1. Technical Field
The subject matter described herein relates to the design of devices for controlling the flow of light and radiant heat through selective reflection, transmission, and/or absorption and re-emission. The technology has particular, but not exclusive, application in passive or active light-regulating and temperature-regulating films, materials, and devices, especially as construction or building materials.
2. Description of the Related Art
Numerous electrochromic building materials have been developed, such as the electrochromic windows manufactured by Sage Electrochromics and Research Frontiers. In addition, numerous thermochromic building materials have been developed, including the thermoabsorptive and thermoreflective window filters manufactured by RavenBrick LLC. Such systems are often described as “dynamic glazings” or “dynamic windows.” Thermochromic and electrochromic materials may also be incorporated into opaque wall panels.
All thermochromic and electrochromic building materials share a number of common traits. First, they all transmit a variable amount of energy in the form of ultraviolet, visible, and near infrared light. Second, they all possess minimum and maximum transmission values in their clear and tinted states. The difference between these two values is sometimes referred to as the “throw.” Third, they all possess a minimum and a maximum wavelength over which their variable properties operate. The difference between these two values is called the “bandwidth” of the device, and the values themselves are known as the “band edges.” Finally, they all possess one or more wavelength ranges over which they do not operate. Typically the ultraviolet wavelengths are simply blocked to prevent them from damaging the dynamic building material and/or to prevent them from passing through into the building interior. In addition, while it may seem desirable to extend the band edge of a dynamic building material to cover the entire solar spectrum, in practice it becomes increasingly difficult to extend the band edge deep into the infrared, and the benefits of doing so are increasingly sparse as the energy of sunlight peaks at around 460 nanometers and tails off thereafter according to Boltzmann's law.
Thus, a band edge of 1000 nanometers encompasses roughly 73% of the sun's energy and a band edge of 1200 nanometers encompasses roughly 81% of the sun's energy, while a band edge encompassing 99% of the sun's energy does not occur until a wavelength of 4000 nanometers. In practice, this diminishing return means that dynamic building materials rarely exhibit band edges significantly beyond 1200 nm. For purposes of this document, the infrared output of the sun that falls outside the band edge of a dynamic building material shall be referred to as the “unswitched infrared band,” and represents a substantial energy resource that is typically wasted.
The information included in this Background section of the specification, including any references cited herein and any description or discussion thereof, is included for technical reference purposes only and is not to be regarded as subject matter by which the scope of the invention is to be bound or limited.
Combinations of absorptive and reflective filters yielding a thermochromic or thermoreflective filter optimized for desirable combinations of several different variables, including but not limited to cost, return-on-investment, energy savings, human comfort, visible light transmission, and “throw”. In one exemplary implementation, a thermochromic filter device has either a thermoabsorptive element or a thermoreflective element operating across one or more regions of spectrum and a passive stopband element operating across one or more overlapping or non-overlapping regions of spectrum. The total energy throughput of the thermochromic filter device is optimized to a desired value for each of a hot state and a cold state.
In another exemplary implementation, a thermochromic filter device has a thermoabsorptive element operating across one or more regions of spectrum and a thermoreflective element operating across one or more overlapping or non-overlapping regions of spectrum. A total energy throughput of the thermochromic filter device is optimized to a desired value for each of a hot state and a cold state.
In a further exemplary implementation, a switchable filter device has a thermoabsorptive element operating across one or more regions of spectrum and a thermoreflective element operating across one or more overlapping or non-overlapping regions of spectrum. A total energy throughput of the switchable filter device is optimized to a desired value for each of a block state and a pass state. The switchable filter device may be photochromatic, electrochromatic, or magnetochromatic.
In yet another exemplary implementation, an optical or infrared stopband filter attenuates solar energy that occurs outside a band edge of a dynamic optical material or device. The stopband filter has a reflective or absorptive property that is mildly attenuating or non-attenuating across a functional bandwidth of the dynamic optical material or device and a reflective or absorptive property that is strongly attenuating across an unswitched solar radiation band of the dynamic optical material or device. An energy throughput and an operating temperature of the dynamic optical material or device are altered. Also a total building energy savings associated with the dynamic optical material or device is improved more than would be by extending a bandwidth of the dynamic optical material across a same region of the solar spectrum.
In addition, in order to maximize energy savings by limiting solar heat gain in hot weather, this device is highly attenuating (˜97%) to visible light in its hot state, and in order to maximize “throw” the device is approximately 35% transmissive to visible light in its cold state. This may be acceptable for applications where energy savings are more important than visible light transmission, but may be problematic in applications where large amounts of interior daylight are desired.
Because the devices of
In the case of a polarizing device, this increased transmissivity may be achieved, for example, by reducing the thickness of an iodine-doped polyvinyl alcohol (PVA) layer that is the active polarizing element. This reduces polarization efficiency and contrast ratio, while increasing transmissivity. Myriad other methods may be used to reduce polarization efficiency as well, depending on the exact nature of the polarizer being used. In general, decreasing the efficiency of a polarizer is less difficult than increasing it. Alternatively, the transmissivity in the hot state may be increased by misaligning the polarizers, although this will tend to slightly decrease the transmissivity in the cold state and may thus be a less desirable solution.
Achieving the thermochromic (e.g., thermoabsorptive or thermoreflective) effect through polarization has an added advantage when used in building material applications because the transmission numbers stated above are representative of a polarizing device that is being used to shutter non-polarized light. However, the Earth's sky, as seen from ground level, may include a broad band of highly polarized light approximately 90 degrees away from the sun. At sunrise and sunset, this band may extend from south to north across the zenith of the sky. At noon, it may extend in a circle around the horizon. The blue sky is approximately ⅙th as bright as direct sunlight and should be considered a significantly pre-polarizing light source. Thus, if the thermochromic (e.g., thermoabsorptive or thermoreflective) device is oriented such that its polarization in the cold state matches that of the sky, then the filter will appear significantly more transmissive than for an unpolarized light source such as direct sunlight. Thus, in the exemplary device of
The same effect works in reverse, i.e., in the hot state the visible light transmission may be as low as 22% when looking at the blue sky approximately 90 degrees away from the sun, because in the hot state the device is polarizing perpendicular to the sky as well as parallel to it. In addition, both effects may be inverted by rotating the device 90 degrees around the vision line, such that the cold-state transmission may drop to approximately 37% and the hot-state transmission may increase to approximately 33%. This very small separation between hot-state and cold-state transmissivity means the device has been effectively neutralized by the polarization of the sky. Thus, the orientation of a polarization-based thermochromic (e.g., thermoabsorptive or thermoreflective) filter can be selected to increase or decrease the “throw” of the device with respect to the blue sky approximately 90 degrees from the sun, and that this orientation sensitivity is an important element of the device's design. These values and geometries are stated here for explanatory purposes only
This configuration allows the switchable bandwidth of the device to be extended all the way to 2200 nm, which may significantly improve its comfort rating and energy savings when used in building material applications such as windows and exterior wall panels. In addition, because the device is thermoreflective in the near-infrared portion of the solar spectrum, it may be extremely efficient at rejecting solar heat gain in its hot state. And because it is thermoabsorptive in the visible spectrum, it is capable of switching on and off a significant portion of the available solar energy without producing high reflectivity that may, in some cases, produce legal or zoning complications.
In addition, the exemplary thermoreflective filter has been configured such that it has a low, but nonzero, polarization efficiency across the visible spectrum, yielding a maximum 20% reflectivity in the hot state. This may allow the energy savings and comfort ratings of the device to be maximized within the constraints of allowable visible-light reflection for some jurisdictions, and within the additional constraint of high visible light transmission in the hot and cold states.
Exemplary devices that achieve thermochromic effects through polarization are described in U.S. Pat. No. 7,755,829 and in U.S. Patent Application Publication No. 2009/0167971. The absorption and reflection effects of such devices may be aligned such that throw and visible light transmission are enhanced, well beyond what is possible with non-polarizing tints. For example, if the absorptive and reflective polarizers are alternated as described, for example, in U.S. Patent Application Publication No. 2009/0268273, then a 20% reflective (80% transmissive) polarizer placed in series with a 45% absorptive (55% transmissive) polarizer at the same polarization alignment yields a net light transmission of approximately 55%, rather than the 36% transmission that would occur if a static, non-polarizing 20% reflector and 45% absorber were placed in series.
Moreover, the stack appears 20% reflective only when seen from the reflective side. When seen from the absorptive side, the light reflecting from the reflective polarizer is largely absorbed by the absorptive polarizer (since their polarization vectors match), so the effective reflection is approximately 6%. Thus, when incorporated into a window with the reflective surface facing outside and the absorptive surface facing inside, the total device in its cold state may be approximately 55% transmissive to visible light, 20% reflective to visible light, and 25% absorptive to visible light from an outside source (e.g., the sun), and 55% transmissive to visible light, 6% reflective to visible light, and 39% absorptive to visible light from an inside source (e.g., a light fixture). Total solar transmission (visible and infrared) for this exemplary device may then be approximately 45% in the cold state and 19% in the hot state, for a throw of 26%. These values are stated for exemplary purposes only.
In addition, for the polarizing form of this exemplary device the same sky polarization effects apply as described above for
This graph indicates that all of these exemplary devices show roughly comparable energy savings in an exemplary building and climate zone, but that they achieve such energy savings through very different combinations of absorption, reflection, and transmission, both static and switchable, and in both the visible and near-infrared spectrum. Thus, energy savings can be traded off against other properties that may be desirable for particular applications including, but not limited to, visible light transmission, visible light throw, total solar throw, shading of direct sunlight, peak heating and cooling loads, and various human comfort metrics.
The solid gray line represents an infrared-tinted PVB film called “8.6 Green/.090 SGP/Clear” produced by Cardinal Glass Industries, which exhibits roughly 80-90% transmission across the functional bandwidth of the dynamic building material and approximately 70% absorption across the unswitched infrared band. The solid black line represents an even better (though more costly) infrared stopband filter material: KG-2 glass from Schott, which exhibits roughly 95% transmission across the functional bandwidth of the dynamic building material and roughly 95% absorption across the unswitched infrared band of the dynamic building material. Because the KG-2 spectrum begins absorbing where the dynamic building material's absorption band stops, an infrared stopband filter made of KG-2 is particularly well suited to “plugging the hole” and preventing transmission of solar energy from 900 to 2200 nanometers. If the infrared stopband filter is integral to, adjacent to, or otherwise in thermal contact with the dynamic building material (e.g., through conduction, convection, or radiative heat transfer), this configuration will also have the effect of raising the internal temperature of the dynamic building material and thus driving it more toward its “hot state” behavior (e.g., greater tinting) for the purpose of increasing the overall energy savings of the system.
The two materials described for use as infrared stopband filters are described here for exemplary purposes. A large plurality of other materials, or combinations of materials, could be used to create almost any desired absorption spectrum across the functional bandwidth and the unswitched infrared band of a dynamic building material.
It is generally assumed that extending the band edge of a dynamic building material will improve its energy-saving capabilities, since the material is then capable of switching a greater percentage of the sun's energy on or off. However, this view presumes that the response of the material is not altered by the throughput of additional energy. In practice, transmitting the unswitched infrared band into the building interior raises the building temperature, which may alter the behavior of building occupants, thermostats, mechanical systems, automated control systems for dynamic materials, and autonomous behavior of so-called “smart” materials. Absorbing the unswitched infrared band raises the temperature of the dynamic window system which, in the case of a thermochromic system, will increase the level of tinting; in the case of a thermoreflective system, will increase the amount of reflection; and in the case of an electrochromic system, may trigger automated responses from the electrochromic control system. Further, reflecting the unswitched infrared band lowers the amount of absorbed energy and thus lowers the temperature of the dynamic building material, with similarly nonlinear effects on system performance, and also lowers the amount of solar heat gain within the building and thus alters the behavior of people and systems within the building.
Therefore, the result (which may be counterintuitive) is that extending the band edge of a dynamic building material may decrease, rather than increase, the total energy savings of the building over time. This result depends primarily on the exact nature and setpoints of the dynamic building material. However, it also depends on the building type, size, orientation, climate zone, window-to-wall ratio, surrounding landscape, HVAC system, thermostat control algorithms, and occupant behavior. The only reliable methods for assessing the total-building energy performance of dynamic materials are (a) live testing, and (b) detailed building simulation.
The former is problematic because long test times (in general, a year or more) are required to evaluate the performance of different materials and setpoints across all seasons. Thus, trade studies could reasonably take decades to unfold, or require the testing of large numbers of similar buildings. Therefore, while live testing plays an important role in the validation of particular designs, it is generally an adjunct to large numbers of computer simulations that are used to find optimal combinations of materials and setpoints.
This simulation process has been facilitated by the U.S. Department of Energy's Lawrence Berkely National Laboratory, which has produced a suite of standardized software tools and building models that can be used to evaluate different materials, or different dynamic setpoints for the same material, under rigorously controlled and easily reproducible conditions, across an entire model year, in multiple building types and climate zones, over a period of hours or days as opposed to the years required for live testing. For example, Window 6, Optics 5, EnergyPlus 3.0, and the TMY weather file database have been used for this purpose with extremely effective results, although other software tools and data files may be used to produce similar results.
Through such modeling, it has been determined that under some conditions (generally identified through computer simulation, although closed-form theoretical calculations may serve the same purpose) it may be desirable to control the unswitched infrared band in one of three specific ways: total absorption, total reflection, or total transmission. This can be accomplished with an infrared filter, which may be a separate material layer within the dynamic building material, may be external to the dynamic building material, or may take the form of a dopant, dye, or additive to one or more layers within the dynamic building material. The result is a device for increasing the energy savings of a dynamic building material without extending its bandwidth. For the purposes of this document, such a filter is referred to herein as an “infrared stopband filter.”
It is undesirable for such control of the unswitched infrared band to interfere with the dynamic properties of the dynamic building material across its functional bandwidth. Thus, the infrared stopband filter should have relatively constant response across the dynamic building material's functional bandwidth. In many cases, it will be desirable for the absorption or reflection of the infrared stopband filter to be zero, or near zero, across the functional bandwidth of the dynamic material. In other cases, it may be desirable for the infrared stopband filter to have some other absorption or reflection property (e.g., 50%) across the functional bandwidth of the dynamic building material in order to raise or lower the operating temperature of the dynamic building material in full sunlight.
In either case, the infrared stopband filter may have a reflection or absorption property that rises sharply, to a high value (e.g., 100% or some close approximation thereof), at the band edge of the dynamic building material. For example, Raven Brick's RavenWindow™ window filter product has a large “throw” across its bandwidth between 300 and 900 nanometers, but does not switchably affect the transmission of radiation past the band edge at around 900 nanometers. An exemplary infrared stopband filter for use in conjunction with the RavenWindow™ window filter product may have an extremely low (e.g., <10%) reflection or absorption between 300 and 900 nanometers, a sharply rising reflection or absorption at around 900 nanometers, and a very large reflection or absorption (e.g., >90%) across the “unswitched infrared” band from 900 to 2200 nanometers.
In practice, very sharp band edges and very large transmission differences are difficult to achieve with absorptive materials. However, reasonable approximations do exist. For example, G. James Corporation of Australia manufactures a PVB film called HL5P19 that is approximately 30% absorptive across the visible spectrum, has increasing absorption between 700 and 900 nanometers, is approximately 70% absorptive between 900 and 1700 nanometers, and then rises to approximately 90% absorption between 1700 and 2200 nanometers. This film has a slight blue tint, but is nevertheless acceptable for use as an infrared stopband filter to enhance the energy-saving properties of a dynamic building material. Similarly, the U.S. company Cardinal Glass Industries produces a PVB film called “8.6 Green/.090 SGP/Clear” that is approximately 10% absorptive to visible light, with absorption increasing linearly between 600 and 900 nanometers to a value of 65% absorption, which then remains relatively constant out to 2200 nanometers. This material has a very slight green tint, similar to the color of ordinary float glass, and is also suitable for use as an infrared stopband filter to enhance the energy savings of dynamic building materials.
Numerous infrared pigments also exist. Ferro Corporation's Color Division produces an inorganic infrared pigment called “iron chromite infrared black.” BASF makes Sicomix brand infrared pigments, which include both organic and inorganic components. Keystone Aniline Corporation of Chicago, Ill. manufactures infrared pigments such as Keysorb 970 and Keysorb 1026 whose absorption peak centers in nanometers are specified in the product names. Other infrared pigments are available from Polatechno, Sanritz, Arisawa, Nippon Kayaku, and Sumitomo and have mainly been used in the manufacture of infrared polarizers. When such dyes are used in sufficient quantity to block a substantial majority (e.g., greater than 90%) of infrared light within a particular wavelength band, they are often significantly attenuating to visible light as well.
However, other materials exist that absorb infrared light while being highly transparent to visible light. For example, Schott corporation makes “heat absorbing glass” (for example, KG-1, KG-2, KG-5, BG-18, BG-38, BG-9, and VG-9) that is >90% transmissive to visible light and >99% absorbing to infrared radiation beyond approximately 800 nm. For many of these materials the transmissivity rises to approximately 80% again by 1750 nanometers, but only approximately 8% of the sun's energy occurs beyond this wavelength. Thus, the Schott glass can be used to make fairly precise infrared stopband filters that do not significantly interfere with visible light transmission, and are thus extremely suitable for enhancing the energy-saving properties of dynamic building materials. However, while the KG glass is colorless in the visible spectrum, Schott's BG and VG materials have band edges that lend a blue, green, or violet tint, which may be acceptable for some applications and problematic for others.
Thus, different organic and inorganic materials can be combined to produce close to 100% absorption within a given range of infrared wavelengths (e.g., the unswitched infrared band of a dynamic building material), while allowing close to 100% transmission of visible light and near-infrared light with wavelength shorter than the desired band edge. Alternatively, the approximately 100% absorption of a specified band of infrared light may be accompanied with some specific amount of visible light transmission that is selected to optimize the energy-saving properties of the thermochromic building material as described above.
The situation is even more favorable with regard to reflective infrared stopband filters. Unlike the absorption spectra of infrared-absorbing materials, the reflection spectra of optical materials often have sharp, sudden, and clearly defined band edges that occur at precise wavelengths, and also extremely high transmission values outside their reflection bands. Thus, it is fairly straightforward to design bandblock reflectors, bandpass reflectors, and shortpass reflectors with band edges occurring at any desired wavelength. Types of reflective filters that can serve this purpose include distributed Bragg reflectors, Rugate filters, cholesteric liquid crystals, dichroic coatings, and other known interference-type coatings. There are also pigments having bright reflection spectrums in the wavelengths of concern (so-called “infrared white” materials). There are also materials that are highly transparent to visible light and highly reflective to infrared, such as tin oxide, which is less than 10% reflective to visible light, but more than 90% reflective to long-wavelength infrared. In addition, the transmissivity of a given material may be enhanced in the visible spectrum, or any other desired range of wavelengths, by introducing periodic openings into the material of appropriate size and spacing to allow those wavelengths to pass preferentially, as described for example in U.S. Patent Application Publication No. 2009/0128893.
Thus, different optical materials, combinations of materials, and microstructures can be combined to produce close to 100% reflection within a given range of infrared wavelengths (e.g., the unswitched infrared band of a dynamic building material) while allowing close to 100% transmission of visible light, and near-infrared light with wavelengths shorter than the desired band edge. Alternatively, the approximately 100% reflection of a specified band of infrared light may be accompanied with some specific amount of visible light transmission that is selected to optimize the energy-saving properties of the thermochromic building material as described above.
In other embodiments, reflective and absorptive properties can be combined, either in a single layer or in two or more separate layers, to produce an infrared stopband filter that has specific combinations of absorption and reflection (e.g., 50% absorption and 50% reflection) that are intended to optimize the performance of dynamic building materials in the unswitched infrared band outside their switchable bandwidth. Such combinations may be even more effective if they are polarizing rather than non-polarizing, as detailed above, although non-polarizing embodiments may also be efficacious.
The solid line on
Although these embodiments have been described with particular detail, these embodiments are described here for exemplary purposes, and that a plurality of other combinations of reflection, absorption, and transmission may be implemented without departing from the scope of the present disclosure. In addition, numerous additional variations and optional enhancements can be applied. For example, the addition of a low-emissivity coating may have significant effects on the energy and comfort performance of any of the stated embodiments. Alternatively, although reflective infrared stopband filters are employed in the exemplary devices described above, absorptive infrared stopband filters, or a combination of absorptive and reflective infrared stopband filters, could be used as well.
The exact arrangement of the various layers can be different than is disclosed herein and, depending on the materials and wavelengths selected, different layers can be combined as single layers, objects, devices, or materials, without altering the essential structure and function of the invention. For example, the infrared stopband filter could double as a structural element or could be integrated directly into the dynamic building material. Alternatively, the dynamic building material need not have a single operational bandwidth or a single unswitched radiation band, but could have multiple such bands spread across the solar spectrum, with each “hole” in the spectrum potentially being “plugged” by a different stopband filter. The band edges of an infrared stopband filter, whether reflective or absorptive, may be either gradual or sharp without altering the basic nature of the present invention.
Also, the bandwidth of the stopband filter or filters may occur in, or overlap with, the visible spectrum. In addition, the absorption and reflection spectra of multiple filters or filter components may be combined to produce particular color effects, including the “colorless” state of clear or neutral gray. Methods for designing “metameric” colors from individual spectral peaks are well described.
Furthermore, although various embodiments of this invention have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this invention. It is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative only of particular embodiments and not limiting. All directional references (e.g., proximal, distal, upper, lower, inner, outer, upward, downward, left, right, lateral, front, back, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present invention, and do not create limitations, particularly as to the position, orientation, or use of the invention. Connection references (e.g., attached, coupled, connected, and joined) are to be construed broadly and may include intermediate members between a collection of elements and relative movement between elements unless otherwise indicated. As such, connection references do not necessarily imply that two elements are directly connected and in fixed relation to each other. Stated percentages of light transmission, absorption, and reflection shall be interpreted as illustrative only and shall not be taken to be limiting. Changes in detail or structure may be made without departing from the basic elements of the invention as defined in the following claims.
This application claims the benefit of priority pursuant to 35 U.S.C. §119(e) of U.S. provisional patent application No. 61/256,853 entitled “Infrared stopband filter for use with thermochromic and electrochromic building materials” filed 30 Oct. 2009, which is hereby incorporated herein by reference in its entirety. This application is also related to the following: U.S. Pat. No. 7,768,693; U.S. Pat. No. 7,755,829; U.S. Patent Application Publication No. 2009/0167971; U.S. Patent Application Publication No. 2008/0210893; and U.S. Patent Application Publication No. 2009/0268273, the disclosures of each are hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3990784 | Gelber | Nov 1976 | A |
4006730 | Clapham et al. | Feb 1977 | A |
4155895 | Rohowetz et al. | May 1979 | A |
4268126 | Mumford | May 1981 | A |
4456335 | Mumford | Jun 1984 | A |
4475031 | Mockovciak, Jr. | Oct 1984 | A |
4491390 | Tong-Shen | Jan 1985 | A |
4512638 | Sriram et al. | Apr 1985 | A |
4579638 | Scherber | Apr 1986 | A |
4640583 | Hoshikawa et al. | Feb 1987 | A |
4641922 | Jacob | Feb 1987 | A |
4688900 | Doane et al. | Aug 1987 | A |
4688901 | Albert | Aug 1987 | A |
4755673 | Pollack et al. | Jul 1988 | A |
4756758 | Lent et al. | Jul 1988 | A |
4783150 | Tabony | Nov 1988 | A |
4789500 | Morimoto et al. | Dec 1988 | A |
4804254 | Doll et al. | Feb 1989 | A |
4848875 | Baughman et al. | Jul 1989 | A |
4859994 | Zola et al. | Aug 1989 | A |
4871220 | Kohin | Oct 1989 | A |
4877675 | Falicoff et al. | Oct 1989 | A |
4893902 | Baughman et al. | Jan 1990 | A |
4899503 | Baughman et al. | Feb 1990 | A |
4964251 | Baughman et al. | Oct 1990 | A |
5009044 | Baughman et al. | Apr 1991 | A |
5013918 | Choi | May 1991 | A |
5025602 | Baughman et al. | Jun 1991 | A |
5111629 | Baughman et al. | May 1992 | A |
5132147 | Takiguchi et al. | Jul 1992 | A |
5152111 | Baughman et al. | Oct 1992 | A |
5193900 | Yano et al. | Mar 1993 | A |
5196705 | Ryan | Mar 1993 | A |
5197242 | Baughman et al. | Mar 1993 | A |
5212584 | Chung | May 1993 | A |
5227115 | Harnischfeger | Jul 1993 | A |
5274246 | Hopkins | Dec 1993 | A |
5304323 | Arai et al. | Apr 1994 | A |
5308706 | Kawaguchi et al. | May 1994 | A |
5319478 | Funfschilling et al. | Jun 1994 | A |
5347140 | Hirai | Sep 1994 | A |
5377042 | Chahroudt | Dec 1994 | A |
5481400 | Borden | Jan 1996 | A |
5525430 | Chahroudi | Jun 1996 | A |
5530263 | DiVincenzo | Jun 1996 | A |
5574286 | Huston et al. | Nov 1996 | A |
5585640 | Huston | Dec 1996 | A |
5757828 | Ouchi | May 1998 | A |
5763307 | Wang | Jun 1998 | A |
5881200 | Burt | Mar 1999 | A |
5889288 | Futatsugi | Mar 1999 | A |
5897957 | Goodman | Apr 1999 | A |
5937295 | Chen | Aug 1999 | A |
5940150 | Faris et al. | Aug 1999 | A |
6040859 | Takahashi | Mar 2000 | A |
6055089 | Schulz et al. | Apr 2000 | A |
6099758 | Verrall et al. | Aug 2000 | A |
6122103 | Perkins et al. | Sep 2000 | A |
6208463 | Hansen | Mar 2001 | B1 |
6218018 | McKown et al. | Apr 2001 | B1 |
6226067 | Nishiguchi et al. | May 2001 | B1 |
6240114 | Anselm | May 2001 | B1 |
6260414 | Brown et al. | Jul 2001 | B1 |
6281519 | Sugiyama et al. | Aug 2001 | B1 |
6288840 | Perkins et al. | Sep 2001 | B1 |
6294794 | Yoshimura et al. | Sep 2001 | B1 |
6304784 | Allee | Oct 2001 | B1 |
6320220 | Watanabe | Nov 2001 | B1 |
6329668 | Razeghi | Dec 2001 | B1 |
6333516 | Katoh | Dec 2001 | B1 |
6381068 | Harada | Apr 2002 | B1 |
6437361 | Matsuda | Aug 2002 | B1 |
6446402 | Byker | Sep 2002 | B1 |
6486997 | Bruzzone et al. | Nov 2002 | B1 |
6487112 | Wasshuber | Nov 2002 | B1 |
6493482 | Al-hemyari et al. | Dec 2002 | B1 |
6498354 | Jefferson | Dec 2002 | B1 |
6500555 | Khaldi | Dec 2002 | B1 |
6504588 | Kaneko | Jan 2003 | B1 |
6512242 | Fan et al. | Jan 2003 | B1 |
6559903 | Faris et al. | May 2003 | B2 |
6583827 | Faris et al. | Jun 2003 | B2 |
6600169 | Stintz | Jul 2003 | B2 |
6611640 | LoCasclo | Aug 2003 | B2 |
6635898 | Williams et al. | Oct 2003 | B2 |
6661022 | Morie | Dec 2003 | B2 |
6671008 | Li et al. | Dec 2003 | B1 |
6710823 | Faris et al. | Mar 2004 | B2 |
6718086 | Ford | Apr 2004 | B1 |
6730909 | Butler | May 2004 | B2 |
6753273 | Holonyak, Jr. et al. | Jun 2004 | B2 |
6770916 | Ohshima | Aug 2004 | B2 |
6777718 | Takagi | Aug 2004 | B2 |
6816525 | Stintz | Nov 2004 | B2 |
6847662 | Bouda | Jan 2005 | B2 |
6859114 | Eleftheriades | Feb 2005 | B2 |
6912018 | Faris et al. | Jun 2005 | B2 |
6926952 | Weber et al. | Aug 2005 | B1 |
6933812 | Sarabandi | Aug 2005 | B2 |
6946697 | Pietambaram | Sep 2005 | B2 |
6963435 | Mallya et al. | Nov 2005 | B2 |
6965420 | Li et al. | Nov 2005 | B2 |
6978070 | McCarthy et al. | Dec 2005 | B1 |
6985291 | Watson | Jan 2006 | B2 |
6992822 | Ma et al. | Jan 2006 | B2 |
7026641 | Mohseni | Apr 2006 | B2 |
7038745 | Weber et al. | May 2006 | B2 |
7042615 | Richardson | May 2006 | B2 |
7046441 | Huang | May 2006 | B2 |
7068234 | Sievenpiper | Jun 2006 | B2 |
7099062 | Azens et al. | Aug 2006 | B2 |
7113335 | Sales | Sep 2006 | B2 |
7133335 | Nishimura et al. | Nov 2006 | B2 |
7154451 | Sievenpiper | Dec 2006 | B1 |
7161737 | Umeya | Jan 2007 | B2 |
7166797 | Dziendziel et al. | Jan 2007 | B1 |
7221827 | Domash et al. | May 2007 | B2 |
7245431 | Watson et al. | Jul 2007 | B2 |
7276432 | McCarthy et al. | Oct 2007 | B2 |
7300167 | Fernando et al. | Nov 2007 | B2 |
7306833 | Martin et al. | Dec 2007 | B2 |
7318651 | Chua | Jan 2008 | B2 |
7351346 | Little | Apr 2008 | B2 |
7385659 | Kotchick et al. | Jun 2008 | B2 |
7470925 | Tamura | Dec 2008 | B2 |
7522124 | Smith | Apr 2009 | B2 |
7532397 | Tanaka | May 2009 | B2 |
7538946 | Smith | May 2009 | B2 |
7561332 | Little et al. | Jul 2009 | B2 |
7619816 | Deng | Nov 2009 | B2 |
7655942 | McCarthy et al. | Feb 2010 | B2 |
7755829 | Powers et al. | Jul 2010 | B2 |
7768693 | McCarthy et al. | Aug 2010 | B2 |
7911563 | Hung | Mar 2011 | B2 |
8072672 | Powers et al. | Dec 2011 | B2 |
8076661 | McCarthy et al. | Dec 2011 | B2 |
8271241 | Akyurtlu | Sep 2012 | B2 |
8593581 | McCarthy et al. | Nov 2013 | B2 |
20020079485 | Stintz et al. | Jun 2002 | A1 |
20020080842 | An | Jun 2002 | A1 |
20020085151 | Faris et al. | Jul 2002 | A1 |
20020114367 | Stintz et al. | Aug 2002 | A1 |
20020118328 | Faris | Aug 2002 | A1 |
20020141029 | Carlson | Oct 2002 | A1 |
20020152191 | Hollenberg | Oct 2002 | A1 |
20020180916 | Schadt et al. | Dec 2002 | A1 |
20020190249 | Williams | Dec 2002 | A1 |
20030059998 | Holonyak, Jr. | Mar 2003 | A1 |
20030066998 | Lee | Apr 2003 | A1 |
20030107813 | Clabburn et al. | Jun 2003 | A1 |
20030107927 | Yerushalmi | Jun 2003 | A1 |
20030129247 | Ju et al. | Jul 2003 | A1 |
20030138209 | Chan | Jul 2003 | A1 |
20030160292 | Takagi | Aug 2003 | A1 |
20030214632 | Ma | Nov 2003 | A1 |
20030218712 | Kumar et al. | Nov 2003 | A1 |
20030227663 | Agrawal | Dec 2003 | A1 |
20040005451 | Kretman et al. | Jan 2004 | A1 |
20040012749 | Freeman | Jan 2004 | A1 |
20040036993 | Tin | Feb 2004 | A1 |
20040256612 | Mohseni | Dec 2004 | A1 |
20050068629 | Fernando et al. | Mar 2005 | A1 |
20050185125 | Miyachi | Aug 2005 | A1 |
20050221128 | Kochergin | Oct 2005 | A1 |
20050271092 | Ledentsov | Dec 2005 | A1 |
20060011904 | Snyder et al. | Jan 2006 | A1 |
20060118514 | Little et al. | Jun 2006 | A1 |
20060147810 | Koch | Jul 2006 | A1 |
20060151775 | Hollenberg | Jul 2006 | A1 |
20060257090 | Podolskiy | Nov 2006 | A1 |
20060262398 | Sangu et al. | Nov 2006 | A1 |
20060274218 | Xue | Dec 2006 | A1 |
20070070276 | Tan | Mar 2007 | A1 |
20070121034 | Ouderkirk | May 2007 | A1 |
20070215843 | Soukoulis et al. | Sep 2007 | A1 |
20070279727 | Gandhi | Dec 2007 | A1 |
20080008857 | Kalkanoglu et al. | Jan 2008 | A1 |
20080013174 | Allen et al. | Jan 2008 | A1 |
20080061222 | Powers et al. | Mar 2008 | A1 |
20080117500 | Narendran et al. | May 2008 | A1 |
20080138543 | Hoshino et al. | Jun 2008 | A1 |
20080160321 | Padiyath et al. | Jul 2008 | A1 |
20080204383 | McCarthy et al. | Aug 2008 | A1 |
20080210893 | McCarthy et al. | Sep 2008 | A1 |
20080246388 | Cheon | Oct 2008 | A1 |
20080259254 | Kikuchi et al. | Oct 2008 | A1 |
20090015902 | Powers et al. | Jan 2009 | A1 |
20090040132 | Sridhar | Feb 2009 | A1 |
20090059406 | Powers et al. | Mar 2009 | A1 |
20090128893 | McCarthy et al. | May 2009 | A1 |
20090128907 | Takahashi et al. | May 2009 | A1 |
20090167971 | Powers et al. | Jul 2009 | A1 |
20090219603 | Xue | Sep 2009 | A1 |
20090266394 | Tsubone | Oct 2009 | A1 |
20090268273 | Powers et al. | Oct 2009 | A1 |
20090296190 | Anderson et al. | Dec 2009 | A1 |
20100001008 | McCarthy et al. | Jan 2010 | A1 |
20100015363 | Chiang et al. | Jan 2010 | A1 |
20100027099 | McCarthy et al. | Feb 2010 | A1 |
20100045924 | Powers et al. | Feb 2010 | A1 |
20100051898 | Kim, II | Mar 2010 | A1 |
20100060844 | Sawatari et al. | Mar 2010 | A1 |
20100118380 | Xue | May 2010 | A1 |
20100232017 | McCarthy et al. | Sep 2010 | A1 |
20100259698 | Powers et al. | Oct 2010 | A1 |
20100271686 | Powers et al. | Oct 2010 | A1 |
20100288947 | McCarthy et al. | Nov 2010 | A1 |
20110025934 | McCarthy et al. | Feb 2011 | A1 |
20110044061 | Santoro et al. | Feb 2011 | A1 |
20110102878 | McCarthy et al. | May 2011 | A1 |
20110216254 | McCarthy et al. | Sep 2011 | A1 |
20110234944 | Powers et al. | Sep 2011 | A1 |
20110292488 | McCarthy | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
1189224 | Jul 1998 | CN |
1350648 | May 2002 | CN |
1494091 | May 2004 | CN |
1162496 | Dec 2001 | EP |
2261989 | Jun 1993 | GB |
49-94145 | Jun 1974 | JP |
58 10717 | Jan 1983 | JP |
59-231516 | Dec 1984 | JP |
61223719 | Oct 1986 | JP |
1178517 | Jul 1989 | JP |
02-089426 | Mar 1990 | JP |
05-147983 | Jun 1993 | JP |
06-158956 | Jun 1994 | JP |
07-043526 | Feb 1995 | JP |
08-015663 | Jan 1996 | JP |
09-124348 | May 1997 | JP |
63-127594 | Aug 1998 | JP |
10-287449 | Oct 1998 | JP |
10-311189 | Nov 1998 | JP |
2002-520677 | Jul 2002 | JP |
2002-357815 | Dec 2002 | JP |
2003-248204 | Sep 2003 | JP |
2004-004795 | Jan 2004 | JP |
2004-012818 | Jan 2004 | JP |
2004-291345 | Oct 2004 | JP |
2005-250119 | Sep 2005 | JP |
2006-243485 | Sep 2006 | JP |
2006-285242 | Oct 2006 | JP |
2007-515661 | Jun 2007 | JP |
2007-272016 | Oct 2007 | JP |
2008-530766 | Aug 2008 | JP |
2002-0044153 | Jun 2002 | KR |
2003-0072578 | Sep 2003 | KR |
1020040048916 | Jun 2004 | KR |
10-2004-0108816 | Dec 2004 | KR |
1020060000059 | Jan 2006 | KR |
10-2007-0091314 | Sep 2007 | KR |
10-2010-0039401 | Apr 2010 | KR |
9402313 | Feb 1994 | WO |
WO-9701789 | Jan 1997 | WO |
0123173 | Apr 2001 | WO |
02064937 | Aug 2002 | WO |
WO-03029885 | Apr 2003 | WO |
03096105 | Nov 2003 | WO |
2005031437 | Apr 2005 | WO |
WO-2006023195 | Mar 2006 | WO |
2006088369 | Aug 2006 | WO |
WO-2008092038 | Jul 2008 | WO |
WO-2008106596 | Sep 2008 | WO |
2008144217 | Nov 2008 | WO |
Entry |
---|
Fan, et al., “Thin-film conducting microgrids as transparent heat mirrors”, Appl. Phys. Lett., vol. 28, No. 8, Apr. 5, 1976, 440-442. |
Iyer, “Negative-Refraction Metamaterials: Fundamental Principles and Applications”, IEEE Press, John Wiley & Sons, Chapter 1, 2005, 4-5,16-30,321-330. |
Author Unknown, “Liquid Crystal Research”, http://chirality.swarthmore.edu, printed Aug. 21, 2009. |
Barbagallo, S., et al., “Synthesis of novel metamaterials,” Chapter 2 (VDM Verlag 2008). |
Eleftheriades, G.V., et al. (Editors); Iyers, “Negative-Refraction Metamaterials,” Chapter 1 (Wiley 2005), pp. 4-5, 16-30, 321-330. |
Fedotov, V. A., et al., “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” The American Physical Society, PRL 97, Oct. 20, 2006, pp. 167401-1-167401-4. |
Ginley, D. S., et al., “Transparent Conducting Oxides,” MRS Bulletin, Aug. 2000, pp. 15-18. |
Goldhaber-Gordon, David, et al., “Overview of Nanoelectronic Devices,” Proceedings of the IEEE, vol. 85, No. 4, (Apr. 1997), pp. 521-533. |
Hao, J. et al., “Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials,” Physical Review Letters, 2007, vol. 99, No. 063908. |
Harrison, “Quantum Wells, Wires, and Dots: Theoretical & Computational Physics of Semiconductor Nanostructures” 2nd Edition, John Wiley & Sons, LTD (2005), 3 pages. |
Lan, S., et al., “Survey on Roller-type Nanoimprint Lithography (RNIL) Process,” International Conference on Smart Manufacturing Application, Apr. 9-11, 2008, in KINTEX, Gyeonggi-do, Korea, pp. 371-376. |
Leatherdale, C.A., et al., “Photoconductivity in CdSe Quantum Dot Solids,” Physical Review B, vol. 62, No. 4, (Jul. 15, 2000) pp. 2669-2680. |
Manea, E., et al., “Optical Characterization of SnO2 thin Films Prepared by Sol Gel Method, for ‘Honeycomb’ Textured Silicon Solar Cells,” International Semiconductor Conference, 2006, vol. 1, Issue, Sep. 2006, pp. 179-182. |
Manea, E., et al., “SnO2 Thin Films Prepared by Sol Gel Method for ‘Honeycomb’ Textured Silicon Solar Cells,” Romanian Journal of Information Science and Technology, vol. 10, No. 1, 2007, pp. 25-33. |
Padilla, W.J., et al., “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Physical Review B 75, 041102(R) (2007). |
Rogacheva, A.V., et al., “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Physical Review Letters 97, 177401 (Oct. 27, 2006). |
Sarychev, et al., “Negative refraction metamaterials,” Chapter 8 (Wiley 2005). |
Siegel, J. D., “The MSVD Low E ‘Premium Performance’ Myth,” International Glass Review, Issue 1, 2002, pp. 55-58. |
Sung, J., et al., “Dynamics of photochemical phase transition of guest/host liquid crystals with an Azobenzene derivative as a photoresponsive chromophore,” Chemistry of Materials, vol. 14, No. 1, pp. 385-391, Jan. 21, 2002. |
West, J. L., et al., “Characterization of polymer dispersed liquid-crystal shutters by ultraviolet/visible and infrared absorption spectroscopy,” Journal of Applied Physics, vol. 70, No. 7, pp. 3785-3790, Oct. 1, 1991. |
Zhang, W., Giant optical activity in dielectric planar metamaterials with two-dimensional chirality, Journal of Optics A: Pure and Applied Optics, 8, pp. 878-890 (2006). |
Korean Intellectual Property Office as International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/US2008/051959, Jun. 6, 2008, 10 pages. |
Korean Intellectual Property Office as International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/US2008/069881, Sep. 30, 2008, 10 pages. |
Korean Intellectual Property Office as International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/US2008/087964, Mar. 31, 2009, 12 pages. |
Korean Intellectual Property Office as International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/US2009/041576, Nov. 25, 2009, 7 pages. |
Notice of Allowance, U.S. Appl. No. 12/019,602, dated Jun. 9, 2010 (now Pat. 7,768,693). |
Notice of Allowance, U.S. Appl. No. 12/172,156, dated Mar. 11, 2010 (now Pat 7,755,829). |
Notice of Allowance, U.S. Appl. No. 12/843,218, dated Apr. 12, 2011. |
Yamazaki, et al., “Polarisation-insensitive parametric wavelength conversion without tunable filters for converted light extraction”, Eletronic Letters, IEE Stevenage, GB, vol. 42, No. 6, Mar. 16, 2006, 365-367. |
PCT Application No. PCT/US2010/054844. |
United States Patent and Trademark Office as International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/US2010/054844, Jul. 28, 2011, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20110102878 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
61256853 | Oct 2009 | US |