This application relates to and claims the benefit and priority to European Application No. 13382173.6, filed May 23, 2013.
The present invention is related to a thermocouple connector adapted for being connected to a gas safety valve and a thermocouple comprising said connector.
Different types of quick connectors through which a thermocouple is electrically connected to a gas safety valve, particularly to an electromagnetic valve, are known in the art. It is therefore assured that in the absence of a flame in a burner, the thermocouple associated with said burner will cool down, and the electromagnetic valve will therefore no longer be energized, said electromagnetic valve closing the passage of gas towards the burner.
EP619460A1 discloses a quick connector comprising a cylindrical insulating body inside which there is housed a female terminal connected to a phase conductor of the thermocouple and a metallic sheath externally surrounding the insulating body and establishing electrical continuity with an earth conductor of the thermocouple. The female terminal is adapted for being coupled to a male phase terminal of the electromagnetic valve. The electromagnetic valve comprises a collar-like earth terminal, such that when the quick connector is coupled to the electromagnetic valve, the insulating body and the phase terminal are housed inside the collar whereas the metallic sheath is externally coupled to the collar establishing electrical continuity between the earth terminal of the connector and the collar-like earth terminal.
EP2182584A1 discloses a connector for a coaxial thermocouple comprising a phase terminal which is fixed to an end of the phase conductor of the thermocouple, an earth terminal which is fixed at one end to the earth conductor surrounding the phase terminal, and an insulating member inside which the phase terminal is fixed. The earth terminal has a substantially cylindrical geometry with an end that is fitted concentrically to the outside of the earth conductor. The earth terminal is adapted for being externally coupled to the earth terminal of the electromagnetic valve. In turn, the insulating body includes equidistantly arranged axial slots at one end which make the insulating body more flexible to make it easier to insert it into the electromagnetic valve.
The object of the invention is to provide a thermocouple connector adapted for the electrical connection of a thermocouple comprising a phase conductor and an earth conductor to a gas safety valve comprising a phase terminal and an earth terminal, as defined in the claims.
According to some embodiments, the thermocouple connector comprises a phase terminal attachable to the phase conductor of the thermocouple and connectable to the phase terminal of the gas safety valve, an earth terminal attachable to the earth conductor of the thermocouple and connectable to the earth terminal of the gas safety valve, and an insulating body inside which the phase terminal of the connector is arranged housed and on the outside of which the earth terminal of the connector is arranged coupled. The insulating body comprises at least one opening extending axially along an end of said insulating body.
The earth terminal comprises an elastic body perimetrally surrounding the insulating body. The elastic body is adapted for being deformed against the inside of the earth terminal of the safety valve as the end of the insulating body expands radially when the thermocouple connector is connected to the safety valve.
Good electrical contact between the thermocouple connector and the safety valve, particularly between the earth terminal of the thermocouple connector and the earth terminal of the safety valve, is thus assured.
Furthermore, concentricity between the earth terminal and the insulating body with respect to other known thermocouple connectors is improved, problems derived from a poor electrical connection caused by said reason therefore being eliminated.
Once the elastic body is inserted into the safety valve, the pressure exerted by the elastic body together with the insulating body against the inner surface of the earth terminal of the valve keeps the thermocouple connector coupled to the safety valve, preventing accidental disassembly. Furthermore, once inserted, even if one of the conductors of the thermocouple bends externally, the phase and earth terminals of the connector continue to maintain a good electrical connection with the terminals of the safety valve.
Finally, the obtained thermocouple connector is a compact and ergonomic connector, minimal effort from the user being needed to connect said connector to the gas safety valve.
These and other advantages and features will become evident in view of the drawings and the detailed description of the invention.
The thermocouple 20 comprises a phase conductor 21 and an earth conductor 22, and the gas safety valve 30 in turn comprises a phase terminal 31 and an earth terminal 32.
The thermocouple connector 1 comprises a phase terminal 2, an earth terminal 3, both terminals 2 and 3 being electrically conductive, and an insulating body 4 inside which the phase terminal 2 is arranged housed and on the outside of which the earth terminal 3 of the connector 1 is arranged coupled. The phase conductor 21 of the thermocouple 20 is fixed to the phase terminal 2 of the connector 1 which, in turn, is adapted for being connected to the phase terminal 31 of the safety valve 30. On the other hand, the earth conductor 22 of the thermocouple 20 is fixed to the earth terminal 3 of the connector 1 which, in turn, is adapted for being connected to the earth terminal 32 of the safety valve 30.
The gas safety valve 30 is an electromagnetic valve known in the state of the art so it will not be described in detail. The earth terminal 32 of the safety valve 30 may have a substantially cylindrical, collar-like, geometry. Further, both terminals 31 and 32 of the safety valve 30 being arranged substantially concentric to one another.
The phase terminal 2 of the connector 1 is a female terminal known in the state of the art. Said phase terminal 2 is substantially cylindrical and comprises an end having a substantially V-shaped cross-section defined by surfaces 2b, the longitudinal section of which is shown in
The insulating body 4 electrically insulates the phase terminal 2 from the earth terminal 3 and comprises a first substantially cylindrical part 4a and a second substantially conical part 4c following the first part 4a. The insulating body 4 further comprises a housing 8 for the phase terminal 2. The housing 8 is substantially cylindrical and axially traverses said insulating body 4, the housing 8 comprising a first part 8a and a second part 8b following said first part 8a and having a diameter greater than that of the first part 8a. The phase terminal 2 is tightly introduced in the insulating body 4 through the first part 8a until the tabs 2c overtakes the first part 8a, being housed in the second part 8b of the housing 8, such that as said tabs 2c expand radially, they act like a stop, preventing accidental disassembly of the phase terminal 2 with respect to the insulating body 4 in the direction opposite the insertion of said phase terminal 2 into the insulating body 4. The first part 8a has dimensions adapted for keeping the phase terminal 2 coupled to the insulating body 4.
The insulating body 4 comprises at least one opening 6, shown in
On the other hand, the earth terminal 3 comprises an elastic body 10 adapted for perimetrally surrounding the insulating body 4, said elastic body 10 extending along the openings 6, the elastic body 10 being configured for being deformed against the inside of the earth terminal 32 of the safety valve 30, particularly against the inner surface 32b of the collar 32 when the insulating body 4 expands radially outwards. The electrical contact between the earth terminal 3 of the connector 1 and the earth terminal 32 of the safety valve 30 is thereby improved, good electrical contact being assured at all times. Furthermore, once the elastic body 10 is inserted into the collar 32 of the safety valve 30, the pressure exerted by the elastic body 10 together with the insulating body 4 against the inner surface 32b of the collar 32 keeps the thermocouple connector 1 coupled to the safety valve 30 in the position shown in
The insulating body 4 further comprises a recess 7 on its outer surface, the earth terminal 3 being coupled to the elastic body 10 in said recess 7. Said recess 7 is a substantially cylindrical recess extending over the first part 4a of the insulating body 4 and therefore, over the openings 6. The elastic body 10 comprises ends 11 and 12, shown in
The elastic body 10 comprises at least one elastic band 17 extending longitudinally between both ends 11 and 12 of the elastic body 10.
In the embodiments shown in the drawings, the elastic body 10 is barrel-shaped. Said elastic body 10 comprises a plurality of elastic bands 17 extending longitudinally between both ends 11 and 12 of the elastic body 10, separated from one another. The elastic body 10 is coupled to the insulating body 4 only through the ends 11 and 12. Both ends 11 and 12 have a substantially cylindrical geometry. Said elastic bands 17 enable a more robust electrical connection because each elastic band 17 establishes its own electrical contact against the inner surface 32b of the earth terminal 32 of the safety valve 30.
The elastic body 10 comprises an opening 16, shown in
The earth terminal 3 further comprises an end 14 having a substantially U-shaped cross-section defined by surfaces 14b adapted for being collapsed, trapping the earth conductor 22 of the thermocouple 20 between said surfaces 14b. The end 14 of the earth terminal 3 is arranged such that it is attached following the elastic body 10, particularly following an end 11 of the elastic body 10, by means of an arm 15 having a first part 15b with a substantially U-shaped cross-section defined by surfaces that make the earth terminal 3 more robust and a second part 15a attaching the first part 15b to the end 11 of the elastic body 10.
Finally, the insulating body 4 is made of an electrically insulating material, preferably a plastic material. In turn, the phase terminal 2 and the earth terminal 3 are made of electrically conductive materials, preferably metallic materials.
The thermocouple connector 1 according to the invention is more compact than those known in the state of the art, more ergonomic, particularly as a result of the substantially conical geometry of the second part 4c of the insulating body 4, which allows better gripping for the user.
As shown in
Furthermore, when the connector 1 is correctly assembled to the safety valve 30, the elastic body 10 may be housed entirely inside the earth terminal 32 of the safety valve 30, so a user can visually see if said connector 1 is correctly connected to the safety valve 30.
To couple the connector 1 to the safety valve 30, the user axially introduces said connector 1 inside the safety valve 30 without the user needing to apply any significant effort. Once the phase terminals 2 and 31 of the connector 1 and of the safety valve 30 are connected, the flanges 5 of the insulating body 4 open up, expanding radially, the earth terminal 3 of the connector 1, particularly the elastic body 10, pushing radially against the inner surface 32b of the earth terminal 32 of the safety valve 30, the plurality of elastic bands 17 being deformed against said inner surface 32b to assure the electrical contact between both along the larger surface.
Number | Date | Country | Kind |
---|---|---|---|
13382173 | May 2013 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4750897 | Neidecker | Jun 1988 | A |
5439386 | Ellis | Aug 1995 | A |
5695357 | Wright | Dec 1997 | A |
5951337 | Brake | Sep 1999 | A |
6609931 | Parrish | Aug 2003 | B2 |
7731549 | Metzler | Jun 2010 | B2 |
7955143 | Zhang | Jun 2011 | B2 |
9106035 | Erdos | Aug 2015 | B2 |
20030082949 | Parrish et al. | May 2003 | A1 |
20060024993 | Gonzalez | Feb 2006 | A1 |
20130217245 | Bettinzoli | Aug 2013 | A1 |
20140162495 | Pianezze | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
0619460 | Oct 1994 | EP |
0619460 | Jun 1997 | EP |
2182584 | May 2010 | EP |
2447648 | Sep 2008 | GB |
2013021340 | Feb 2013 | WO |
Entry |
---|
Extended European Search Report for EP13382173.6 issued by the European Patent Office, Rijswijk, Netherlands dated Oct. 2, 2013. |
Number | Date | Country | |
---|---|---|---|
20140335718 A1 | Nov 2014 | US |