The present invention generally relates to fluid pumps, and more specifically, fluid pumps with a temperature sensing mechanism.
Fluid pumps can be included within various fluid reservoirs for moving a fluid from within the reservoir to within another portion of the mechanism. Such pumps are configured to be submerged within the reservoir.
According to one aspect of the present invention, a fluid pump includes a pump element in communication with an inlet and an outlet. Rotation of the pump element generates an inward suction at the inlet and outward pressure at the outlet that cooperatively moves a fluid through a fluid path. The pump element includes a stator and a rotor within a housing. An accessory fluid path is in communication with the inlet and the fluid path. An inlet orifice directs a portion of the fluid through the accessory fluid path. The accessory fluid path includes a low-restriction return path that provides a continuous flow of the fluid through the accessory fluid path and to an outlet orifice during operation of the pump element. A circuit board housing includes a contoured portion that aligns with one side of an outer wall. The circuit board housing includes a printed circuit board (PCB) with a thermistor in communication with contoured portion of the circuit board housing and the accessory fluid path. The inlet orifice and the contoured portion are positioned at opposing ends of the housing. The continuous flow is directed between the contoured portion and the outlet orifice between the rotor and the outer wall. The low-restriction return path between the contoured portion and the outlet orifice is configured to maintain a temperature of the continuous flow of the fluid within the contoured portion of the accessory fluid path to be similar to a temperature of the fluid in the fluid path.
According to another aspect of the present invention, a fluid pump includes a pump element in communication with a fluid path. The pump element includes a rotor and a stator within a housing. An inlet orifice is in communication with the pump element. The pump element and the inlet orifice direct a primary flow of a fluid to an outlet and an excess flow of the fluid into an accessory fluid path having a portion that extends between the rotor and an outer wall of the housing. A circuit board housing includes a contoured portion that aligns with the one side of the outer wall. The accessory fluid path includes a low-restriction return path that moves the excess flow of the fluid as a continuous flow through the accessory fluid path and toward an outlet orifice. The low-restriction return path is configured to maintain a temperature of the excess flow of the fluid in the contoured portion of the accessory fluid path to be similar to a temperature of the primary flow of the fluid. A thermistor is positioned in communication with the contoured portion to simultaneously monitor, in real time, the temperature of the excess flow of the fluid in the accessory fluid path and the temperature of the primary flow of the fluid in the fluid path.
According to another aspect of the present invention, a fluid pump includes a stator and rotor in electromagnetic communication and disposed within a housing. A pump element is attached to a first end of a drive shaft of the rotor. An inlet orifice is in communication with the pump element that diverts a primary flow of a fluid to an outlet and an excess flow of the fluid through the inlet orifice and into an accessory fluid path. An outlet orifice is in communication with the pump element. The outlet orifice directs excess fluid from the accessory fluid path to a primary fluid path. A circuit board housing is positioned at a second end of the drive shaft that opposes a first end. The circuit board housing includes a contoured portion that aligns with the one side of an outer wall of the housing. The accessory fluid path directs the excess flow of fluid along a linear path directly from the inlet orifice to the contoured portion. The accessory fluid path includes a low-restriction return path that moves the excess flow of the fluid as a continuous flow through the accessory fluid path and toward the outlet orifice. The low-restriction return path is configured to maintain a temperature of the excess flow of the fluid in the contoured portion of the accessory fluid path to be similar to a temperature of the primary flow of the fluid. A thermistor is positioned in communication with the contoured portion to simultaneously monitor, in real time, the temperature of the excess flow of the fluid in the accessory fluid path and the temperature of the primary flow of the fluid in the fluid path.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in
As shown in
Referring again to
Referring again to
The fluid 16 is divided between a regulated primary flow 54 of the fluid 16 and the remaining fluid 16 that defines an excess flow 56 of the fluid 16. In regulating the flow of fluid 16 from the outlet shadow port 60 and orifice 62, the primary flow 54 is a predetermined amount of the fluid 16 that is directed to the outlet 22. By dividing the fluid 16, the excess flow 56 of fluid 16 that is not part of the regulated primary flow 54 of the fluid 16 is directed through the orifice 62 and into the accessory fluid path 30. In this manner, the gerotor 18 pushes the primary flow 54 of the fluid 16 through the outlet 22 and simultaneously pushes the excess flow 56 of the fluid 16 through the orifice 62 and into the accessory fluid path 30. Directing the movement of the excess flow 56 of fluid 16 helps to ensure that there is a continuous or substantially continuous flow 154 of fluid 16 across the thermistor 14. Additionally, this configuration of the accessory fluid path 30 in relation to the outlet shadow port 60 and orifice 62 also helps to ensure that the temperature of the excess flow 56 of the fluid 16 is at least substantially similar to the primary flow 54 of fluid 16 that is directed through the outlet 22. This configuration helps to provide real time or substantially real time temperature measurements of the fluid 16.
In this disclosed device, the accessory fluid path 30 is placed in communication with the outlet shadow port 60 through the orifice 62 that controls the excess flow 56 of the fluid 16 from the outlet shadow port 60 and into the accessory fluid path 30. From the orifice 62 at the outlet shadow port 60, the excess flow 56 of fluid 16 flows around at least a portion of the rotor assembly 52, but within the housing 64 of the fluid pump 12. After passing along the side 66 of the rotor assembly 52, the excess flow 56 of fluid 16 is directed along an inner surface 68 of the PCB housing assembly 10 where the thermistor 14 is located. The inner surface 68 of the PCB housing assembly 10 includes contours 70 that are configured to direct the excess flow 56 of fluid 16 from the sides 66 of the rotor assembly 52 along the contours 70, into engagement with the thermistor 14, and to a central portion 72 of the PCB housing assembly 10. In this manner, the contours 70 and central portion 72 of the inner surface 68 of the PCB housing assembly 10 at least partially defines the thermistor flow path 50 and the accessory fluid path 30. The central portion 72 of the PCB housing assembly 10 is in communication with a channel 80 of the drive shaft 46. This channel 80 of the drive shaft 46 extends through the center of the drive shaft 46 and the rotor assembly 52 and up through the gerotor 18 and to a recirculation path 82 that recombines the excess flow 56 of the fluid 16 with fluid 16 entering the inlet 20. In this manner, the excess flow 56 of the fluid 16 is drawn back into the inlet 20 by the suction 24 generated by the gerotor 18. The recombined fluid 16 is then delivered via the gerotor 18 and is divided into the primary and excess flows 54, 56 of fluid 16 as described above. In this configuration, a portion of the excess flow 56 upon leaving the recirculation path 82 may be divided again as part of the excess flow 56. It is contemplated that the excess flow 56 from the recirculation path 82 will be sufficiently mixed with the fluid 16 entering the inlet 20. Accordingly, the amount of the excess flow 56 that is divided again into a portion of the excess flow 56 is substantially minimal. The effects of a portion of the excess flow 56 being directly recirculated again through the accessory fluid path 30 as part of the excess flow 56 will have minimal effects on the temperature measurements of the thermistor 14.
In various embodiments, the recirculation path 82 may direct the excess flow 56 of fluid 16 from the accessory fluid path 30 to the outlet 22 of the fluid pump 12. In this manner, the excess flow 56 can be at least partially re-combined with the primary flow 54 of fluid 16 that is moved through the outlet 22.
Referring again to
Within conventional fluid pumps 12, very little fluid 16 is moved in and around the motor cavity 114. As such, placing a thermostat or other temperature sensing device within this area provides little, if any, temperature-related information.
Referring again to
It is contemplated that the fluid pump 12 described herein can be used in various applications that can include, but are not limited to, fuel pumps, oil pumps, water pumps, combinations thereof, and other fluid pumps 12 that may be submerged or non-submerged.
It is contemplated that the PCB housing assembly 10 and terminals 90 can be incorporated within new pumps or can be manufactured for installation with after-market pumps.
Having described various aspects of the device, a method 400 is disclosed for operating the fluid pump 12. This method 400 includes step 402 of activating a pump element 120 to draw a fluid 16 into a fluid path 26. The pump element 120 operates to direct a fluid 16 to a position that defines a shadow port 60 (step 404). The fluid 16 is divided into a primary flow 54 of the fluid 16 toward an outlet 22 of the fluid path 26 and an excess flow 56 of the fluid 16 through an orifice 62 of the shadow port 60 and into an accessory fluid path 30 (step 406). The excess flow 56 of the fluid 16 is directed to a thermistor 14 (step 408). A fluid temperature of the excess flow 56 of the fluid 16 in the accessory fluid path 30 is measured (step 410). The excess flow 56 of the fluid 16 is directed toward the inlet 20 of the fluid path 26 (step 412).
Referring now to
According to various aspects of the device, the pump element 120 is in communication with the inlet 20 and the outlet 22 for the fluid pump 12. Rotation of the pump element 120 generates an inward suction 24 through the inlet 20 and an outward pressure 28 through the outlet 22 that cooperatively moves the fluid 16 through the fluid path 26. The pump element 120 includes the stator 42 and rotor 40 that are positioned within a motor cavity 114 of the housing 64. The housing 64 includes the outer wall 124, a pump housing 126 that surrounds the pump element 120 and a circuit board housing assembly 10 that houses the PCB 112 and the various components disposed thereon. The accessory fluid path 30 is in communication with the inlet 20 and the fluid path 26. An inlet orifice 128 directs a portion of the fluid 16, typically in the form of the excess flow 56 of fluid 16, through the accessory fluid path 30. During operation of the pump element 120, the accessory fluid path 30 includes a low-restriction return path 130 that provides a continuous flow 154 of fluid 16 through the accessory fluid path 30 and to an outlet orifice 132. The circuit board housing assembly 10 includes the contoured portion 134 that extends toward one side 66 of the outer wall 124 of the housing 64. The thermistor 14 is positioned on the PCB 112 within the circuit board housing assembly 10.
As discussed herein, the thermistor 14 is at least in communication with the contoured portion 134 of the circuit board housing assembly 10. In certain aspects of the device, the thermistor 14 can extend into the thermistor flow path 50 that is defined by the contoured portion 134 of the circuit board housing assembly 10. The inlet orifice 128 and the contoured portion 134 are positioned at opposing ends of the housing 64. Through this configuration, a drive shaft 46 of the rotor 40 is positioned such that the inlet orifice 128 is located at a first end 150 of the drive shaft 46 and the contoured portion 134 of the circuit board housing assembly 10 is positioned at an opposing second end 152 of the drive shaft 46 for the rotor 40. The continuous flow 154 of the fluid 16 that is provided through the low-restriction return path 130 is directed between the contoured portion 134 and the outlet orifice 132 such that the fluid 16 moves between the rotor 40 and the inner surface 68 of the outer wall 124, and more particularly, between the rotor 40 and the stator 42.
In addition, the low-restriction return path 130 between the contoured portion 134 and the outlet orifice 132 is configured to maintain a temperature of the continuous flow 154 of the fluid 16 within the contoured portion 134 of the accessory fluid path 30 to be similar to the temperature of the fluid 16 as it enters the inlet 20 and moves through the primary fluid path 110. Through this configuration, the temperature of the continuous flow 154 of fluid 16 within the contoured portion 134 of the accessory fluid path 30 is similar to a temperature of the fluid 16 that is within the primary fluid path 110 moving through the pump element 120 between the inlet 20 and the outlet 22. As discussed herein, the thermistor 14 is positioned in communication with the contoured portion 134 of the circuit board housing assembly 10. This is to simultaneously monitor, in real time, the temperature of the continuous flow 154 of the fluid 16 in the accessory fluid path 30 and also the temperature of the fluid 16 within the primary fluid path 110. Because the temperature of the fluid 16 in these two locations, which are positioned at opposite ends of the motor cavity 114 for the fluid pump 12, have a similar temperature, the thermistor 14 within the contoured portion 134, or in communication with the contoured portion 134, is sufficient to provide a temperature reading with respect to both locations.
Referring again to
Referring again to
As exemplified in
As discussed herein, and as exemplified in
The suction interface 180 also promotes the excess flow 56 of the fluid 16 into the inlet orifice 128 and into the accessory fluid path 30. In addition, the suction 24 generated at the inlet 20 also prevents the excess flow 56 of fluid 16 that enters into the outlet orifice 132 from returning to the inlet orifice 128 and the accessory fluid path 30. This configuration of the suction interface 180 and the positioning of the inlet orifice 128 and the outlet orifice 132 at opposite sides of the pump element 120, prevents the recirculation of the excess flow 56 of fluid 16 through the accessory fluid path 30. Such a recirculation may result in an undesirable buildup of heat within the excess flow 56 of fluid 16. This undesirable buildup of heat could result in the readings of the thermistor 14 being inaccurate. The configuration of the inlet orifice 128 and the suction interface 180 prevents this recirculation of the excess flow 56 from occurring.
Referring again to
Referring again to
In addition, the low-restriction return path 130 is configured to maintain a temperature of the excess flow 56 of fluid 16 within the contoured portion 134 of the accessory fluid path 30 to be similar to a temperature of the primary flow 54 of the fluid 16 within the primary fluid path 110. The thermistor 14 is positioned in communication with a contoured portion 134 to simultaneously monitor, in real time, the temperature of the excess flow 56 of the fluid 16 in the accessory fluid path 30 as well as the temperature of the primary flow 54 of the fluid 16 in the primary fluid path 110. As discussed herein, the temperature of the fluid 16 within these two separate locations is substantially similar due to the direct and continuous flow 154 of fluid 16 from the inlet 20 and to the contoured portion 134 that defines the thermistor flow path 50. Through this configuration, the pump element 120 generates the inward pressure 24 of the inlet 20 of the fluid path 26 as well as at the outlet orifice 132 of the accessory fluid path 30. The pump element 120 also generates an outward pressure 28 at the outlet 22 of the fluid path 26. Using the inward suction 24 generated by the pump element 120, the primary flow 54 of fluid 16 is moved though the primary fluid path 110 of the pump element 120, and the excess flow 56 of fluid 16 is drawn through the accessory fluid path 30 through the interaction of the outlet orifice 132 and the pump element 120 that forms the suction interface 180 of the accessory fluid path 30.
According to the various aspects of the device, as exemplified in
The accessory fluid path 30 includes a low-restriction return path 130 that moves the excess flow 56 of fluid 16, as a continuous flow 154, through the accessory fluid path 30 and toward the outlet orifice 132. The low-restriction return path 130 is configured to maintain the temperature of the excess flow 56 of fluid 16 within the contoured portion 134 of the accessory fluid path 30 to be similar to a temperature of a primary flow 54 of the fluid 16 within the primary fluid path 110 in the pump element 120. The thermistor 14 is positioned in communication with the contoured portion 134 to monitor the temperature of the excess flow 56 of fluid 16 in the thermistor flow path 50 defined by the contoured portion 134. As a result, the thermistor 14 also simultaneously monitors, in real time, the temperature of the primary flow 54 of the fluid 16 in the primary fluid path 110. This is done through the use of a single thermistor 14 that is in communication with the contoured portion 134. Through this configuration, the thermistor 14 can be positioned in close proximity to the PCB 112 within the circuit board housing assembly 10.
Referring again to
As discussed herein, the various aspects of the device, as exemplified in
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
The present application is a continuation of U.S. patent application Ser. No. 17/544,215 filed Dec. 7, 2021, which is a continuation-in-part of U.S. patent application Ser. No. 17/141,265 filed Jan. 5, 2021, now U.S. Pat. No. 11,454,235, which is a continuation of U.S. patent application Ser. No. 15/590,248 filed May 9, 2017, now U.S. Pat. No. 10,914,305, which claims priority to and the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 62/342,615, filed on May 27, 2016, all of which are entitled THERMISTOR FLOW PATH, the entire disclosures of which are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62342615 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17544215 | Dec 2021 | US |
Child | 18603692 | US | |
Parent | 15590248 | May 2017 | US |
Child | 17141265 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17141265 | Jan 2021 | US |
Child | 17544215 | US |