This invention generally relates to polycrystalline diamond materials and, more specifically, polycrystalline diamond materials and compacts formed therefrom that are specially designed to provide improved thermal stability when compared to conventional polycrystalline diamond materials.
Polycrystalline diamond (PCD) materials and PCD elements formed therefrom are well known in the art. Conventionally, PCD is formed by combining diamond grains with a suitable binder/catalyst material. The mixture is subjected to conditions of extremely high temperature/high pressure, where the binder/catalyst material promotes desired intercrystalline diamond-to-diamond bonding between the grains, thereby forming a polycrystalline diamond structure. The resulting PCD structure produces enhanced properties of wear resistance and hardness, making PCD materials extremely useful in aggressive wear and cutting applications where high levels of wear resistance and hardness are desired. Binder/catalyst materials that are typically used for forming PCD include Group VIII elements, cobalt (Co) being the most common. Conventional PCD can comprise from 85 to 95% by volume diamond and a remaining amount of the binder/catalyst material. The binder/catalyst material is present in the PCD material within interstices that exist between the bonded together diamond grains.
One problem known to exist with such conventional PCD materials is thermal degradation due to differential thermal expansion between the interstitial cobalt binder/catalyst material and the intercrvstalline bonded diamond. This is known to occur at temperatures of about 400° C. Upon sufficient expansion, the diamond-to-diamond bonding may be ruptured and cracks and chips may occur.
Another problem known to exist with convention PCD materials involves the presence of the binder/catalyst material in the interstitial regions adhering to the diamond crystals, and another form of thermal degradation. This presence of the binder/catalyst material is known to catalyze phase transformations in diamond (converting to carbon monoxide, carbon dioxide, or graphite) with increasing temperature, thereby limiting practical use of the PCD material to about 750° C.
Attempts at addressing this issue are known in the art. Generally, these attempts have involved the formation of a PCD material having an improved degree of thermal stability when compared to the conventional PCD material discussed above. One known technique of producing a thermally stable PCD material involves a multi-step process of first forming a conventional sintered PCD element, i.e., one formed by combining diamond grains and a cobalt binder/catalyst material at high temperature/high pressure, and secondly selectively removing the binder/catalyst material from a working surface of the sintered element.
While this multi-step process results in the removal of the binder/catalyst from a select portion of the PCD element working surface, and is promoted as providing improved thermal stability in the region of the element where the binder/catalyst has been removed, it involves a multi-step process that is both time consuming and labor intensive.
It is, therefore, desired that a PCD material be developed that has improved thermal stability when compared to conventional PCD materials. It is also desired that such PCD material be capable of being prepared during a single manufacturing process.
Thermally-stable polycrystalline diamond materials of this invention comprise a first material phase that includes a plurality of bonded together diamond crystals, and a second material phase that includes a reaction product formed between a binder/catalyst material used to facilitate diamond crystal bonding and a material that is reactive with the binder/catalyst material. The reaction product is disposed within interstitial regions of the polycrystalline diamond material that exists between the bonded diamond crystals.
Thermally-stable polycrystalline diamond materials of this invention, comprising the above-noted two material regions, are formed during a single high pressure/high temperature process condition. Thus, the reactive material is one that is capable of forming such reactive product within the same process conditions that use used to promote bonding together of the diamond crystals. The reactive material is also one that is selected to form a reaction product having a coefficient of thermal expansion that is relatively closer to that of the bonded together diamond crystals than that of the binder/catalyst material, thereby enhancing the thermal stability of the polycrystalline diamond material. The reactive material can also be selected to form a reaction product with the diamond crystals themselves, thereby further promoting thermal stability of the resulting polycrystalline diamond material through enhanced bonding within the polycrystalline diamond microstructure.
Thermally-stable polycrystalline diamond materials of this invention are useful for forming compacts generally having the construction of a polycrystalline diamond body, including the thermally-stable polycrystalline diamond material, that is joined to a metallic substrate. When provided in the form of such a polycrystalline diamond compact, the construction can include a barrier layer interposed between the substrate and the polycrystalline diamond body to control unwanted migration of infiltration of materials from the metallic substrate to the body during high pressure/high temperature process conditions. Constructed in this manner, thermally-stable polycrystalline diamond materials of this invention are provided in a form that is useful in such wear and cutting applications as subterranean drilling, e.g., provided in the form of cutting inserts and/or shear cutters in subterranean drill bits.
These and other features and advantages of the present invention will be appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
PCD materials of this invention and PCD compacts formed therefrom are specially engineered to provide improved thermal stability when compared to conventional PCD materials and are, therefore, referred to as thermally-stable PCD. Thermally-stable PCD materials of this invention are formed during a single process step of consolidating and sintering the PCD material. During this single processing step, the binder/catalyst material that is used to catalyze diamond-to-diamond intercrystalline bonding reacts with a specially selected getter material to produce a desired compound. This resulting compound has a degree of thermal stability that is greater than that of the binder/catalyst material alone, thereby contributing to the formation of a PCD element, e.g., a compact, having improved overall thermal stability when compared to conventional PCD.
Suitable binder/catalyst materials useful for forming thermally-stable PCD materials of this invention include those metals selected from Group VIII elements of the Periodic table, a particularly preferred binder/catalyst material being cobalt. PCD materials of this invention embodiment are prepared by combining synthetic diamond powder having an average diameter grain size in the range of from submicrometer in size to 100 micrometers, and more preferably in the range of from about 20 to 80 micrometers, with cobalt powder to provide a cobalt coating thereon. The diamond powder can contain grains having a mono or multi modal size distribution. In an example embodiment, the cobalt powder has an average grain size in the range of from about submicrometer to tens of micrometers, and more preferably in the range of 0.1 to 10 micrometers.
Another method of achieving a coating of cobalt on the diamond particles would be to coat them with a thin layer of Cobalt by some means known to the art. Various methods could be used to achieve this such as sputter coating, physical vapor deposition, chemical vapor deposition, decomposition of organo-metallic complexes, electrolytic plating, and the like. It is understood that methods not specifically listed above may be used to obtain a coating on the diamond grains.
In an example embodiment, the mixture of diamond and cobalt powder comprises in the range of from 80 to 99 percent by volume diamond, and a remaining amount cobalt, based on the total volume of the mixture. The diamond grains and cobalt powder are combined together by conventional process, such as by ball or attrittor milling for as much time as necessary to ensure good cobalt over diamond grain coverage. It is understood that during this process step some of the diamond grains may not be entirely coated with the binder/catalyst material.
A suitable binder/catalyst reaction or getter material is combined with the so-formed cobalt coated diamond grains, and the mixture is blended together by conventional method such as by ball or attrittor milling for as long as necessary to obtain good getter material coverage over or with the cobalt. Suitable getter materials useful for forming thermally-stable PCD materials of this invention include those that are capable of reacting with the binder/catalyst material during the consolidation and sintering process, e.g., at a point of the consolidating and sintering process where intercrystalline diamond bonding has started to take place. Suitable getter materials include those that react with the binder/catalyst material to form a compound having a degree of thermal stability that is greater than that of the binder/catalyst material alone, thereby contributing to the overall thermal stability of the PCD material. In forming thermally-stable PCD materials of this invention, one or a combination of getter materials can be used.
In an example embodiment, where the binder/catalyst is cobalt, a desired getter material comprises silicon or a silicon-containing compound provided in the form of a powder. Preferred silicon or silicon-containing compounds include pure silicon (Si) and silicon carbide (SiC). These getter materials can be used alone or in combination. In a preferred embodiment, a combination of silicon and silicon carbide is used. When combined with the cobalt coated diamond grains, the resulting mixture comprises diamond grains that have a sequential coating of the binder/catalyst material and the getter material.
The resulting mixture is cleaned to enhance the sinterability of the powder by treatment at high temperature in a vacuum or reducing atmosphere. The blended powder mixture is loaded into a desired container for placement within a suitable high pressure/high temperature consolidation and sintering device. The device is then activated to subject the container to a desired high pressure/high temperature condition to effect consolidation and sintering. Thermally-stable PCD materials of this invention can be consolidated and sintered by conventional equipment and techniques used to consolidate and sinter conventional PCD materials.
During the high pressure/high temperature consolidation and sintering process, the cobalt coating on the diamond grains is theorized to provide highly-localized catalysis for the rapid creation of strong bonds between the diamond grains or crystals, i.e., producing intercrystalline bonded diamond. As these bonds are formed, the cobalt moves into interstitial regions between the intererystalline bonded diamond where it combines and reacts with the getter material, in this case Si and/or SiC. The following reactions producing cobalt disilicide (CoSi2) are believed to occur:
Co+2Si=CoSi2 Reaction I
Co+2SiC=CoSi2+2C Reaction II
The formation of cobalt disilicide according to the above-noted reactions is a desired result because it is known to have a level of thermal stability that is superior to cobalt alone, thereby producing a PCD material having an overall corresponding improved degree of thermal stability. In the event that the getter material used is SiC, it is believed that the free carbon that is produced according to Reaction II precipitates as diamond since the reaction takes place during the high pressure/high temperature reaction in the diamond-stable region of the diamond phase diagram.
The formation and presence of this precipitated diamond in the binder phase of the PCD material microstructure is believed to have two advantages. First, it functions to enhance the overall wear and abrasion resistance of the PCD material. Second, it functions to both improve the thermal conductivity of the binder phase, and provide a coefficient of thermal expansion that is closely matched to the intercrystalline diamond bonded phase, thereby contributing to the overall thermal stability of the material.
The use of pure silicon (Si) as the getter material has the advantage that excess material, e.g., silicon, that has not reacted with cobalt is believed to form a reaction phase with the diamond crystals in the intercrystalline diamond bonded phase according to the reaction:
Si+C=SiC Reaction III
This reaction between the pure silicon and the diamond crystals is desired as it is believed to improve bonding between the binder phase and the intercrystalline diamond phase, thereby providing a PCD material having an overall improved level of structural strength between the phases.
It is to be understood that the type and amount of getter material(s) that is used can and will vary depending on the particular type and amount of binder/catalyst material that is used, in addition to the particular application for the resulting PCD compact or element that is formed from the PCD material. Additionally, as noted above, the amount of the getter materials that are used, e.g., over the stoichiometric amount, can and will vary depending on the types of reactions products that are formed. For example, as noted above, it may be desired to use a stoichiometric excess of a particular getter material to produce, in addition to a desired reaction product having an improved level of thermal stability, a desired reaction product in the binder or getter material phase of the material construction. In an example embodiment, a stoichiometric excess of up to about 50 percent may be desired, and more preferably a stoichiometric excess in the range of from about 10 to 20 percent.
It is anticipated that the molar volume changes induced during the reaction may have important effects on the final product. Since the reaction of interest is occurring within the pore spaces between diamond grains, a reaction which promotes an overall increase in molar volume will likely not proceed to completion because the volume between diamond grains is highly limited by the pressure applied by the HP/HT apparatus. Conversely, a reaction which promotes a large molar volume reduction may cause microstructural problems such as microcracking in the reacted material if the reacted volume is not large enough to fill the initial pore size. It is clear that through an engineered combination of reactants (i.e. Si and SiC) the molar volume change can be tailored over a broad range to help solve potential microstructure-related problems. Table I below presents reactant and product molar volume per mole Co data for reactions I and II presented above.
In an example embodiment, it is desired that the types and amounts of the getter material(s) be carefully selected to enable formation of a PCD material during the consolidation and sintering process that provides a desired level of improvement in thermal stability while also not adversely affecting the sintered product, e.g., displaying minimal sintering defects such as microcracks. Ideally, the type and amount of the getter materials used to form PCD materials of this invention will be that which produces an ideal combination of optimal PCD compact physical properties and enables robust manufacturability.
It is to be understood that PCD compacts formed from PCD materials of this invention may or may not include a substrate attached thereto depending on the final intended use.
Additionally, it is to be understood that PCD compacts of this invention comprise a PCD body that is either entirely or partially formed from the PCD material of this invention. In the example embodiment illustrated in
In the event that thermally-stable PCD compacts of this invention include a substrate formed from cemented tungsten carbide, it may be desirable to place a barrier layer between the substrate and the PCD material to prevent unwanted infiltration of extra cobalt therein which could adversely impact the thermal stability of the resultant PCD material. Such a barrier layer can be positioned between the substrate and the PCD material, or can be positioned within the PCD material a desired distance from the substrate. Materials useful for forming such a barrier layer include refractory metals that would tend to form carbides, such as Zr, Nb, Mo, Ta, as well as noble metals such as Ru, Re, Rh and Pt.
The above-identified PCD material first embodiment will be better understood with reference to the following example:
Synthetic diamond powder having an average grain size of approximately 20 micrometers was combined with cobalt powder having an average grain size of approximately 0.5 micrometers. The two powders were combined, and the resulting mixture had a diamond powder volume percent of approximately 95% based on the total volume of the mixture. The two powders were mixed together for a period of approximately 2-6 hours by ball milling. Powdered silicon carbide and pure silicon were each added to the mixture. Approximately 3 percent by volume of silicon carbide and 3 percent of pure silicon was added based on the total weight of the combined mixture. The mixture was then blended together for a period of 3 hours by ball milling. The resulting mixture was cleaned by heating to a temperature in excess of 850 C under vacuum and was loaded into a desired high pressure/high temperature vessel sized and shaped to provide a desired PCD compact. The vessel was subjected to a pressure of approximately 5.5 GPa and a temperature of approximately 1450 C in a vessel for a period of 0.5 hours. The vessel was opened and the PCD compact was removed.
In addition to the specific silicon getter materials discussed above, PCD materials of this invention can be prepared by using materials or elements other than silicon or silicon-containing compounds that are known to both react with the binder/catalyst material and form a compound having a level of thermal stability that is greater than that of the binder catalyst alone. It is desired that elements useful for this purpose meet the following requirements.
(a) They must form thermally stable compounds with the binder/catalyst over a wide range of stoichiometries;
(b) The reaction between the binder/catalyst and the getter element must preferably take place in the liquid phase so that the reactions proceed in a reasonable time, or solid state diffusion of the binder/catalyst in these elements must be rapid (and vice versa). Thus, the binary compound formed should have a eutectic melting temperature reasonably close to typical PCD processing temperatures;
(c) The element should not have strong solvent-catalyst effects on diamond at typical PCD reaction temperatures and pressures, and must also be a strong carbide former, so that any material that does not react with the binder/catalyst will combine with some of the diamond to provide a stable carbide phase in the matrix.
Table 2 presented below includes other suitable getter materials useful for preparing PCD materials of this invention according to the principles of this invention discussed above:
Thermally-stable PCD materials of this invention, and compacts formed therefrom, can be used in a number of different applications, such as tools for mining, cutting, machining and construction applications, where the combined properties of thermal stability, wear and abrasion resistance are highly desired. PCD materials and compacts of this invention can be used to form working, wear and/or cutting components in machine tools and drill and mining bits such as roller cone rock bits, percussion or hammer bits, diamond bits, and shear cutters.
Referring to
For example, referring to
Referring to
Referring to
Referring to
Other modifications and variations of PCD materials and PCD compacts formed therefrom will be apparent to those skilled in the art. It is, therefore, to be understood that within the scope of the appended claims, this invention may be practiced otherwise than as specifically described.
This patent application is a continuation of and claims priority pursuant to 35 U.S.C. §120 to U.S. patent application Ser. No. 11/005,675, filed Dec. 6, 2004, issued as U.S. Pat. No. 7,473,287, which claims benefit of U.S. Provisional Patent Application No. 60/527,265, filed Dec. 5, 2003, which are both specifically incorporated herein in their entirety, by reference.
Number | Name | Date | Kind |
---|---|---|---|
3136615 | Bovenkerk et al. | Jun 1964 | A |
3141746 | Lai | Jul 1964 | A |
3233988 | Wentorf, Jr. et al. | Feb 1966 | A |
3745623 | Wentorf, Jr. et al. | Jul 1973 | A |
4108614 | Mitchell | Aug 1978 | A |
4151686 | Lee et al. | May 1979 | A |
4224380 | Bovenkerk et al. | Sep 1980 | A |
4231195 | DeVries et al. | Nov 1980 | A |
4255165 | Dennis et al. | Mar 1981 | A |
4268276 | Bovenkerk | May 1981 | A |
4288248 | Bovenkerk et al. | Sep 1981 | A |
4303442 | Hara et al. | Dec 1981 | A |
4311490 | Bovenkerk et al. | Jan 1982 | A |
4373593 | Phaal et al. | Feb 1983 | A |
4387287 | Marazzi | Jun 1983 | A |
4412980 | Tsuji et al. | Nov 1983 | A |
4481016 | Campbell et al. | Nov 1984 | A |
4486286 | Lewin et al. | Dec 1984 | A |
4504519 | Zelez | Mar 1985 | A |
4522633 | Dyer | Jun 1985 | A |
4525179 | Gigl | Jun 1985 | A |
4534773 | Phaal et al. | Aug 1985 | A |
4556403 | Almond et al. | Dec 1985 | A |
4560014 | Geczy | Dec 1985 | A |
4570726 | Hall | Feb 1986 | A |
4572722 | Dyer | Feb 1986 | A |
4604106 | Hall | Aug 1986 | A |
4605343 | Hibbs, Jr. et al. | Aug 1986 | A |
4606738 | Hayden | Aug 1986 | A |
4621031 | Scruggs | Nov 1986 | A |
4636253 | Nakai et al. | Jan 1987 | A |
4645977 | Kurokawa et al. | Feb 1987 | A |
4662348 | Hall et al. | May 1987 | A |
4664705 | Horton et al. | May 1987 | A |
4670025 | Pipkin | Jun 1987 | A |
4707384 | Schachner et al. | Nov 1987 | A |
4726718 | Meskin et al. | Feb 1988 | A |
4766040 | Hillert et al. | Aug 1988 | A |
4776861 | Frushour | Oct 1988 | A |
4784023 | Dennis | Nov 1988 | A |
4792001 | Zijsling | Dec 1988 | A |
4793828 | Burnand | Dec 1988 | A |
4797241 | Peterson et al. | Jan 1989 | A |
4798026 | Cerceau | Jan 1989 | A |
4802539 | Hall et al. | Feb 1989 | A |
4807402 | Rai | Feb 1989 | A |
4828582 | Frushour | May 1989 | A |
4844185 | Newton, Jr. et al. | Jul 1989 | A |
4861350 | Phaal et al. | Aug 1989 | A |
4871377 | Frushour | Oct 1989 | A |
4899922 | Slutz et al. | Feb 1990 | A |
4919220 | Fuller et al. | Apr 1990 | A |
4940180 | Martell | Jul 1990 | A |
4943488 | Sung et al. | Jul 1990 | A |
4944772 | Cho | Jul 1990 | A |
4976324 | Tibbitts | Dec 1990 | A |
4985051 | Ringwood | Jan 1991 | A |
5011514 | Cho et al. | Apr 1991 | A |
5027912 | Juergens | Jul 1991 | A |
5030276 | Sung et al. | Jul 1991 | A |
5032147 | Frushour | Jul 1991 | A |
5037704 | Nakai et al. | Aug 1991 | A |
5092687 | Hall | Mar 1992 | A |
5116568 | Sung et al. | May 1992 | A |
5127923 | Bunting et al. | Jul 1992 | A |
5135061 | Newton, Jr. | Aug 1992 | A |
5176720 | Martell et al. | Jan 1993 | A |
5186725 | Martell et al. | Feb 1993 | A |
5199832 | Meskin et al. | Apr 1993 | A |
5205684 | Meskin et al. | Apr 1993 | A |
5213248 | Horton et al. | May 1993 | A |
5238074 | Tibbitts et al. | Aug 1993 | A |
5264283 | Waldenstrom et al. | Nov 1993 | A |
5337844 | Tibbitts | Aug 1994 | A |
5370195 | Keshavan et al. | Dec 1994 | A |
5379853 | Lockwood et al. | Jan 1995 | A |
5439492 | Anthony et al. | Aug 1995 | A |
5464068 | Najafi-Sani | Nov 1995 | A |
5468268 | Tank et al. | Nov 1995 | A |
5496638 | Waldenstrom et al. | Mar 1996 | A |
5505748 | Tank et al. | Apr 1996 | A |
5510193 | Cerutti et al. | Apr 1996 | A |
5523121 | Anthony et al. | Jun 1996 | A |
5524719 | Dennis | Jun 1996 | A |
5560716 | Tank et al. | Oct 1996 | A |
5607024 | Keith et al. | Mar 1997 | A |
5620382 | Cho et al. | Apr 1997 | A |
5624068 | Waldenstrom et al. | Apr 1997 | A |
5645617 | Frushour | Jul 1997 | A |
5667028 | Truax et al. | Sep 1997 | A |
5718948 | Ederyd et al. | Feb 1998 | A |
5722499 | Nguyen et al. | Mar 1998 | A |
5776615 | Wong et al. | Jul 1998 | A |
5833021 | Mensa-Wilmot et al. | Nov 1998 | A |
5871060 | Jensen et al. | Feb 1999 | A |
5875862 | Jurewicz et al. | Mar 1999 | A |
5897942 | Karner et al. | Apr 1999 | A |
5954147 | Overstreet et al. | Sep 1999 | A |
5979578 | Packer | Nov 1999 | A |
6009963 | Chaves et al. | Jan 2000 | A |
6063333 | Dennis | May 2000 | A |
6123612 | Goers | Sep 2000 | A |
6126741 | Jones et al. | Oct 2000 | A |
6193001 | Eyre et al. | Feb 2001 | B1 |
6234261 | Evans et al. | May 2001 | B1 |
6248447 | Griffin et al. | Jun 2001 | B1 |
6269894 | Griffin | Aug 2001 | B1 |
6302225 | Yoshida et al. | Oct 2001 | B1 |
6315065 | Yong et al. | Nov 2001 | B1 |
6344149 | Oles | Feb 2002 | B1 |
6410085 | Griffin et al. | Jun 2002 | B1 |
6435058 | Matthias et al. | Aug 2002 | B1 |
6544308 | Griffin et al. | Apr 2003 | B2 |
6562462 | Griffin et al. | May 2003 | B2 |
6585064 | Griffin et al. | Jul 2003 | B2 |
6589640 | Griffin et al. | Jul 2003 | B2 |
6592985 | Griffin et al. | Jul 2003 | B2 |
6601662 | Matthias et al. | Aug 2003 | B2 |
6739214 | Griffin et al. | May 2004 | B2 |
7377341 | Middlemiss et al. | May 2008 | B2 |
7462003 | Middlemiss | Dec 2008 | B2 |
7473287 | Belnap et al. | Jan 2009 | B2 |
7543662 | Belnap et al. | Jun 2009 | B2 |
7608333 | Eyre | Oct 2009 | B2 |
7647993 | Middlemiss | Jan 2010 | B2 |
7980334 | Voronin et al. | Jul 2011 | B2 |
20020023733 | Hall | Feb 2002 | A1 |
20020034631 | Griffin et al. | Mar 2002 | A1 |
20020074168 | Matthias et al. | Jun 2002 | A1 |
20050050801 | Cho et al. | Mar 2005 | A1 |
20050129950 | Griffin et al. | Jun 2005 | A1 |
20050139397 | Achilles et al. | Jun 2005 | A1 |
20060060392 | Eyre et al. | Mar 2006 | A1 |
20060191723 | Keshavan | Aug 2006 | A1 |
20060217258 | Zhao | Sep 2006 | A1 |
20070039762 | Achilles | Feb 2007 | A1 |
20070079994 | Middlemiss | Apr 2007 | A1 |
20070151769 | Slutz et al. | Jul 2007 | A1 |
20070181348 | Lancaster et al. | Aug 2007 | A1 |
20080073126 | Shen et al. | Mar 2008 | A1 |
20080185189 | Griffo et al. | Aug 2008 | A1 |
20080223621 | Middlemiss et al. | Sep 2008 | A1 |
20080230280 | Keshavan et al. | Sep 2008 | A1 |
20090090563 | Voronin et al. | Apr 2009 | A1 |
20090114454 | Belnap et al. | May 2009 | A1 |
20090152017 | Shen et al. | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
0196777 | Oct 1986 | EP |
0297071 | Dec 1988 | EP |
0300699 | Jan 1989 | EP |
0329954 | Aug 1989 | EP |
0352811 | Jan 1990 | EP |
0374424 | Jun 1990 | EP |
0500253 | Aug 1992 | EP |
0511253 | Aug 1992 | EP |
0585631 | Mar 1994 | EP |
0595630 | May 1994 | EP |
0612868 | Aug 1994 | EP |
0617207 | Sep 1994 | EP |
0787820 | Aug 1997 | EP |
0860515 | Aug 1998 | EP |
1116858 | Jul 2001 | EP |
1190791 | Mar 2002 | EP |
1760165 | Mar 2007 | EP |
1349385 | Apr 1974 | GB |
2048927 | Dec 1980 | GB |
2261894 | Jun 1993 | GB |
2268768 | Jan 1994 | GB |
2323398 | Sep 1998 | GB |
2427215 | Dec 2006 | GB |
2431948 | May 2007 | GB |
2408735 | Jan 2009 | GB |
2453435 | Apr 2009 | GB |
8176696 | Jul 1996 | JP |
2034937 | May 1995 | RU |
990486 | Jan 1983 | SU |
566439 | Jan 2000 | SU |
9323204 | Nov 1993 | WO |
9634131 | Oct 1996 | WO |
0028106 | May 2000 | WO |
2004040095 | May 2004 | WO |
2004106003 | Dec 2004 | WO |
2004106004 | Dec 2004 | WO |
2007042920 | Apr 2007 | WO |
Entry |
---|
Translation of Japanese Unexamined Patent Application No. S59-218500. “Diamond Sintering and Processing Method,” Shuji Yatsu and Tetsuo Nakai, inventors; Application published Dec. 10, 1984; Applicant: Sumitomo Electric Industries Co. Ltd. Office Action by USPTO mailed Mar. 11, 2003 for related U.S. Appl. No. 10/065,604. |
Restriction Requirement in parent U.S. Appl. No. 11/005,675 dated Aug. 21, 2006, total 6 pages. |
Nonfinal Office Action in parent U.S. Appl. No. 11/005,675 dated Dec. 12, 2006, total 8 pages. |
Final Office Action in parent U.S. Appl. No. 11/005,675 dated May 29, 2007, total 7 pages. |
Nonfinal Office Action in parent U.S. Appl. No. 11/005,675 dated Dec. 7, 2007, total 8 pages. |
Final Office Action in parent U.S. Appl. No. 11/005,675 dated Jun. 16, 2008, total 8 pages. |
Search Report for corresponding British Application No. GB0426586.4 dated Mar. 17, 2005, total 3 pages. |
Nonfinal Office Action in U.S. Appl. No. 11/857,334 dated Mar. 3, 2010. |
Office Action issued in U.S. Appl. No. 11/005,675 dated Jun. 16, 2008 (25 pages). |
Office Action issued in U.S. Appl. No. 11/005,675 dated Dec. 12, 2006 (8 pages). |
Examination Report issued in United Kingdom Application No. GB0426586.4 dated Dec. 20, 2007 (2 pages). |
Response to Examination Report issued in United Kingdom Application No. GB0426586.4 dated Jun. 23, 2008 (19 pages). |
Examination Report issued in United Kingdom Application No. GB0426586.4 dated Jul. 16, 2008 (1 page). |
Response to Examination Report issued in United Kingdom Application No. GB0426586.4 dated Nov. 24, 2008 (32 pages). |
Examination Report issued in United Kingdom Application No. GB0426586.4 dated Dec. 2, 2008 (1 page). |
Response to the Examination Report issued in United Kingdom Application No. GB0426586.4 dated Dec. 11, 2008 (17 pages). |
Office Action issued in Canadian Application No. 2,489,187 dated Mar. 1, 2011 (2 pages). |
Response dated Jan. 7, 2011, to Office Action dated Oct. 7, 2011, for U.S. Appl. No. 11/867,629 (17 pages). |
Notice of Allowance issued in U.S. Appl. No. 11/867,629 dated Mar. 10, 2011 (23 pages). |
EP Search Report issued in European Application No. 06118267.1 dated Nov. 2, 2011 (10 pages). |
Response dated Jun. 1, 2011, to EP Search Report dated Nov. 2, 2011, in European Application No. 06118267.1 (8 pages). |
Office Action issued in Candian Application No. 2506471 dated Jun. 30, 2011 (4 pages). |
Examination Report issued in United Kingdom Application No. 0818022.6 dated May 26, 2011 (3 pages). |
Response dated Jul. 26, 2011, to Examination Report dated May 26, 2011, in United Kingdom Application No. 0818022.6 (4 pages). |
Office Action issued in Canadian Application No. 2556052 dated Jun. 1, 2011 (3 pages). |
Number | Date | Country | |
---|---|---|---|
20090114454 A1 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
60527265 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11005675 | Dec 2004 | US |
Child | 12347450 | US |