The entire contents of the provisional application are incorporated herein by reference.
The invention relates to thermite charges that are useful for cutting materials including metals, masonry, reinforced concrete, rock, and the like. The invention allows more expeditious and safer material removal, including entry into structures, and structural demolition.
Thermite reactions are well characterized and have been used for a variety of applications, including demilitarization of expended ordnance, quick repair welding of railroad tracks, and cutting applications using lances or burning bars. The thermite reaction is an exothermic reaction that can produce temperatures of more than 4,000° F. These temperatures are well above the melting point of most metals. Boosting the rate of the thermite reaction by flowing a stream of oxygen through the materials can raise the reaction temperature from the normal 4,000° F. to the range of 10,000° F. to 16,000° F. Boosting the temperature to this level greatly reduces the time associated with cutting through a material. In addition, directing the burning particles and gases into a jet through a nozzle allows improved removal of molten metal and deeper penetration into the material.
Until this time, one-shot thermite-based devices have been used primarily to make point like, circular holes in materials. Sustained thermite cutting technologies, such as burning bars, achieve linear-shaped cuts by expanding on the initial penetrated area and moving away from the initial point of penetration in a line (similar to a conventional cutting torch). By configuring a single-use apparatus and its associated nozzle into a linear or curvilinear arrangement, the shape of the penetration would be lengthened dramatically. Connecting segments of these devices into a desired shape would allow users to determine the dimensions of a breach area or linear cut.
This thermite-based method will allow operators to penetrate a material in timeframes similar to explosive shape charges without the safety concerns and security risks associated with explosives. In addition, the sustained duration of a thermite jet will more effectively handle discontinuities and interfaces that normally disrupt and dissipate explosively driven shape charge jets. When a linear shaped charge is used for cutting steel on a steel bridge demolition project, a large degree of preparation work must be undertaken to ensure a successful cut or penetration. A “preconditioning” process involves removing overlapped plates and areas of reinforcement with a conventional cutting torch. This process is time consuming, expensive, and dangerous. Conversely, the sustained jet of a thermite charge offers improved performance over multi-plate materials with limited or substantially no preconditioning. The thermite charge's sustained jet also affords a greater assurance in cutting plates of varying thickness, layered plate configurations, and any supporting or reinforcing members that may exist in the middle or on the backside of a material. While the projected thermite charge particle stream is a slower reaction than that of an explosively driven jet, it is very fast from the perspective of the operator. The anticipated timing for material penetration is typically on the order of hundreds of milliseconds.
Broadly the invention provides for thermite charges to make linear or curvilinear cuts in materials such as building structures, pavements, transport equipment such as ships, planes, and the like. As used herein, the term linear includes both linear and curvilinear shapes. Typically, the term linear includes elongated jet shapes (described in more detail below) and is not limited by whether the elongated jet opening is linear, curvilinear, or has bends.
A first embodiment includes a linear thermite charge apparatus having an elongated casing; an elongated volume within the casing, wherein a thermite material can be disposed within the volume; and one or more linear nozzles in communication with the volume. Typically the volume in the elongated casing contains one or more thermite materials. In some embodiments the linear nozzle includes a plurality of nozzles in a linear array. In some embodiments extra cutting power is obtained by potassium permanganate (KMnO4) and/or potassium ferrate (K2FeO4) disposed within the volume. in a preferred embodiment, one or more separators are disposed within the volume, wherein two or more compartments are formed within the volume. Typically at least one compartment comprises fuel and at least one compartment comprises oxidizer.
One embodiment includes kits with connectors to place one or more thermite charges for desired type of cuts. The connectors typically provide mechanical and electrical continuity (e.g. bolt, male/female). The kit typically includes a plurality of modular linear thermite charges; a plurality of connectors for connecting the charges and electrical wiring for firing an initiator disposed in each modular linear thermite charge; mounting mechanisms for mounting the modular linear thermite charges to a surface; stud drivers for mounting the modular linear charges to a surface; and an ignition system for firing the modular linear thermite charges with the wiring. A further embodiment includes a method for cutting a material buy the steps of providing a thermite charge including an elongated casing; an elongated volume within the casing, wherein a thermite material is disposed within the volume; and one or more linear nozzles in communication with the volume; placing the linear nozzle of the thermite charge against the surface; and firing the thermite charge to cut the material. Typically a plurality of linear charges are supplied and used to cut the material.
Another embodiment provides for enhanced safety for both storage and use by providing mixing (fuel and oxidizer) at time of firing the thermite charge.
A further embodiment provides for pre-mixed (fuel and oxidizer) formulations.
Another embodiment provides for gas generation via thermite in the applications disclosed herein.
A yet further embodiment provides for the generation of O2, or other oxidative, gas to raise temperature of the jet emanating from the thermite charge thus enabling the cutting of concrete, reinforced concrete (to include the rebar), rock, masonry, and the like. This is typically accomplished by over oxidizing so that more oxygen is produced than is needed stoichiometrically by the reaction.
Broadly, the invention includes apparatus and methods of cutting materials using a linear, or curvilinear nozzle where the nozzle may be a long linear nozzle (see
The materials used for the thermite reaction may be premixed or mixed immediately prior to being jetted into the target material. One method for mixing the materials is to fluidize one solid reactant (typically powders or granulates) with a pressurized oxidant, and feeding them into a reaction chamber. Another method includes mixing two or more solid reactants (typically powders or granulates) and feeding them into a reaction chamber with or without pressured oxidant. The materials react and form a jet. The cutting action of the thermite charge can be augmented by pressurizing it with an oxidizing gas (e.g. oxygen or air).
The apparatus and method typically provide for a reaction that provides cutting action in a non-explosive manner. “Non-explosive manner” is defined as a reaction that proceeds below the speed of sound in the reacting material. By proceeding below the speed of sound in the reacting material a shock wave as experienced in explosives is avoided.
It has previously been demonstrated that the effectiveness of focusing a high-temperature, thermite-produced jet through a nozzle will produce a hole.
Integrated attachment mechanisms (e.g. bolts—not shown) would firmly anchor the device 200 using mounting holes 283 to a target's exterior at any angle. Boosting the thermite reactant with a gas-producing solid will create a high-speed flow of hot particles and gases through a nozzle 205 (typically a linear nozzle). This high-temperature/high-velocity flow will allow metal structures to be defeated in a matter of milliseconds. The invention is useful with homogeneous and non-homogeneous structures including steel and concrete.
The linear design of the present invention integrates the thermite mixture and oxidizing materials into a linear arrangement similar to a linear shaped charge. By careful design and compartmentalization, solid fuels and oxidizers (or gas-producing agents) can be separated inside sealed compartments. Essentially instantaneous thermal activation along the length of the device will produce a uniform, high-velocity linear jet. A linear thermite charge's modular unit design will allow adaptation for a desired geometry and will be easily deployed in the field. As used herein, a linear thermite charge includes straight linear and curvilinear charges. Integrated attachment mechanisms for fixing the device to a target material or structure are preferred. These mechanisms will allow for quick attachment at any angle and will ensure that the device is firmly anchored to the material.
A modular unit design for a linear shaped charge system is preferred. Straight and angled connectors will allow custom sizing and shaping for deployment against specific target needs. The number of standard linear segments that are attached before an angled connector will ultimately determine the size of the breached perimeter. The use of all 45-degree connectors will result in an octagonal shape, and the diameter of the application will depend on the number of straight connectors used per segment. The use of 90-degree connectors will result in square or rectangular breaches.
The device will be attached to a target using an integrated attachment system such as adhesives and/or bolts, which will be designed to adhere to the surfaces that are characteristic of probable targets (e.g., rust, polished, and painted surfaces for metals; concrete or masonry for structures). Each segment will be placed on the target, and the attachment system will be activated once the operator is satisfied with its location. After the attachment of all segments is completed, the system will be ready for firing.
One embodiment includes using secondary anchors, which will be initiated by a firing circuit such as for explosive pinning using a stud gun. These anchors will imbed into the target, and hold each device in place while the thermite jet penetrates the material. An integrated delay system in the firing apparatus can propel the device anchors into the target before the thermite reaction is initiated. These anchors will firmly attach each device to the target to counter the thrust from the thermite jet. This integration also reduces the time and complexity of deploying this cutting apparatus.
After deployment of the anchors, the initiation system will ignite the thermite and other energetics present in the system. It is anticipated that the jet will penetrate a ½ inch thick steel target in less than 1 second. This will allow for swift deployment through the breach into the area of interest for rescue or rapid entry applications, and timeframes conducive to commercial demolition applications. Fire extinguishing materials, which would be injected into the breach after the thermite materials have been expended, can be incorporated into the device designs. This would help to reduce the possibility of igniting a secondary material inside the target.
Fuels and Oxidants
Thermite compounds or materials include mixtures that contain fuel and oxidizer and react to produce large quantities of heat and typically solid reaction products. Thermite mixtures of metals and fuels such as aluminum, zirconium, magnesium, boron or titanium; oxides such as iron oxide, common chemical oxidizers such as nitrates and perchlorates, halogen containing polymers and other gas producing materials, such as fluorocarbon (e.g. polytetrafluoroethylene) are typical. Separate containers of oxygen producing solids within the reaction chamber are also useful for to jet the high temperature fuels, metal oxides and reaction products, and boost the temperature of the metal oxidation.
Thermite materials or compounds also include compounds or materials described above that are provided separately and not mixed. Thus a fuel such as the metals, metal oxides and oxidizers described above may be provided separately in compartments disposed within a thermite charge apparatus. Alternatively, some of the fuel ingredients may be mixed together separately from the oxidizers. The fuel and oxidizer are then mixed when the reaction is initiated. Some thermite materials and compounds include a gas producing material or a gas such as that added or generated oxygen or and oxidant to augment the cutting action of the thermite charge.
A preferred class of chemicals for oxygen augmentation includes that which increases or maximizes the concentration of available oxygen at the onset of thermite combustion and reduces or minimizes any adverse impact on achieving high or maximum temperature and velocity. This class of chemicals includes ones such as potassium permanganate (KMnO4) and potassium ferrate (K2FeO4). These chemicals appear to have been overlooked as additives to enhance thermite combustion, especially to improve cutting operations.
Another thermite charge embodiment, illustrated in
The preferred embodiment of the linear thermite charge is the compartmented oxidizers/fuel described earlier. In this embodiment an integrated solid oxidizer, or gas producer (e.g. pressurized gas initiator 531), allows the gas source to be fully included in the device without the need for connection to external bottles or compressors. This embodiment integrates subsystems that include: separated fuel/oxidizer compartments with the option of field loading of components. For example initiating nichrome wire for the main thermite charge can be used with snap together straight and angle pieces that allow adaptation to a variety of targets and desired shapes. The purpose of this integrated system is to provide for adaptability to targets, allow flexibility for operators, and maximize simplicity of use.
Referring now to
The separation of fuel and oxidizer components offers advantages in transportation, storage, and handling of the device when compared to explosive based systems. The requirements of a loaded system would adhere to a pyrotechnic hazard rating offering much less stringent regulations than a detonable explosive hazard class. Separate fuel/oxidizer shipments would allow the materials to be classified, shipped, stored and handled as flammable solids and oxidizers before they are loaded into the device at the site of use. This modified “binary” system offers many safety and logistical advantages over explosive systems.
Each fixture can be attached using a stud anchoring mechanism. This mechanism could be stud guns used for military applications and anchoring systems, such as a stud gun, that are prevalent in commercial applications. The stud anchoring system prevents the units from being propelled off the target from the thrust produced from the expulsion of reactant products out of the linear nozzle. The stud anchoring system would be effective for applications against masonry and steel targets.
Separate sections of the device are designed to accommodate variability in target geometry. Angled sections for horizontal variability are designed to close the ends of the individual units for establishing a desired breaching perimeter on a vertical or horizontal surface. These angled sections would include 90° and 60° sections that allow squares, rectangles, hexagons, and trapezoid shapes for cutting. The number of straight sections that are coupled together allows control of the size of the breached area. Angled sections for vertical variability offer adaptation for structural parts that protrude from the cutting plane. Such protrusions could include horizontal or vertical reinforcing beams on a steel wall. These sections allow the apparatus to wrap over such discontinuities. Again, the straight sections allow adaptation to varying lengths of protruding structural parts.
Another embodiment includes a specially shaped ceramic liner for the device. One embodiment focused on a ceramic liner insert for the nozzle. While in another embodiment the metal body provided the majority of the structural support for the fixture, this embodiment relies on the ceramic material itself for strength and vessel integrity. Some ceramic materials have compressive strength in excess of 10,000 psi. This level of material strength is anticipated to be more than adequate for the anticipated stress levels from the reaction of the energetic materials. Certain ceramic materials can also be cast into various shapes and configurations.
The ceramic material is typically lighter than the metals used in the linear thermite charge embodiment. This allows a structurally sound fixture without excess unit weight. Casting also allows easy integration of secondary systems into the fixture. These additional systems can include secondary fixtures for anchoring mechanisms, end configurations for connecting to sequential angle and straight segments, and attachment accommodations for initiation systems, etc. Casting eliminates the expensive alternative of machining parts. The castable ceramic material is also much less expensive per unit weight than metal alternatives.
Referring now to
Ultimately, a stamped or extruded thin metal or plastic housing may encase the outer perimeter of the ceramic material. This outer casing provides structural integrity and prevents catastrophic failure in case the unit is dropped and the ceramic cracks. The stamped or extruded skin additionally can serve as an exterior mold for casting the ceramic materials.
Referring now to
Referring now to
In another embodiment, the continuous thermite charge apparatus of
In a yet further embodiment, the first continuous thermite charge apparatus 1310 of
Applications for the invention include linear cut or curvilinear cuts in homogenous and non-homogeneous materials. Typical cutting operations include: Concrete, and reinforced concrete, in a variety of applications (cut into slabs or rubble); break pavement for a variety of access needs including utilities: gas, electric, phone, cable, water, sewer; street applications including bridge decks and other repair/replacement; road beds in large scale—highway with rebar; concrete in any structure (walls, etc.); demolition—of structures, buildings—steel reinforcing (I-beams in concrete); steel bridges, steel hulls (ships for rescue applications and hostile applications); and general concrete removal.
While the forms of the invention herein disclosed constitute presently preferred embodiments, many others are possible. It is not intended herein to mention all of the possible equivalent forms or ramifications of the invention. It is to be understood that the terms used herein are merely descriptive, rather than limiting, and that various changes may be made without departing from the spirit of the scope of the invention.
This application claims the benefits of U.S. Provisional Application No. 60/659,677 filed Mar. 8, 2005.
Number | Date | Country | |
---|---|---|---|
60659677 | Mar 2005 | US |