO 0008092 Feb 2000 WO
WO 0035296 Jun 2000 WO
WO 0035398 Jun 2000 WO
WO 0036924 Jun 2000 WO
0059543 Oct 2000 WO
WO 0069282 Nov 2000 WO
WO 0075274 Dec 2000 WO
WO 0149125 Jul 2001 WO
WO 0176384 Oct 2001 WO
WO 0200039 Jan 2002 WO
WO 0247489 Jun 2002 WO
WO 02055649 Jul 2002 WO
WO 02076231 Oct 2002 WO
WO 02102362 Dec 2002 WO
WO 03063604 Aug 2003 WO
WO 03106404 Dec 2003 WO
2004005227 Jan 2004 WO
WO 2004006967 Jan 2004 WO
WO 2004064544 Aug 2004 WO
WO 2004077956 Sep 2004 WO
WO 2005016022 Feb 2005 WO
WO 2005051427 Jun 2005 WO
WO 2005079598 Sep 2005 WO
WO 2005082154 Sep 2005 WO
WO 2005087020 Sep 2005 WO
WO 2005091918 Oct 2005 WO
WO 2006003349 Jan 2006 WO
WO 2006039945 Apr 2006 WO
WO 2006079056 Jul 2006 WO
WO 2006086061 Aug 2006 WO
Related Publications (1)
Number Date Country
20060068057 A1 Mar 2006 US
Continuation in Parts (2)
Number Date Country
Parent 10955149 Sep 2004 US
Child 11205874 US
Parent 10955225 Sep 2004 US
Child 10955149 US