Energy transfer between different materials may be performed in a variety of ways. Heat exchangers, for example, may be utilized to transfer heat between one or more fluids. Heat exchangers may be utilized in a wide variety of technologies such as space heating, refrigeration, and air conditioning. A recuperator may provide a specific type of heat exchanger that may facilitate heat transfer inside a system to increase efficiency, for example.
While some technologies may have the ability to move heat around, such as heat exchangers, there may be a general need for new tools and techniques to recuperate heat and/or energy.
Thermo-chemical recuperation systems, devices, and methods are provided in accordance with various embodiments. Embodiments may generally relate to the field of refrigeration and/or heat pumping. Within that field, some embodiments apply to the recuperation or recapturing of both thermal and chemical potential in a freeze point suppression cycle.
Some embodiments manage the thermal and chemical potentials by mixing a dilute brine stream exiting an ice mixing vessel with an ice stream before it enters the ice mixing vessel. By controlling this mixing in a counter-flow or step-wise cross flow manner with sufficient steps, both the thermal and chemical potential of the dilute bine stream may be recuperated.
Some embodiments involve creating an ice flow using either mechanical, gravitational, hydraulic, and/or pneumatic means and simultaneously flowing dilute brine against the ice flow by either gravitational or cyclic spraying means. The counter-flow type mixing, for example, may exchange both the thermal and chemical potential in the dilute brine and may pre-chill the ice before it may enter the ice mixing vessel. Furthermore, the melting of ice at a relatively high temperature of the dilute brine may produce a diluting effect in the brine that does not affect the ice mixing vessel. By removing this water before the material reaches the ice mixing vessel and at a temperature equal to or greater than the ice mixing vessel, the work involved in the separator may be decreased.
For example, some embodiments include a method of thermo-chemical recuperation that includes creating a flow of ice and flowing a brine against the flow of the ice. In some embodiments, flowing the brine against the flow of the ice includes forming a counter flow of the brine against the flow of the ice. In some embodiments, flowing the brine against the flow of the ice includes forming a step-wise cross flow of the brine against the flow of the ice. In some embodiments, forming the step-wise cross flow of the brine against the flow of the ice includes cyclically injecting the brine at multiple points with respect to the flow of the ice.
In some embodiments, flowing the brine against the flow of the ice reduces a temperature of the brine. In some embodiments, flowing the brine against the flow of the ice dilutes the brine. In some embodiments, flowing the brine against the flow of the ice reduces a temperature of the ice.
Some embodiments of the method include delivering the flow of the ice to an ice tank after flowing the brine against the flow of the ice. Some embodiments include passing the brine through a separator after the brine flows against the flow of the ice. In some embodiments, the separator forms at least a concentrated brine or water from the brine. Some embodiments include freezing the water from the separator to form ice for the flow of the ice. Some embodiments include combining the ice in an ice tank with the concentrated brine after flowing the brine against the flow of the ice.
In some embodiments of the method, flowing the brine against the flow of the ice utilizes gravity for flowing the brine against the flow of the ice. In some embodiments, creating the flow of the ice flows the ice against gravity. In some embodiments, creating the flow of the ice flows the ice with gravity.
In some embodiments, the flow of the ice and flowing the brine against the flow of the ice occurs horizontally. In some embodiments, the flow of the ice and flowing the brine against the flow of the ice that occurs horizontally includes flowing the ice and the brine through a tube that includes a horizontal portion. Some embodiments include utilizing an auger to pack the ice into the tube that includes the horizontal portion.
In some embodiments, creating the flow of the ice utilizes at least an auger or a chain conveyor. Some embodiments may utilize a bucket conveyor.
Some embodiments include a thermo-chemical recuperation system that may include: one or more ice flow channels; and one or more brine ports where the one or more ice flow channels and the one or more brine ports are positioned with respect to each other such that a flow of brine from the one or more brine ports is against a flow of the ice through the one or more ice flow channels.
In some embodiments of the system, at least the one or more ice flow channels or the one or more brine ports are positioned to form a counter flow of the brine against the flow of the ice. In some embodiments, at least the one or more ice flow channels or the one or more brine ports are positioned to form a step-wise cross flow of the brine against the flow of the ice. In some embodiments of the system, the step-wise cross flow of the brine against the flow of the ice includes cyclically injecting the brine from multiple brine ports from the one or more brine ports with respect to the flow of the ice through the one or more ice flow channels.
In some embodiments, at least the one or more ice flow channels or the one or more brine ports are positioned such that the brine flows with gravity against the flow of the ice. In some embodiments, at least the one or more ice flow channels or the one or more brine ports are positioned such that the flow of the ice flows the ice against gravity. In some embodiments, at least the one or more ice flow channels or the one or more brine ports are positioned such that the flow of the ice flows the ice with gravity. In some embodiments, one or more brine ports are positioned such that flow of the ice and the flow of the brine against the flow of the ice occurs horizontally.
Some embodiments of the system include an auger positioned with respect to the one or more ice flow channels to create the flow of the ice. Some embodiments include a chain conveyor positioned with respect to the one or more ice flow channels to create the flow of the ice. Some embodiments include an ice tank positioned to receive the flow of the ice after the ice flows through the one or more ice channels.
In some embodiments of the system, the one or more ice flow channels include at least a tube that includes a horizontal portion. Some embodiments include an auger that packs the ice into the tube that includes the horizontal portion.
Some embodiments of the system include a separator positioned to receive the brine after the brine flows against the flow of the ice. In some embodiments, the separator forms at least a concentrated brine or water from the brine. In some embodiments, the separator is coupled with the ice tank such that the concentrated brine is delivered to the ice tank. Some embodiments include an ice maker to form the ice for the flow of the ice. In some embodiments, the separator is coupled with the ice maker such that the water from the separator is delivered to the ice maker to form the ice for the flow of the ice.
Some embodiments include methods, systems, and/or devices as described in the specification and/or shown in the figures.
The foregoing has outlined rather broadly the features and technical advantages of embodiments according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the spirit and scope of the appended claims. Features which are believed to be characteristic of the concepts disclosed herein, both as to their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purpose of illustration and description only, and not as a definition of the limits of the claims.
A further understanding of the nature and advantages of different embodiments may be realized by reference to the following drawings. In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
This description provides embodiments, and is not intended to limit the scope, applicability, or configuration of the disclosure. Rather, the ensuing description will provide those skilled in the art with an enabling description for implementing embodiments of the disclosure. Various changes may be made in the function and arrangement of elements.
Thus, various embodiments may omit, substitute, or add various procedures or components as appropriate. For instance, it should be appreciated that the methods may be performed in an order different than that described, and that various stages may be added, omitted, or combined. Also, aspects and elements described with respect to certain embodiments may be combined in various other embodiments. It should also be appreciated that the following systems, devices, and methods may individually or collectively be components of a larger system, wherein other procedures may take precedence over or otherwise modify their application.
Thermo-chemical recuperation systems, devices, and methods are provided in accordance with various embodiments. Embodiments generally relate to the field of refrigeration and/or heat pumping. Within that field, some embodiments apply to the recuperation or recapturing of both thermal and chemical potential in a freeze point suppression cycle.
For example, some embodiments provide an approach to recuperate unused thermal and chemical potential in a freeze point suppression cycle. Within this type of thermodynamic cycle, two components may be included: an ice mixing vessel and a separator. Fluid may move from the ice mixing vessel to the separator in a dilute form and back to the ice mixing vessel as a concentrate after water is removed in the separator. Managing the fluid's thermal and chemical potential in these two forms is generally important to overall system efficiency.
For the purpose of freeze point suppression cycles, thermal potential generally means the ability to provide cooling (i.e., a low temperature), while chemical potential generally means the ability to produce a cold temperature spontaneously without requiring work. An example of a thermal potential is a brine at a low temperature. An example of a chemical potential is a brine at a high concentration that, when mixed with ice, spontaneously cools to a low temperature.
Some embodiments manage these potentials by mixing the dilute stream exiting the ice mixing vessel with the ice stream before it enters the ice mixing vessel. By controlling this mixing in a counter-flow or step-wise cross flow manner with sufficient steps, both the thermal and chemical potential of the dilute stream may be recuperated, in some cases optimally.
Some embodiments involve creating an ice flow using either mechanical, gravitational, hydraulic, or pneumatic means and simultaneously flowing dilute brine against the ice flow by either gravitational or cyclic spraying means. The counter-flow type mixing, for example, may exchange both the thermal and chemical potential in the dilute brine and may pre-chill the ice before it may enter the ice mixing vessel. Furthermore, the melting ice at a relatively high temperature of the dilute brine may produce a diluting effect in the brine that does not affect the ice mixing vessel. By removing this water before the material reaches the ice mixing vessel and at a temperature equal to or greater than the ice mixing vessel, the work involved in the separator may be decreased.
Some embodiments may be constructed from many interchangeable components. For example, if the ice is to move against the direction of gravity, a mechanical conveyor might be used like an auger conveyor, chain conveyor, bucket conveyor, or belt conveyor. In this configuration, the brine may be injected high in the system and may be allowed to flow down by gravity over the ice as it moves up.
In a case where the ice may instead be allowed to move with gravity down, the brine may be pumped in stages to be sprayed over the ice as it falls. For example, by creating many discrete step-wise cross flow interactions like this, the overall performance may approach a true counter-flow configuration.
The description herein may generally refer to ice and brines. In general, the brines may be formed from a freeze point suppressant combined with a solid that may be melted to form the brine; in some embodiments, the brines may be formed from concentrating a diluted brine utilizing a separator. Merely by way of example, the freeze point suppressant may include, but is not limited to: water, alcohol, ionic liquids, amines, ammonia, salt, non-salt soluble solids, organic liquid, inorganic liquid, triethylamine, cyclohexopuridine, mixtures of miscible materials, and/or a surfactant-stabilized mixture of immiscible materials. The solid may include a fully or partially solid form of the following, but is not limited to water, an organic material, an ionic liquid, an inorganic material, and/or DMSO. In general, the systems, devices, and/or methods provided in accordance with various embodiments include a brine that may get diluted as it is either mixed with ice, such as in an ice mixing vessel, and/or flows against an ice flow and melts the ice. The brine may then be concentrated utilizing a separator in some cases. The concentrated brine may be sent back to the ice mixing vessel where it may be combined with ice to form a usefully cold refrigerant.
A wide variety of different components may be utilized with respect to the systems, devices, and/or methods described herein. Merely by way of the example, some embodiments include a separator as noted above (generally referred to as reference number 105) that may include, but are not limited to, a thermal separator or a mechanical separator; some embodiments may utilize a distillation column. Separators may utilize a wide variety of separation techniques including, but not limited to, reverse osmosis, nano-filtration, photonic-driven precipitation, precipitation by chemical reaction, precipitation by solubility change, surfactant absorption, ion exchange, activated carbon absorption, flash separation, distillation, multi-effect distillation, vapor compression distillation, evaporation, membrane distillation, and/or gas permeable membrane separation.
Below is a description of several systems and/or methods in accordance with various embodiments. Many of the specific components are interchangeable with other common devices. For example, an auger may be replaced by a chain conveyor or bucket conveyor.
Turning now to
In some embodiments of system 100, flowing the brine from brine flow 160 against the flow of the ice from ice flow 150 reduces a temperature of the brine. In some embodiments, flowing the brine against the flow of the ice dilutes the brine. In some embodiments, flowing the brine against the flow of the ice reduces a temperature of the ice. Merely by way of example, the ice entering the ice flow 150 may start at a temperature of 0 degrees Celsius, while the brine entering the brine flow 160 may enter at a temperature of −10 degrees Celsius; when the ice leaves the ice flow 150 it may be at a temperature of −28 degrees Celsius, while the temperature of the brine when it leaves the brine flow 160 may be at −28 degrees Celsius. Other temperatures may be applicable, though in general, flowing the brine from brine flow 160 against the ice from ice flow 150 may reduce a temperature of the brine and/or a temperature of the ice.
Some embodiments of the system 100 include delivering the flow of the ice from ice flow 150 to an ice tank after flowing the brine against the flow of the ice. Some embodiments include passing the brine from brine flow 160 through a separator after the brine flows against the flow of the ice. In some embodiments, the separator forms at least a concentrated brine or water from the brine. Some embodiments include freezing the water from the separator to form ice for the flow of the ice for ice flow 150. Some embodiments include combining the ice in an ice tank with the concentrated brine after flowing the brine from brine flow 160 against the flow of the ice from ice flow 150.
In some embodiments of the system 100, flowing the brine from brine flow 160 against the flow of the ice from ice flow 150 utilizes gravity for flowing the brine against the flow of the ice. In some embodiments, creating the flow of the ice flows the ice against gravity. In some embodiments, creating the flow of the ice flows the ice with gravity.
In some embodiments of system 100, the flow of the ice from ice flow 150 and flowing the brine from brine flow 160 against the flow of the ice occurs horizontally. In some embodiments, the flow of the ice and flowing the brine against the flow of the ice that occurs horizontally includes flowing the ice and the brine through a tube that includes a horizontal portion. Some embodiments include utilizing an auger to pack the ice into the tube that includes the horizontal portion.
In some embodiments, creating the flow of the ice from ice flow 150 utilizes at least an auger or a chain conveyor. Some embodiments may utilize a bucket conveyor.
In general, system 100-iv may utilize the one or more ice flow channels 120 of thermo-chemical recuperator 102 and the one or more brine ports 104, where the one or more ice flow channels 120 of thermo-chemical recuperator 102 and the one or more brine ports 104 may be positioned with respect to each other such that a flow of the brine 110 from the one or more brine ports 104 may be against a flow of the ice 107 through the one or more ice flow channels 120 of the thermo-chemical recuperator 102.
In some embodiments of the system 100-iv at least the one or more ice flow channels 120 of the thermo-chemical recuperator 102 or the one or more brine ports 104 are positioned to form a counter flow of the brine 110 against the flow of the ice 107. In some embodiments, at least the one or more ice flow channels 120 of the thermo-chemical recuperator 102 or the one or more brine ports 104 are positioned to form a step-wise cross flow of the brine 110 against the flow of the ice 107. In some embodiments of the system 100-iv, the step-wise cross flow of the brine 110 against the flow of the ice 107 includes cyclically injecting the flow of the brine 110 at multiple ports from the one or more brine ports 104 with respect to the flow of the ice 107 through the one or more ice flow channels 120 of the thermo-chemical recuperator 102.
In some embodiments of system 100-iv, at least the one or more ice flow channels 120 from the thermo-chemical recuperator 102 or the one or more brine ports 104 are positioned such that the brine 110 flows with gravity against the flow of the ice 107. In some embodiments, at least the one or more ice flow channels 120 of the thermo-chemical recuperator 102 or the one or more brine ports 104 are positioned such that the flow of the ice 107 flows the ice against gravity. In some embodiments, at least the one or more ice flow channels 120 of the thermo-chemical recuperator 102 or the one or more brine ports 104 are positioned such that the flow of the ice 107 flows the ice with gravity. In some embodiments, the one or more brine ports 104 are positioned such that flow of the ice 107 and the flow of the brine 110 against the flow of the ice 107 occurs horizontally.
Some embodiments of the system 100-iv include an auger positioned with respect to the one or more ice flow channels 120 of the thermo-chemical recuperator 102 to create the flow of the ice 107. Some embodiments include a chain conveyor positioned with respect to the one or more ice flow channels 120 of the thermo-chemical recuperator 102 to create the flow of the ice 107. Bucket and/or belt conveyors may also be utilized. Some embodiments include the ice tank 101 positioned to receive the flow of the ice 107 (referred to as ice 111) after the ice flows through the one or more ice channels 120 of the thermo-chemical recuperator 102.
In some embodiments of the system 100-iv, the one or more ice flow channels 120 of the thermo-chemical recuperator 102 include at least a tube that includes a horizontal portion. Some embodiments include an auger that packs the ice 107 into the tube that includes the horizontal portion.
Some embodiments of the system 100-iv include the separator 105 positioned to receive the brine 110 after the brine flows against the flow of the ice 107; this may be referred to as brine 108 and/or brine 112. In some embodiments, the separator 105 forms at least a concentrated brine 109 or water 113 from the brine 112. In some embodiments, the separator 105 is coupled with the ice tank 101 such that the concentrated brine 109 is delivered to the ice tank 101; ice (such as ice 111) may be combined with the concentrated brine 109 in the ice tank 101. Some embodiments include the ice maker 106 to form the ice 107 for the flow of the ice. In some embodiments, the separator 105 is coupled with the ice maker 106 such that the water 113 from the separator 105 is delivered to the ice maker 106 to form the ice 107 for the flow of the ice.
A chain conveyor 214-b inside the ice flow channel 120-b of the thermo-chemical recuperator 102-b may be rotated by a motor 215-b such that ice 107-b may be conveyed up against the flow of dilute brine 110-b; the flow of ice 107-b may also be against gravity. The ice 107-b and brine 110-b may move counter to each other and that mixing may produce chilled ice 111-b and/or further dilute brine 108-b; this may provide an example of how the flow of the brine 110-b may be against the flow of the ice 107-b. The chilled ice 111-b may fall into the ice mixing vessel 101-b by gravity from the top of the chain conveyor 214-b. The further dilute brine 108-b may be pumped by a liquid pump 216-b-2 as flow 112-b to a separator 105-b where it may be separated to produce water 113-b, which may be pure, and/or concentrated bring 109-b. The concentrated bring 109-b may flow back to the ice tank 101-b and the water 113-b may flow to an ice maker 106-b where it may be turned into ice, which again may be introduced into the thermo-chemical recuperator 102-b.
Turning now to
At block 710, a flow of ice may be created. At block 720, a brine may be flowed against the flow of the ice. In some embodiments, flowing the brine against the flow of the ice includes forming a counter flow of the brine against the flow of the ice. In some embodiments, flowing the brine against the flow of the ice includes forming a step-wise cross flow of the brine against the flow of the ice. In some embodiments, forming the step-wise cross flow of the brine against the flow of the ice includes cyclically injecting the brine at a plurality of points with respect to the flow of the ice.
In some embodiments of method 700, flowing the brine against the flow of the ice reduces a temperature of the brine. In some embodiments, flowing the brine against the flow of the ice dilutes the brine. In some embodiments, flowing the brine against the flow of the ice reduces a temperature of the ice.
Some embodiments of the method 700 include delivering the flow of the ice to an ice tank after flowing the brine against the flow of the ice. Some embodiments include passing the brine through a separator after the brine flows against the flow of the ice. In some embodiments, the separator forms at least a concentrated brine or water from the brine. Some embodiments include freezing the water from the separator to form ice for the flow of the ice. Some embodiments include combining the ice in an ice tank with the concentrated brine after flowing the brine against the flow of the ice.
In some embodiments of the method 700, flowing the brine against the flow of the ice utilizes gravity for flowing the brine against the flow of the ice. In some embodiments, creating the flow of the ice flows the ice against gravity. In some embodiments, creating the flow of the ice flows the ice with gravity.
In some embodiments of method 700, the flow of the ice and flowing the brine against the flow of the ice occurs horizontally. In some embodiments, the flow of the ice and flowing the brine against the flow of the ice that occurs horizontally includes flowing the ice and the brine through a tube that includes a horizontal portion. Some embodiments include utilizing an auger to pack the ice into the tube that includes the horizontal portion.
In some embodiments of method 700, creating the flow of the ice utilizes at least an auger or a chain conveyor. Some embodiments may utilize a bucket conveyor. Some embodiments may utilize a belt conveyor.
These embodiments may not capture the full extent of combination and permutations of materials and process equipment. However, they may demonstrate the range of applicability of the method, devices, and/or systems. The different embodiments may utilize more or less stages than those described.
It should be noted that the methods, systems, and devices discussed above are intended merely to be examples. It must be stressed that various embodiments may omit, substitute, or add various procedures or components as appropriate. For instance, it should be appreciated that, in alternative embodiments, the methods may be performed in an order different from that described, and that various stages may be added, omitted or combined. Also, features described with respect to certain embodiments may be combined in various other embodiments. Different aspects and elements of the embodiments may be combined in a similar manner. Also, it should be emphasized that technology evolves and, thus, many of the elements are exemplary in nature and should not be interpreted to limit the scope of the embodiments.
Specific details are given in the description to provide a thorough understanding of the embodiments. However, it will be understood by one of ordinary skill in the art that the embodiments may be practiced without these specific details. For example, well-known circuits, processes, algorithms, structures, and techniques have been shown without unnecessary detail in order to avoid obscuring the embodiments.
Also, it is noted that the embodiments may be described as a process which may be depicted as a flow diagram or block diagram or as stages. Although each may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be rearranged. A process may have additional stages not included in the figure.
Having described several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the different embodiments. For example, the above elements may merely be a component of a larger system, wherein other rules may take precedence over or otherwise modify the application of the different embodiments. Also, a number of stages may be undertaken before, during, or after the above elements are considered. Accordingly, the above description should not be taken as limiting the scope of the different embodiments.
This application is a non-provisional patent application claiming priority benefit of U.S. provisional patent application Ser. No. 62/782,378, filed on Dec. 20, 2018 and entitled “THERMO-CHEMICAL RECUPERATION SYSTEMS, DEVICES, AND METHODS,” the entire disclosure of which is herein incorporated by reference for all purposes. This non-provisional patent application is a continuation of International PCT Appl. No. PCT/US2019/067892, filed on Dec. 20, 2019.
This invention was made with U.S. Government support under Contract 1533939 awarded by the National Science Foundation. The U.S. Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
952040 | Hall | Mar 1910 | A |
1777913 | Dahl | Oct 1930 | A |
2089886 | Friedrich | Aug 1937 | A |
2590269 | Pike | Mar 1952 | A |
2715945 | Hankison | Aug 1955 | A |
3146606 | Grimes | Sep 1964 | A |
3247678 | Mohlman | Apr 1966 | A |
3257818 | Papapanu | Jun 1966 | A |
3398543 | Horton | Aug 1968 | A |
3526102 | Boylett | Sep 1970 | A |
3747333 | Gertsmann | Jul 1973 | A |
3879956 | Ganiaris | Apr 1975 | A |
4471630 | Sugimoto | Sep 1984 | A |
4531374 | Alefeld | Jul 1985 | A |
4539076 | Swain | Sep 1985 | A |
4584843 | Pronger | Apr 1986 | A |
4809513 | Goldstein | Mar 1989 | A |
4822391 | Rockenfeller | Apr 1989 | A |
4907415 | Stewart | Mar 1990 | A |
5055185 | McMurphy | Oct 1991 | A |
5207075 | Gundlach | May 1993 | A |
5255526 | Fischer | Oct 1993 | A |
5632148 | Bronicki | May 1997 | A |
5678626 | Gilles | Oct 1997 | A |
5941089 | Takaishi | Aug 1999 | A |
6012298 | Goldstein | Jan 2000 | A |
6038876 | Lang | Mar 2000 | A |
6253116 | Zhang | Jun 2001 | B1 |
6432566 | Condit | Aug 2002 | B1 |
7201215 | Ippoushi | Apr 2007 | B2 |
8522569 | Avery et al. | Sep 2013 | B2 |
9310140 | Muren | Apr 2016 | B2 |
9360242 | Muren | Jun 2016 | B2 |
9593675 | Lin | Mar 2017 | B2 |
9766017 | Fujitsuka | Sep 2017 | B2 |
9885524 | Muren | Feb 2018 | B2 |
9913411 | De Bock | Mar 2018 | B2 |
10584904 | Goldfarbmuren | Mar 2020 | B2 |
10995993 | Muren | May 2021 | B2 |
11079184 | Goldfarbmuren | Aug 2021 | B2 |
11255585 | Saavedra | Feb 2022 | B2 |
11460226 | Goldfarbmuren | Oct 2022 | B2 |
11473818 | Goldfarbmuren | Oct 2022 | B2 |
20030066906 | Krause | Apr 2003 | A1 |
20050095476 | Schrooten | May 2005 | A1 |
20060141331 | Reiser | Jun 2006 | A1 |
20070062853 | Spani | Mar 2007 | A1 |
20070134526 | Numao | Jun 2007 | A1 |
20070137223 | Brekke | Jun 2007 | A1 |
20080083220 | Shichman | Apr 2008 | A1 |
20080142166 | Carson | Jun 2008 | A1 |
20090019861 | Heckt | Jan 2009 | A1 |
20090044935 | Nutsos | Feb 2009 | A1 |
20090293507 | Narayanamurthy | Dec 2009 | A1 |
20090312851 | Mishra | Dec 2009 | A1 |
20100145114 | Abhar | Jun 2010 | A1 |
20100206812 | Woods | Aug 2010 | A1 |
20100218542 | McCollough | Sep 2010 | A1 |
20100218917 | Barnwell | Sep 2010 | A1 |
20100270005 | Radhakrishnan | Oct 2010 | A1 |
20100281907 | Giertz | Nov 2010 | A1 |
20100310954 | Odgaard | Dec 2010 | A1 |
20110023505 | Popov | Feb 2011 | A1 |
20120011886 | Shiftlett | Jan 2012 | A1 |
20120103005 | Kopko | May 2012 | A1 |
20120193067 | Miller | Aug 2012 | A1 |
20130199753 | Muren | Aug 2013 | A1 |
20130227983 | Jeong | Sep 2013 | A1 |
20130327407 | Hermann | Dec 2013 | A1 |
20140102662 | Grama | Apr 2014 | A1 |
20140102672 | Campbell | Apr 2014 | A1 |
20140338372 | Muren | Nov 2014 | A1 |
20150083374 | Clark | Mar 2015 | A1 |
20150114019 | Van Gysel | Apr 2015 | A1 |
20160187065 | Muren | Jun 2016 | A1 |
20160290735 | Muren | Oct 2016 | A1 |
20170191707 | Zhou | Jul 2017 | A1 |
20180252477 | Goldfarbmuren | Sep 2018 | A1 |
20180283745 | Goldfarbmuren | Oct 2018 | A1 |
20190137158 | Goldfarbmuren | May 2019 | A1 |
20200318867 | Goldfarbmuren | Oct 2020 | A1 |
20210108831 | Goldfarbmuren | Apr 2021 | A1 |
Number | Date | Country |
---|---|---|
105157140 | Dec 2015 | CN |
58-501577 | Sep 1983 | JP |
62-500257 | Jan 1987 | JP |
63-161333 | Jul 1988 | JP |
H-1252838 | Oct 1989 | JP |
06-331225 | Nov 1994 | JP |
07-055305 | Mar 1995 | JP |
H11-108298 | Apr 1999 | JP |
11-190566 | Jul 1999 | JP |
11-264681 | Sep 1999 | JP |
2002-333170 | Nov 2002 | JP |
2007-038147 | Feb 2007 | JP |
2007-187407 | Jul 2007 | JP |
2008-309360 | Dec 2008 | JP |
2011-099640 | May 2011 | JP |
2013-124820 | Jun 2013 | JP |
2013-537474 | Oct 2013 | JP |
2015-048987 | Mar 2015 | JP |
2015-210033 | Nov 2015 | JP |
10-1779368 | Sep 2017 | KR |
WO8301011 | Mar 1983 | WO |
WO8601881 | Mar 1986 | WO |
WO2009070728 | Jun 2009 | WO |
WO2011162669 | Dec 2011 | WO |
WO2011163354 | Dec 2011 | WO |
WO2012036166 | Mar 2012 | WO |
WO2014100330 | Jun 2014 | WO |
WO2014111012 | Jul 2014 | WO |
WO2014191230 | Dec 2014 | WO |
WO2015196884 | Dec 2015 | WO |
WO2016049612 | Mar 2016 | WO |
WO2016081933 | May 2016 | WO |
WO2017165378 | Sep 2017 | WO |
WO2018183238 | Oct 2018 | WO |
WO2019165328 | Aug 2019 | WO |
WO2020132467 | Jun 2020 | WO |
Entry |
---|
International Search Report and Written Opinion, Int'l Appl. No. PCT/US2019/067892, dated Feb. 20, 2020, ISA—USPTO. |
Notice of Allowance, U.S. Appl. No. 15/090,756, dated Oct. 25, 2017, USPTO. |
Notice of Allowance, U.S. Appl. No. 16/813,023, dated Dec. 9, 2020, USPTO. |
Notice of Allowance, U.S. Appl. No. 15/855,048, dated Apr. 14, 2021, USPTO. |
Non-Final Office Action, U.S. Appl. No. 17/000,337, dated Dec. 29, 2021, USPTO. |
Nicholls, J., Thermal Approach to Grid Energy Storage, Oregon Future Energy Conference, Apr. 26, 2012, available at http://ns2.thesegurogroup.com/event/images/stories/PDFs/4b_nicholls.pdf. |
Nishimura, S., Ultra Eco-Ice System, Feb. 3, 2014, available at http://www.atmo.org/media.presentation.php?id=371. |
Rebound Technologies, “Lab notebook: icepoint™ is ready to keep your ice cream cold,” Jan. 20, 2015, https://www.rebound-tech.com/lab-notebook-icepoint-is-ready-to-keep-your-ice-cream-cold/ (last visited Jan. 26, 2021). |
International Search Report and Written Opinion, Int'l Appl. No. PCT/2019/019323, dated Apr. 26, 2019, ISA—USPTO. |
Extended European Search Report and Search Opinion, European Appl. No. 19757572.3, dated Nov. 8, 2021, EPO. |
International Search Report and Written Opinion, Int'l Appl. No. PCT/US18/024436, dated Jun. 15, 2018, ISA—USPTO. |
Extended European Search Report and Search Opinion, European Appl. No. 18777347.8, dated Nov. 18, 2020, EPO. |
Office Action, Chinese Appl. No. 201880035102.3, dated Jul. 16, 2020, CNIPA. |
Notice of Allowance, Chinese Appl. No. 201880035102.3, dated Feb. 2, 2021, CNIPA. |
Notification of Reasons(s) for Refusal, Japanese Appl. No. JP2019-553031, dated Apr. 6, 2021, JPO. |
Notification of Reasons(s) for Refusal, Japanese Appl. No. JP2019-553031, dated Oct. 19, 2021, JPO. |
International Search Report and Written Opinion, Int'l Appl. No. PCT/US2015/052521, dated Dec. 14, 2015, ISA—USPTO. |
Extended European Search Report and Search Opinion, European Appl. No. 15844161.8, dated Apr. 26, 2018, EPO. |
First Examination Report, European Appl. No. 15844161.8, dated Mar. 13, 2019, EPO. |
Intention to Grant, European Appl. No. 15844161.8, dated Sep. 30, 2019, EPO. |
Office Action, Japanese Appl. No. JP 2016-576018, dated Aug. 6, 2019, JPO. |
Decision to Grant a Patent, Japanese Appl. No. JP 2016-576018, dated Jun. 30, 2020, JPO. |
International Search Report and Written Opinion, Int'l Appl. No. PCT/US17/023356, dated Jun. 16, 2017, ISA—USPTO. |
Extended European Search Report and Search Opinion, European Appl. No. 17770960.7, dated Oct. 30, 2019, EPO. |
Notification of Reasons(s) for Refusal, Japanese Appl. No. JP 2018-549561, dated Feb. 16, 2021, JPO. |
Non-Final Office Action, U.S. Appl. No. 13/761,463, dated Aug. 20, 2015, USPTO. |
Notice of Allowance,, U.S. Appl. No. 13/761,463, dated Jan. 13, 2016, USPTO. |
Notice of Allowance, U.S. Appl. No. 15/090,756, dated Aug. 21, 2017, USPTO. |
Restriction Requirement, U.S. Appl. No. 15/855,048, dated Mar. 8, 2019, USPTO. |
Non-Final Office Action, U.S. Appl. No. 15/855,048, dated Jun. 10, 2019, USPTO. |
Final Office Action, U.S. Appl. No. 15/855,048, dated Feb. 27, 2020, USPTO. |
Advisory Action, U.S. Appl. No. 15/855,048, dated Jun. 9, 2020, USPTO. |
Notice of Panel Decision from Pre-Appeal Brief Review, U.S. Appl. No. 15/855,048, dated Oct. 5, 2020, USPTO. |
Notice of Allowance, U.S. Appl. No. 14/280,080, dated Mar. 28, 2016, USPTO. |
Restriction Requirement, U.S. Appl. No. 14/865,727, dated Jul. 27, 2017, USPTO. |
Non-Final Office Action, U.S. Appl. No. 14/865,727, dated Dec. 1, 2017, USPTO. |
Final Office Action, U.S. Appl. No. 14/865,727, dated Aug. 6, 2018, USPTO. |
Advisory Action, U.S. Appl. No. 14/865,727, dated Oct. 24, 2018, USPTO. |
Non-Final Office Action, U.S. Appl. No. 14/865,727, dated Mar. 18, 2019, USPTO. |
Final Office Action, U.S. Appl. No. 14/865,727, dated Dec. 23, 2019, USPTO. |
Notice of Panel Decision from Pre-Appeal Brief Review, U.S. Appl. No. 14/865,727, dated Nov. 6, 2020, USPTO. |
Notice of Allowance, U.S. Appl. No. 14/865,727, dated Nov. 13, 2020, USPTO. |
Notice of Allowance, U.S. Appl. No. 14/865,727, dated Feb. 23, 2021, USPTO. |
Non-Final Office Action, U.S. Appl. No. 16/136,452, dated Apr. 22, 2020, USPTO. |
Final Office Action, U.S. Appl. No. 16/136,452, dated Dec. 21, 2020, USPTO. |
Restriction Requirement, U.S. Appl. No. 15/935,005, dated Jun. 20, 2019, USPTO. |
Notice of Allowance, U.S. Appl. No. 15/935,005, dated Oct. 8, 2019, USPTO. |
Notice of Allowance, U.S. Appl. No. 16/813,023, dated Oct. 27, 2020, USPTO. |
Notice of Allowance, U.S. Appl. No. 16/813,023, dated Mar. 10, 2021, USPTO. |
Non-Final Office Action, U.S. Appl. No. 16/813,023, dated Aug. 5, 2021, USPTO. |
Final Office Action, U.S. Appl. No. 16/813,023, dated Mar. 2, 2022, USPTO. |
Notice of Allowance, U.S. Appl. No. 16/813,023, dated Jun. 9, 2022, USPTO. |
Notice of Allowance, U.S. Appl. No. 17/000,337, dated May 23, 2022, USPTO. |
Certificate of Grant of Standard Patent by Pre-Registration, Hong Kong Appl. No. 62021031785.0, Feb. 2, 2022, IPDHK. |
Certificate of Grant of Standard Patent by Pre-Registration, Hong Kong Appl. No. 62020010828.5, Jan. 7, 2022, IPDHK. |
Office Action, Canadian Appl. No. 2952665, dated Jan. 11, 2022, CIPO. |
Notification for Going through Patent Registration Formalities, Chinese Appl. No. 201980015025, dated Apr. 27, 2021, CNIPA. |
First Examination Report, European Appl. No. 19757572.3, dated Aug. 30, 2022, EPO. |
Decision of Refusal, Japanese Appl. No. JP 2019-553031, dated Jun. 21, 2022, JPO. |
Corrected Notice of Allowance, U.S. Appl. No. 16/813,023, dated Aug. 30, 2022, USPTO. |
Corrected Notice of Allowance, U.S. Appl. No. 17/000,337, dated Aug. 26, 2022, USPTO. |
Notification of Reason(s) for Refusal, Japanese Appl. No. 2020-544525, dated Jul. 5, 2022, JPO. |
Number | Date | Country | |
---|---|---|---|
20210389041 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
62782378 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2019/067892 | Dec 2019 | US |
Child | 17352326 | US |