The invention is in the field of refrigeration and more specifically to a method, system and apparatus of a thermo-electric chiller/heater component.
Medicines and other products can degrade in certain conditions. For example, some temperatures need to be maintained in specified temperature ranges. Patients may not be able to constantly track medicine temperature. The same can be true for some testing instruments such as blood testing strips. Portable refrigerators can solve these issues. However, effective portable refrigerators need effective components that are sufficient. Accordingly, improvements to thermo-electric cooler pump design and use are desired.
In one aspect, a chiller/heater component of a thermo-electric cooler pump system comprising: wherein the chiller/heater component comprises: a wetted side of the chiller/heater component comprising a regularly-spaced plurality of parallel rows of elongated elements between which the liquid flows, wherein the plurality of rows of elongated elements are oriented perpendicular to both the flow of the liquid and the wetted side of the chiller/heater component, wherein the plurality of rows of elongated elements extends into the liquid from a single surface of the wetted side of the chiller/heater component, and wherein the wetted side of the chiller/heater component is in contact with the liquid, and a dry side of the chiller/heater component comprising a plurality of parallel sheets, and wherein the chiller/heater component comprises an electron flow through the plurality of parallel sheets to facilitate a thermal heat transfer by a Peltier effect.
The Figures described above are a representative set and are not an exhaustive with respect to embodying the invention.
Disclosed are a system, method, and article of manufacture for a thermo-electric chiller/heater component. The following description is presented to enable a person of ordinary skill in the art to make and use the various embodiments. Descriptions of specific devices, techniques, and applications are provided only as examples. Various modifications to the examples described herein can be readily apparent to those of ordinary skill in the art, and the general principles defined herein may be applied to other examples and applications without departing from the spirit and scope of the various embodiments.
Reference throughout this specification to ‘one embodiment,’ ‘an embodiment,’ ‘one example,’ or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases ‘in one embodiment,’ ‘in an embodiment,’ and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
Furthermore, the described features, structures, or characteristics of the invention may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art can recognize, however, that the invention may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.
The schematic flow chart diagrams included herein are generally set forth as logical flow chart diagrams. As such, the depicted order and labeled steps are indicative of one embodiment of the presented method. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more steps, or portions thereof, of the illustrated method. Additionally, the format and symbols employed are provided to explain the logical steps of the method and are understood not to limit the scope of the method. Although various arrow types and line types may be employed in the flow chart diagrams, and they are understood not to limit the scope of the corresponding method. Indeed, some arrows or other connectors may be used to indicate only the logical flow of the method. For instance, an arrow may indicate a waiting or monitoring period of unspecified duration between enumerated steps of the depicted method. Additionally, the order in which a particular method occurs may or may not strictly adhere to the order of the corresponding steps shown.
Example definitions for some embodiments are now provided.
Boron nitride is a thermally and chemically resistant refractory compound of boron and nitrogen with the chemical formula BN. It exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form corresponding to graphite is the most stable and soft among BN polymorphs and is therefore used as a lubricant and an additive to cosmetic products. The cubic (e.g. zincblende aka sphalerite structure) variety analogous to diamond is called c-BN; it is softer than diamond, but its thermal and chemical stability is superior.
The Peltier effect is the presence of heating or cooling at an electrified junction of two different conductors. When a current is made to flow through a junction between two conductors, A and B, heat may be generated or removed at the junction. Thermoelectric cooling uses the Peltier effect to create a heat flux between the junction of two different types of materials. A Peltier cooler, heater, or thermoelectric heat pump is a solid-state active heat pump which transfers heat from one side of the device to the other, with consumption of electrical energy, depending on the direction of the current.
Temperature sensors can include mechanical temperature sensors, electrical temperature sensors, integrated circuit sensors, medometers, etc.
Thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa via a thermocouple. A thermoelectric device creates voltage when there are different temperatures on each side. Conversely, when a voltage is applied to it, heat is transferred from one side to the other, creating a temperature difference. At the atomic scale, an applied temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold side.
More specifically, thermo-electric cooler pump system 100 can include a liquid pump with integrated chiller and heater. The liquid pump with integrated chiller includes four components. The case component seals the liquid so that the liquid does not escape except by the inlet port 102 and exit port 108 which are also formed by case.
The motor component 112 situated outside of the case, is not wetted by the liquid, and is fixed to the Case by attachments such as screws. A shaft of the motor 112 enters the case through a sealed hole.
The impeller 104 is contained within the case. The impeller 104 is wetted by the liquid. The impeller 104 is attached to shaft such that the motion of motor 112 is transferred to impeller 104 causing it to move. The movement of impeller 104 causes liquid to enter the inlet port and move toward the exit port. The movement of the liquid is directed from inlet to exit port by the geometry of case and impeller 104. The chiller/heater 106 is fixed to case by attachments such as screws. Chiller/Heater 106 penetrates the case such that one part of chiller/heater 106 is inside the case and is wetted by liquid while the other part of chiller/heater 106 is outside of the case and is dry. There is a seal around chiller/heater 106 so that liquid does not escape in the vicinity of the chiller/heater 106. Chiller/Heater 106 converts electron flow to thermal heat transfer by means of the Peltier effect. When electrons are made to flow in the positive direction, the wetted side of chiller/heater 106 is driven to lower temperatures and the dry side to higher temperature. The Peltier effect causes heat to flow from cold side to hot side and is reversible with a reversal in electron flow.
Example embodiments of heater and chiller 106 are now discussed. These can be in addition to the example embodiments of heater and chiller 106 provided supra.
In some embodiments, it is noted that the wetted side of the chiller/heater component comprises a regularly-spaced plurality of parallel rows of elongated elements between which the liquid flows, wherein the plurality of rows of elongated elements are oriented perpendicular to both the flow of the liquid and the wetted side of the chiller/heater component. wherein the plurality of rows of elongated elements extends into the liquid from a single surface of the wetted side of the chiller/heater component. and wherein the wetted side of the chiller/heater component is in contact with the liquid, and wherein the dry side of the chiller/heater component comprises a plurality of parallel plates, and wherein the plurality of parallel plates is orthogonal in orientation to the plurality of rows of elongated elements and parallel to the flow of the liquid.
Each pin can be ten millimeters (10 mm) tall and one millimeter (1 mm) in diameter. The pins can be a copper material (e.g. copper, copper alloy, etc.). These dimensions and numbers of pins are provided by way of example and other embodiments can be varied. For example, alternative embodiments to copper in the copper sheet and/or pins can be, inter alia: diamonds, silver (Ag), aluminum (Al) and/or gold (Au).
Although the present embodiments have been described with reference to specific example embodiments, various modifications and changes can be made to these embodiments without departing from the broader spirit and scope of the various embodiments. For example, the various devices, modules, etc. described herein can be enabled and operated using hardware circuitry, firmware, software or any combination of hardware, firmware, and software (e.g., embodied in a machine-readable medium).
In addition, it can be appreciated that the various operations, processes, and methods disclosed herein can be embodied in a machine-readable medium and/or a machine accessible medium compatible with a data processing system (e.g., a computer system), and can be performed in any order (e.g., including using means for achieving the various operations). Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. In some embodiments, the machine-readable medium can be a non-transitory form of machine-readable medium.
This application claims priority to, is a continuation in part of and incorporates by reference U.S. application Ser. No. 17/695,828, titled THERMO-ELECTRIC COOLER PUMP METHODS AND SYSTEMS, and filed on Mar. 16, 2022. U.S. patent application Ser. No. 17/695,828 claims priority to, is a continuation in part of and incorporates by reference U.S. application Ser. No. 16,523,827, titled THERMO-ELECTRIC COOLER PUMP METHODS AND SYSTEMS, and filed on 26 Jul. 2019. U.S. patent application Ser. No. 16,523,827 claims priority to and incorporates by reference U.S. Provisional Application No. 62/772,094, titled THERMO-ELECTRIC COOLER PUMP METHODS AND SYSTEMS, and filed on 28 Nov. 2018. This application claims priority to U.S. patent application Ser. No. 16/134,192 filed on Sep. 18, 2018. U.S. patent application Ser. No. 16/134,192 claims priority to U.S. patent application Ser. No. 15/939,267 filed on Mar. 28, 2018. U.S. patent application Ser. No. 15/939,267 claims priority to U.S. provisional patent application No. 62/477,598 filed on 28 Mar. 2017. These patent applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
7264359 | Kawahara | Sep 2007 | B2 |
20120175094 | Rice | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
204717541 | Oct 2015 | CN |
Number | Date | Country | |
---|---|---|---|
20230167831 A1 | Jun 2023 | US |
Number | Date | Country | |
---|---|---|---|
62772094 | Nov 2018 | US | |
62477598 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16523827 | Jul 2019 | US |
Child | 17695828 | US | |
Parent | 16134192 | Sep 2018 | US |
Child | 17695828 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17695828 | Mar 2022 | US |
Child | 18103243 | US | |
Parent | 15939267 | Mar 2018 | US |
Child | 16523827 | US |